1
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Sato T, Haneishi K, Hisada H, Fujii MY, Koide T, Fukami T. Real-Time Quantitative Evaluation of a Drug during Liposome Preparation Using a Probe-Type Raman Spectrometer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7962-7973. [PMID: 38577710 DOI: 10.1021/acs.langmuir.3c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
During the manufacturing process of liposome formulations, it is considered difficult to evaluate their physicochemical properties and biological profiles due to the complexity of their structure and manufacturing process. Conventional quality evaluation is labor-intensive and time-consuming; therefore, there was a need to introduce a method that could perform in-line, real-time evaluation during the manufacturing process. In this study, Raman spectroscopy was used to monitor in real time the encapsulation of drugs into liposomes and the drug release, which are particularly important quality evaluation items. Furthermore, Raman spectroscopy combined with partial least-squares (PLS) analysis was used for quantitative drug evaluation to assess consistency with results from UV-visible spectrophotometry (UV), a common quantification method. The prepared various ciprofloxacin (CPFX) liposomes were placed in cellulose tubes, and a probe-type Raman spectrophotometer was used to monitor drug encapsulation, the removal of unencapsulated drug, and drug release characteristics in real time using a dialysis method. In the Raman spectra of the liposomes prepared by remote loading, the intensities of the CPFX-derived peaks increased upon drug encapsulation and showed a slight decrease upon removal of the unencapsulated drug. Furthermore, the peak intensity decreased more gradually during the drug release. In all Raman monitoring experiments, the discrepancy between quantified values of CPFX concentration in liposomes, as measured by Raman spectroscopy combined with partial least-squares (PLS) analysis, and those obtained through ultraviolet (UV) spectrophotometry was within 6.7%. The results revealed that the quantitative evaluation of drugs using a combination of Raman spectroscopy and PLS analysis was as accurate as the evaluation using UV spectrophotometry, which was used for comparison. These results indicate the promising potential of Raman spectroscopy as an innovative method for the quality evaluation of liposomal formulations.
Collapse
Affiliation(s)
- Takumi Sato
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kazuki Haneishi
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hiroshi Hisada
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Mika Yoshimura Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tatsuo Koide
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
3
|
Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: From the bench to the clinic. Drug Discov Today 2024; 29:103913. [PMID: 38340952 DOI: 10.1016/j.drudis.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
5
|
Pimenta BV, Madrid RRM, Mathews PD, Riske KA, Loh W, Angelov B, Angelova A, Mertins O. Interaction of polyelectrolyte-shell cubosomes with serum albumin for triggering drug release in gastrointestinal cancer. J Mater Chem B 2023; 11:2490-2503. [PMID: 36852541 DOI: 10.1039/d2tb02670h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nano-structured and functionalized materials for encapsulation, transport, targeting and controlled release of drugs are of high interest to overcome low bioavailability in oral administration. We develop lipid-based cubosomes, which are surface-functionalized with biocompatible chitosan-N-arginine and alginate, displaying internal liquid crystalline structures. Polyelectrolyte-shell (PS) cubosomes have pH-responsive characteristics profitable for oral delivery. The obtained PScubosomes can strongly interact with serum albumin, a protein which is released in the stomach under gastric cancer conditions. An effective thermodynamic PScubosome-protein interaction was characterized at pH 2.0 and 7.4 by isothermal titration calorimetry at 37 °C. A high increment of the albumin conformation transition temperature was evidenced by differential scanning calorimetry upon incubation with PScubosomes. The performed structural studies by synchrotron small-angle X-ray scattering (SAXS) revealed essential alterations in the internal liquid crystalline topology of the nanocarriers including an Im3m to Pn3m transition and a reduction of the cubic lattice parameters. The PScubosome nanoparticle interaction with serum albumin, leading to inner structural changes in a range of temperatures, promoted the release of water from the cubosomal nanochannels. Altogether, the results revealed effective interactions of the PScubosomes with albumin under simulated gastrointestinal pH conditions and suggested promising nanocarrier characteristics for triggered oral drug release.
