1
|
Ghosh S, Ghosh S. Vegetable oil-derived functional polymers in biomedical applications: hurdles and possibilities. J Mater Chem B 2025; 13:4994-5022. [PMID: 40201987 DOI: 10.1039/d4tb02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Over the past several years, renewable resource-based polymers have consistently attracted research attention from academia and industry as an alternative to petroleum-based polymers. Depletion of fuel reserves, the rising cost of petroleum products, and strict government regulations drive the search for alternative resources. Vegetable oils have been considered as one of the sustainable feedstocks considering their natural abundance, low cost, and ecological acceptance. Vegetable oils are used to generate various biobased functional polymers like polyester, polyamide, poly(ester amide)s, polyurethane, and photocurable resins. These polymers have demonstrated a wide range of applications, including coating materials, fire retardants, and adhesives, and have also been explored in biomedical research. This review provides a comprehensive discussion on developing various polymers derived from vegetable oils, which show promise in biomedical applications such as tissue engineering, drug delivery, antimicrobial, tissue adhesives, and biosensor applications. Additionally, the review highlights the challenges and future opportunities associated with these sustainably sourced biobased polymers.
Collapse
Affiliation(s)
- Shrinjay Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
2
|
Rabelo Aparício R, Machado Dos Santos G, Siqueira Magalhães Rebelo V, Mansanares Giacon V, Gomes da Silva C. Performance of castor oil polyurethane resin in composite with the piassava fibers residue from the Amazon. Sci Rep 2024; 14:6679. [PMID: 38509122 PMCID: PMC10955110 DOI: 10.1038/s41598-024-54000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
The use of castor oil in producing polyurethane resins has been identified as one of the most promising options for the industry. The piassava fibers waste generated by the industry on a large scale presents excellent properties as a reinforcing agent due to its high lignin content characterized by chemical tests and FTIR. Composite boards consisting of a higher content of mercerized piassava fibers (10 mm, 85 wt.%) reinforced polyurethane castor oil-based resin (prepolymer (PP) and polyol (OM)) exhibited excellent performance. Composites with these properties have strong potential for medium-density applications ranging from biomedical prosthetics to civil partition walls and insulation linings. Alkali treatment removed the superficial impurities of piassava fibers, activating polar groups, and physical characterization reported excellent performance for all composites. Among the composites, the CP3 sample (composite reinforced with piassava fibers (85 wt.% fibers; 1.2:1-PP:OM)) stood out with higher density and lower swelling and water absorption percentage than other composites. FTIR results indicated NCO traces after the resin cured in the PU3 (1.2:1-PP:OM), possibly contributing to the interaction with the fibers. DMA results reported relevant information about more flexibility to CP1 (composite reinforced with piassava fibers (85 wt.% fibers; 0.8:1-PP:OM)) and CP3 than CP2 (composite reinforced with piassava fibers (85 wt.% fibers; 1:1-PP:OM)). The results suggest that the proper combination with natural products must lead to composites with potential applications as engineering materials.
Collapse
Affiliation(s)
- Rosinaldo Rabelo Aparício
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil
| | - Gabrielle Machado Dos Santos
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil
| | | | - Virgínia Mansanares Giacon
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil
| | - Cristina Gomes da Silva
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil.
| |
Collapse
|
3
|
Han GY, Kwack HW, Kim YH, Je YH, Kim HJ, Cho CS. Progress of polysaccharide-based tissue adhesives. Carbohydr Polym 2024; 327:121634. [PMID: 38171653 DOI: 10.1016/j.carbpol.2023.121634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Wook Kwack
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Yo-Han Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Sun S, Luo H, Wang Y, Xi Y, Fang K, Wu T. Artificial spinal dura mater made of gelatin microfibers and bioadhesive for preventing cerebrospinal fluid leakage. Chem Commun (Camb) 2024; 60:2353-2356. [PMID: 38323482 DOI: 10.1039/d3cc06278c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Artificial spinal dura mater was designed by combining solution blow-spun gelatin microfibers and dopamine-capped polyurethane bioadhesive. Notably, the gelatin microfibers had a special pore structure, good water adsorption capability, and excellent burst pressure resistance. The bioadhesive layer contributed to the excellent sealing performance in the wet state. This material provides a promising alternative as an artificial spinal dura mater to prevent cerebrospinal fluid leakage.