Collapse
Affiliation(s)
- Barbara V Pimenta
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil.
| | - Rafael R M Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil.
| | - Patrick D Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil.
| | - Karin A Riske
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil.
| | - Watson Loh
- Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil. .,Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
6
|
Spanedda MV, De Giorgi M, Heurtault B, Kichler A, Bourel-Bonnet L, Frisch B. Click Chemistry for Liposome Surface Modification. Methods Mol Biol 2023; 2622:173-189. [PMID: 36781760 DOI: 10.1007/978-1-0716-2954-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Click chemistry, and particularly azide-alkyne cycloaddition, represents one of the principal bioconjugation strategies that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields were obtained in the presence of bathophenanthrolinedisulphonate, a water-soluble copper-ion chelator, acting as catalyst. No vesicle leakage was triggered by this conjugation reaction, and the coupled mannose ligands were exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this type of conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent this constraint, an example of alternate copper-free azide-alkyne click reaction has been developed, and it was applied to the anchoring of a biotin moiety that was fully functional and could be therefore quantified. Molecular tools and results are presented here.
Collapse
Affiliation(s)
- Maria Vittoria Spanedda
- Laboratoire de Conception et Applications des Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, équipe 3BIO, Faculté de Pharmacie, Illkirch, France
| | - Marcella De Giorgi
- Laboratoire de Conception et Applications des Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, équipe 3BIO, Faculté de Pharmacie, Illkirch, France
| | - Béatrice Heurtault
- Laboratoire de Conception et Applications des Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, équipe 3BIO, Faculté de Pharmacie, Illkirch, France
| | - Antoine Kichler
- Laboratoire de Conception et Applications des Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, équipe 3BIO, Faculté de Pharmacie, Illkirch, France
| | - Line Bourel-Bonnet
- Laboratoire de Conception et Applications des Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, équipe 3BIO, Faculté de Pharmacie, Illkirch, France
| | - Benoît Frisch
- Laboratoire de Conception et Applications des Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, équipe 3BIO, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
7
|
Sun X, Tan A, Boyd BJ. Magnetically‐activated lipid nanocarriers in biomedical applications: A review of current status and perspective. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1863. [PMID: 36428234 DOI: 10.1002/wnan.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Xiaohan Sun
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- Department of Pharmacy University of Copenhagen Copenhagen Denmark
| |
Collapse
|
8
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Lu L, Xu Q, Wang J, Wu S, Luo Z, Lu W. Drug Nanocrystals for Active Tumor-Targeted Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040797. [PMID: 35456631 PMCID: PMC9026472 DOI: 10.3390/pharmaceutics14040797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Drug nanocrystals, which are comprised of active pharmaceutical ingredients and only a small amount of essential stabilizers, have the ability to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs; in turn, drug nanocrystal technology can be utilized to develop novel formulations of chemotherapeutic drugs. Compared with passive targeting strategy, active tumor-targeted drug delivery, typically enabled by specific targeting ligands or molecules modified onto the surface of nanomedicines, circumvents the weak and heterogeneous enhanced permeability and retention (EPR) effect in human tumors and overcomes the disadvantages of nonspecific drug distribution, high administration dosage and undesired side effects, thereby contributing to improving the efficacy and safety of conventional nanomedicines for chemotherapy. Continuous efforts have been made in the development of active tumor-targeted drug nanocrystals delivery systems in recent years, most of which are encouraging and also enlightening for further investigation and clinical translation.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence:
| |
Collapse
|
10
|
NIR-Laser Triggered Drug Release from Molybdenum Disulfide Nanosheets Modified with Thermosensitive Polymer for Prostate Cancer Treatment. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Pakdaman Goli P, Bikhof Torbati M, Parivar K, Akbarzadeh Khiavi A, Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Allahou LW, Madani SY, Seifalian A. Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. Int J Biomater 2021; 2021:3041969. [PMID: 34512761 PMCID: PMC8426107 DOI: 10.1155/2021/3041969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the routine treatment for cancer despite the poor efficacy and associated off-target toxicity. Furthermore, therapeutic doses of chemotherapeutic agents are limited due to their lack of tissue specificity. Various developments in nanotechnology have been applied to medicine with the aim of enhancing the drug delivery of chemotherapeutic agents. One of the successful developments includes nanoparticles which are particles that range between 1 and 100 nm that may be utilized as drug delivery systems for the treatment and diagnosis of cancer as they overcome the issues associated with chemotherapy; they are highly efficacious and cause fewer side effects on healthy tissues. Other nanotechnological developments include organic nanocarriers such as liposomes which are a type of nanoparticle, although they can deviate from the standard size range of nanoparticles as they may be several hundred nanometres in size. Liposomes are small artificial spherical vesicles ranging between 30 nm and several micrometres and contain one or more concentric lipid bilayers encapsulating an aqueous core that can entrap both hydrophilic and hydrophobic drugs. Liposomes are biocompatible and low in toxicity and can be utilized to encapsulate and facilitate the intracellular delivery of chemotherapeutic agents as they are biodegradable and have reduced systemic toxicity compared with free drugs. Liposomes may be modified with PEG chains to prolong blood circulation and enable passive targeting. Grafting of targeting ligands on liposomes enables active targeting of anticancer drugs to tumour sites. In this review, we shall explore the properties of liposomes as drug delivery systems for the treatment and diagnosis of cancer. Moreover, we shall discuss the various synthesis and functionalization techniques associated with liposomes including their drug delivery, current clinical applications, and toxicology.