Collapse
Affiliation(s)
- Shengdong Sun
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao, 266071, China
| | - Hao Luo
- Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Yuanfei Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yongming Xi
- Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao, 266071, China
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao, 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
| | - Tong Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao, 266071, China
- Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
5
|
Sharma A, Dutta T, Srivastava A. Underwater Adhesives from Redox-Responsive Polyplexes of Thiolated Polyamide Polyelectrolytes. Chemistry 2024; 30:e202302157. [PMID: 37751057 DOI: 10.1002/chem.202302157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
We report the fabrication of optically clear underwater adhesives using polyplexes of oppositely charged partially-thiolated polyamide polyelectrolytes (TPEs). The thiol content of the constituent PEs was varied to assess its influence on the adhesive properties of the resulting glues. These catechol-free, redox-responsive TPE-adhesives were formulated in aquo and exhibited high optical transparency and strong adhesion even on submerged or moist surfaces of diverse polar substrates such as glass, aluminium, wood, and bone pieces. The adhesives could be cured under water through oxidative disulphide crosslinking of the constituent TPEs. The polyamide backbone provided multi-site H-bonding interactions with the substrates while the disulphide crosslinking provided the cohesive strength to the glue. Strong adhesion of mammalian bones (load bearing capacity upto 7 kg/cm2 ) was achieved using the adhesive containing 30 mol % thiol residues. Higher pH and use of oxidants such as povidone-iodine solution enhanced the curing rate of the adhesives, and so did the use of Tris buffer instead of Phosphate buffer. The porous architecture of the adhesive and its progressive degradation in aqueous medium over the course of three weeks bode well for diverse biomedical applications where temporary adhesion of tissues is required.
Collapse
Affiliation(s)
- Aashish Sharma
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
- Current Affiliation: School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| |
Collapse
|
6
|
Han GY, Hwang SK, Cho KH, Kim HJ, Cho CS. Progress of tissue adhesives based on proteins and synthetic polymers. Biomater Res 2023; 27:57. [PMID: 37287042 DOI: 10.1186/s40824-023-00397-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
In recent years, polymer-based tissue adhesives (TAs) have been developed as an alternative to sutures to close and seal incisions or wounds owing to their ease of use, rapid application time, low cost, and minimal tissue damage. Although significant research is being conducted to develop new TAs with improved performances using different strategies, the applications of TAs are limited by several factors, such as weak adhesion strength and poor mechanical properties. Therefore, the next-generation advanced TAs with biomimetic and multifunctional properties should be developed. Herein, we review the requirements, adhesive performances, characteristics, adhesive mechanisms, applications, commercial products, and advantages and disadvantages of proteins- and synthetic polymer-based TAs. Furthermore, future perspectives in the field of TA-based research have been discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Soo-Kyung Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ki-Hyun Cho
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Chong-Su Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Cai Y, Chen G, Yu Z, Lu J, Fang X. Synthesis of a novel biodegradable curing agent modified by castor oil for polyacrylate adhesive applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yangben Cai
- Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo China
- Research and Development Department Ningbo Soken Chemistry limited company Ningbo China
| | - Guofei Chen
- Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhujun Yu
- Research and Development Department Ningbo Soken Chemistry limited company Ningbo China
| | - Jianxian Lu