Collapse
Affiliation(s)
- Latifa W. Allahou
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Seyed Yazdan Madani
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.) London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
13
|
Kaur L, Sohal HS, Kaur M, Malhi DS, Garg S. A Mini-Review on Nano Technology in the Tumour Targeting Strategies: Drug Delivery to Cancer Cells. Anticancer Agents Med Chem 2021; 20:2012-2024. [PMID: 32753024 DOI: 10.2174/1871520620666200804103714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/20/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recently, the application of cancer nanotechnology-based drug delivery to cancer cells has arisen as an important method to resolve multiple molecular, biophysical, and biochemical obstacles, which the body is preparing to resist against the productive implementation of chemotherapeutic medications. Drug delivery technologies focused on nanoparticles, which have resolved some of the drawbacks of conventional chemotherapy as, decreased drug viscosity, chemo-resistance, precise malignity, limited medicative measures with low oral bioactivity. Due to their adjustable size and surface properties, the half-life period of a drug can be increased in the bloodstream. OBJECTIVE The aim of the current study is to collect and document the data available on the drug delivery system for anticancer drugs. The present study includes some of the drug carriers like liposomes, carbon dots, micelles, carbon nanotubes, magnetic nanoparticles, etc. Methods: To write this review, an exhaustive literature survey was carried out using relevant work published in various SCI, Scopus, and non-SCI indexed journals. The different search engines used to download the research/ review papers are Google search, PubMed, Science Direct, Google Scholar, Scientific Information Database and Research Gate, etc. Results: Nanotechnology offers better pharmacokinetics, reduces the systematic toxicities related to the chemotherapies and a better route of drug administration. In the analysis, we critically highlight recent studies on carcinoma-fighting nanotechnology. CONCLUSION In the present study, different kinds of nano-based drug delivery systems have been discussed along with their characteristic features, the encapsulation of anticancer agents into different types of nanometresized vehicles and their general mechanism.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
14
|
Hashemzadeh H, Raissi H. Design of new drug delivery platform based on surface functionalization of black phosphorus nanosheet with a smart polymer for enhancing the efficiency of doxorubicin in the treatment of cancer. J Biomed Mater Res A 2021; 109:1912-1921. [PMID: 33797184 DOI: 10.1002/jbm.a.37183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
The development of drug delivery systems (DDSs) has raised hopes for targeted cancer therapy. Smart polymers can be conjugated with several nanoparticles and increase their efficiency in biomedical applications. In this work, the classical molecular dynamics and well-tempered metadynamics simulations are performed to study the behavior of black phosphorus (BPH) nanosheet functionalized with polyethylenimine (PEI) in adsorption, diffusion, and release of doxorubicin (DOX) anticancer drug. Adsorption of the drug on PEI-BPH surface is mainly due to the formation of strong pi-pi interaction between the drug and BPH. The drug-binding to the nanosheet is enhanced by the intermolecular hydrogen bond that formed between DOX and PEI. The energy values for the interaction of DOX with BPH and PEI are calculated to be about - 180 and - 50 kJ/mol, respectively. The obtained results indicated that the adsorption of the drug molecules on the nanosheet destroyed the hydration layer around the BPH-PEI surface. The free energy calculation for DDS shows a global minimum in which the distances of DOX from BPH surface and PEI are about 1.0 and 0.5 nm, respectively. Furthermore, the diffusion of DDS into the membrane has a macropinocytosis pathway that is in line with experimental observations. Moreover, it is found that, unlike the isolated DOX, the drug in complex with BPH-PEI can be easily penetrated membrane cells. The study of the pH-responsive release of the drug shows the high solubility of the polymer in the water environment plays the main role in swelling of DDS and the release of the DOX molecules.
Collapse
Affiliation(s)
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
15
|
Kumar M, Jha A, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv 2020; 17:1459-1472. [PMID: 32684002 DOI: 10.1080/17425247.2020.1798401] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Lung cancer and metastases are major concerns worldwide. Although systemic chemotherapy is the recommended treatment, it is associated with various disadvantages, including nonselective drug distribution and systemic toxicity. In contrast, the pulmonary route ensures the localized delivery of drugs to the lung. Still, the pulmonary route is prone to clearance, limited drug dissolution, and local toxicity to healthy lung cells. Drug nanocrystals provide a potential strategy to enhance the therapeutic efficacy and mitigate the limitations of pulmonary delivery. AREAS COVERED The development and potential application of nanocrystals in pulmonary delivery, their role in overcoming associated barriers, and strategies for site-specific and stimuli-responsive pulmonary delivery are outlined. This review also traces different in-vitro pulmonary models for assessments of the performance of drug nanocrystals and nanocrystals loaded carriers in pulmonary delivery. EXPERT OPINION Enhanced stability, high aerosolization performance, better particle size distribution, improved penetration, sustained release of the drug, and minimal excipients usage makes drug nanocrystal an ideal candidate for pulmonary delivery. Besides, drug nanocrystals may provide selective cellular internalization with minimum clearance and maximum deposition. Furthermore, surface modified nanocrystals and nanocrystals in nanocarriers can exhibit a more prolonged, and site-specific release of the drug to cancer cells in the lungs.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Madhu Dr
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| |
Collapse
|
16
|
Wang Q, Gao F, Zhou X. Redox-responsive AIE micelles for intracellular paclitaxel delivery. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Kong L, Li XT, Ni YN, Xiao HH, Yao YJ, Wang YY, Ju RJ, Li HY, Liu JJ, Fu M, Wu YT, Yang JX, Cheng L. Transferrin-Modified Osthole PEGylated Liposomes Travel the Blood-Brain Barrier and Mitigate Alzheimer's Disease-Related Pathology in APP/PS-1 Mice. Int J Nanomedicine 2020; 15:2841-2858. [PMID: 32425521 PMCID: PMC7186891 DOI: 10.2147/ijn.s239608] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aβ oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting. METHODS Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice. RESULTS In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer's disease-related pathology. CONCLUSION Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.
Collapse
Affiliation(s)
- Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Xue-tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Ying-nan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Hong-he Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Ying-jia Yao
- College of Life and Health Sciences, Northeastern University, Shenyang110819, People’s Republic of China
| | - Yuan-yuan Wang
- Department of Pharmacy, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning116001, People’s Republic of China
| | - Rui-jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing102617, People’s Republic of China
| | - Hong-yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Jing-jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Yu-tong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Jing-xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| |
Collapse
|
18
|
Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E656. [PMID: 32244653 PMCID: PMC7221794 DOI: 10.3390/nano10040656] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanomedicine is a field of science that uses nanoscale materials for the diagnosis and treatment of human disease. It has emerged as an important aspect of the therapeutics, but at the same time, also raises concerns regarding the safety of the nanomaterials involved. Recent applications of functionalized biodegradable nanomaterials have significantly improved the safety profile of nanomedicine. OBJECTIVE Our goal is to evaluate different types of biodegradable nanomaterials that have been functionalized for their biomedical applications. METHOD In this review, we used PubMed as our literature source and selected recently published studies on biodegradable nanomaterials and their applications in nanomedicine. RESULTS We found that biodegradable polymers are commonly functionalized for various purposes. Their property of being naturally degraded under biological conditions allows these biodegradable nanomaterials to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering. The degradability of these nanoparticles can be utilized to control cargo release, by allowing efficient degradation of the nanomaterials at the target site while maintaining nanoparticle integrity at off-target sites. CONCLUSION While each biodegradable nanomaterial has its advantages and disadvantages, with careful design and functionalization, biodegradable nanoparticles hold great future in nanomedicine.
Collapse
Affiliation(s)
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA;
| |
Collapse
|