- Research and Development Department Ningbo Soken Chemistry limited company Ningbo China
| | - Xingzhong Fang
- Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo China
| |
Collapse
|
8
|
Liu X, Tang B, Li Q, Xiao W, Wang X, Xiao H, Zheng Z. Hydrophilic competent and enhanced wet-bond strength castor oil-based bioadhesive for bone repair. Colloids Surf B Biointerfaces 2022; 219:112835. [PMID: 36113225 DOI: 10.1016/j.colsurfb.2022.112835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Bone adhesive has been proved to be a promising alternative in the clinical treatment of bone repairs. However, the problems of unsatisfying bone-bonding strength, especially the bonding of cortical bone in vivo, and blocked bone tissue recovery remain barriers to clinical reparation. Benefit from dopamine-modified castor oil synthesized by an epoxy-modification method, a porous and two-component polyurethane adhesive (PUA) was prepared to overcome the current challenges encountered. The tailored surface morphology and open porosity of the adhesive layer can be obtained to meet the requirements of bone repair by tuning the fraction of the formulation. Furthermore, the incorporation of nano-hydroxyapatite improved the mechanical properties and osteocompatibility of the material. Compared with PUA without catechol groups, the introduction of catechol groups not only increased the adhesive strength from 0.28 ± 0.05 MPa to 0.58 ± 0.06 MPa under wet conditions but also enabled the enrichment of Ca2+ on the adhesive surface to promote bone regeneration. Besides, the cell culture experiments also indicated that PUAs show good biocompatibility and excellent adhesion to stem cells. Given its excellent wet adhesive strength and biocompatibility, this system demonstrated potential applications in orthopedic treatment.
Collapse
Affiliation(s)
- Xinchang Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Tang
- The Third Clinical Medical College of Southern Medical University, Guangzhou 510630, China; Department of Orthopedics, Central Hospital of Fengxian District, Sixth People's Hospital of Shanghai, Shanghai 201400, China
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Xiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haijun Xiao
- The Third Clinical Medical College of Southern Medical University, Guangzhou 510630, China; Department of Orthopedics, Central Hospital of Fengxian District, Sixth People's Hospital of Shanghai, Shanghai 201400, China.
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion. iScience 2022; 25:105106. [PMID: 36185384 PMCID: PMC9519738 DOI: 10.1016/j.isci.2022.105106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
The widespread use of biological tissue adhesives for tissue repair is limited by their weak adhesion in a wet environment. Herein, we report the wet adhesion mechanism of a dry granular natural bioadhesive from Andrias davidianus skin secretion (ADS). Once contacting water, ADS granules self-assemble to form a hydrophobic hydrogel strongly bonding to wet substrates in seconds. ADS showed higher shear adhesion than current commercial tissue adhesives and an impressive 72-h underwater adhesion strength of ∼47kPa on porcine skin tissue. The assembled hydrogel in water maintained a dissipation energy of ∼8 kJ/m3, comparable to the work density of muscle, exhibiting its robustness. Unlike catechol adhesion mechanism, ADS wet adhesion mechanism is attributed to water absorption by granules, and the unique equilibrium of protein hydrophobicity, hydrogen bonding, and ionic complexation. The in vivo adhesion study demonstrated its excellent wet adhesion and hemostasis performance in a rat hepatic and cardiac hemorrhage model. Dry granule adhesive of Andrias davidianus skin secretion build strong wet adhesion The granules absorb water and self-assemble to form a hydrophobic adhesive in seconds The adhesive showed 72-h underwater adhesion strength of ∼47kPa on porcine skin tissue Remarkable hemostasis effect was found on rat hepatic and cardiac hemorrhage model
Collapse
|
11
|
Pan X, Tian Y, Li J, Tan Q, Ren J. Bio-based polyurethane reactive hot-melt adhesives derived from isosorbide-based polyester polyols with different carbon chain lengths. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Wendels S, Balahura R, Dinescu S, Ignat S, Costache M, Avérous L. Influence of the Macromolecular architecture on the properties of biobased polyurethane tissue adhesives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Jiang W, Hosseinpourpia R, Biziks V, Ahmed SA, Militz H, Adamopoulos S. Preparation of Polyurethane Adhesives from Crude and Purified Liquefied Wood Sawdust. Polymers (Basel) 2021; 13:polym13193267. [PMID: 34641084 PMCID: PMC8512079 DOI: 10.3390/polym13193267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Polyurethane (PU) adhesives were prepared with bio-polyols obtained via acid-catalyzed polyhydric alcohol liquefaction of wood sawdust and polymeric diphenylmethane diisocyanate (pMDI). Two polyols, i.e., crude and purified liquefied wood (CLW and PLW), were obtained from the liquefaction process with a high yield of 99.7%. PU adhesives, namely CLWPU and PLWPU, were then prepared by reaction of CLW or PLW with pMDI at various isocyanate to hydroxyl group (NCO:OH) molar ratios of 0.5:1, 1:1, 1.5:1, and 2:1. The chemical structure and thermal behavior of the bio-polyols and the cured PU adhesives were analyzed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Performance of the adhesives was evaluated by single-lap joint shear tests according to EN 302-1:2003, and by adhesive penetration. The highest shear strength was found at the NCO:OH molar ratio of 1.5:1 as 4.82 ± 1.01 N/mm2 and 4.80 ± 0.49 N/mm2 for CLWPU and PLWPU, respectively. The chemical structure and thermal properties of the cured CLWPU and PLWPU adhesives were considerably influenced by the NCO:OH molar ratio.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195 Växjö, Sweden; (W.J.); (R.H.); (S.A.A.)
| | - Reza Hosseinpourpia
- Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195 Växjö, Sweden; (W.J.); (R.H.); (S.A.A.)
| | - Vladimirs Biziks
- Institute of Wood Biology and Wood Products, Georg-August University Göettingen, Büsgenweg 4, 37077 Göttingen, Germany; (V.B.); (H.M.)
| | - Sheikh Ali Ahmed
- Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195 Växjö, Sweden; (W.J.); (R.H.); (S.A.A.)
| | - Holger Militz
- Institute of Wood Biology and Wood Products, Georg-August University Göettingen, Büsgenweg 4, 37077 Göttingen, Germany; (V.B.); (H.M.)
| | - Stergios Adamopoulos
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Vallvägen 9C, 75007 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
15
|
Moon J, Yang HE, Lee CH, Choi JS, Oh JS. Phase equilibria and surface tension in castor oil‐based polyols‐water–methanol mixture: Thermodynamic basis. J Appl Polym Sci 2021. [DOI: 10.1002/app.50101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Junho Moon
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Han Earl Yang
- Department of Chemical Engineering and Molecular Thermodynamics Laboratory Hanyang University Seoul South Korea
| | - Chan Hee Lee
- Department of Chemical Engineering and Molecular Thermodynamics Laboratory Hanyang University Seoul South Korea
| | - Ji Su Choi
- Department of Chemical Engineering and Molecular Thermodynamics Laboratory Hanyang University Seoul South Korea
| | - Jeong Seok Oh
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| |
Collapse
|
16
|
Wei D, Huang X, Zeng J, Deng S, Xu J. Facile synthesis of a castor oil‐based hyperbranched acrylate oligomer and its application in UV‐curable coatings. J Appl Polym Sci 2020. [DOI: 10.1002/app.49054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Daidong Wei
- Guangzhou Chemical Grouting Co. Ltd., CAS Guangzhou China
- Guangdong Province Chemical Grouting Engineering and Technology Research and Development Center Guangzhou China
| | - Xiaomei Huang
- Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
| | - Juanjuan Zeng
- Guangzhou Chemical Grouting Co. Ltd., CAS Guangzhou China
- Guangdong Province Chemical Grouting Engineering and Technology Research and Development Center Guangzhou China
| | - Shuling Deng
- Guangzhou Chemical Grouting Co. Ltd., CAS Guangzhou China
- Guangdong Province Chemical Grouting Engineering and Technology Research and Development Center Guangzhou China
| | - Jinghui Xu
- Guangzhou Chemical Grouting Co. Ltd., CAS Guangzhou China
- Guangdong Province Chemical Grouting Engineering and Technology Research and Development Center Guangzhou China
| |
Collapse
|