1
|
Tripathi N, Pérez-Sánchez G, Schaeffer N, Ray D, Aswal VK, Kuperkar K, Coutinho JAP, Bahadur P. Self-Associated Engineering in P123 Micelles Rationalizing the Role of Other Pluronics with Varying Hydrophilicity as a Mixed System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9967-9988. [PMID: 40214401 DOI: 10.1021/acs.langmuir.5c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
This study explores the atomic-level interactions of different poly(ethylene oxide) (EO)-poly(propylene oxide) (PO)-based block copolymers (BCPs), commercially known as Pluronics, with varying hydrophilicity that influences the solution behavior within Pluronic P123 micelles as a mixed system. The critical insights into the thermoresponsiveness of P123 in the presence of different Pluronics with increasing %EO content (L61, L62, L64, and F68) is hypothesized to modulate the hydrophobic interactions, leading to distinct solution textures such as clear solution (sol), blue point (BP), and cloud point (CP). The solution relative viscosity (ηrel) and rheological analysis will depict the dynamic flow behavior and expose the viscoelastic properties of the blended system. The dynamic light scattering (DLS) analysis will exhibit a temperature-dependent variation in the hydrodynamic diameter (Dh) micelle size in the examined system as a function of temperature, depicting micellar growth, while small-angle neutron scattering (SANS) will explore the intricate micellar structural dynamics in terms of size and shape using various mathematical models. Complementing these findings, transmission electron microscopy (TEM) will offer direct visualization of these micellar structures, confirming the morphological growth/transitions. Coarse-grained molecular dynamics (CG-MD) simulations will elucidate this self-assembly at the molecular scale with micelle size distributions, computed scattering intensity, density profiles, solvent-accessible surface area (SASA), diffusion coefficient (D), and mean squared displacement (MSD) profiles at elevated temperatures to uncover molecular packing and stability.
Collapse
Affiliation(s)
- Nitumani Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - Germán Pérez-Sánchez
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicolas Schaeffer
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - João A P Coutinho
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat, Gujarat 395 007, India
| |
Collapse
|
2
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
3
|
Khaliq NU, Lee J, Kim S, Sung D, Kim H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023; 15:2102. [PMID: 37631316 PMCID: PMC10458801 DOI: 10.3390/pharmaceutics15082102] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pluronics are amphiphilic triblock copolymers composed of two hydrophilic poly (ethylene oxide) (PEO) chains linked via a central hydrophobic polypropylene oxide (PPO). Owing to their low molecular weight polymer and greater number of PEO segments, Pluronics induce micelle formation and gelation at critical micelle concentrations and temperatures. Pluronics F-68 and F-127 are the only United States (U.S.) FDA-approved classes of Pluronics and have been extensively used as materials for living bodies. Owing to the fascinating characteristics of Pluronics, many studies have suggested their role in biomedical applications, such as drug delivery systems, tissue regeneration scaffolders, and biosurfactants. As a result, various studies have been performed using Pluronics as a tool in nanomedicine and targeted delivery systems. This review sought to describe the delivery of therapeutic cargos using Pluronic F-68 and F-127-based cancer nanomedicines and their composites for combination therapy.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| |
Collapse
|
4
|
de Oliveira ACV, de Morais FAP, Campanholi KDSS, Bidóia DL, Balbinot RB, Nakamura CV, Caetano W, Hioka N, Monteiro ODS, da Rocha CQ, Gonçalves RS. Melanoma-targeted photodynamic therapy based on hypericin-loaded multifunctional P123-spermine/folate micelles. Photodiagnosis Photodyn Ther 2022; 40:103103. [PMID: 36057363 DOI: 10.1016/j.pdpdt.2022.103103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Multifunctional P123 micelle linked covalently with spermine (SM) and folic acid (FA) was developed as a drug delivery system of hypericin (HYP). The chemical structures of the modified copolymers were confirmed by spectroscopy and spectrophotometric techniques (UV-vis, FTIR, and 1H NMR). The copolymeric micelles loading HYP were prepared by solid dispersion and characterized by UV-vis, fluorescence, dynamic light scattering (DLS), ζ potential, and transmission electron microscopy (TEM). The results provided a good level of stability for HYP-loaded P123-SM, P123-FA, and P123-SM/P123-FA in the aqueous medium. The morphology analysis showed that all copolymeric micelles are spherical. Well-defined regions of different contrast allow us to infer that SM and FA were localized on the surface of micelles, and the HYP molecules are located in the core region of micelles. The uptake potential of multifunctional P123 micelle was accessed by exposing the micellar systems loading HYP to two cell lines, B16-F10 and HaCaT. HYP-loaded P123 micelles reveal a low selectivity for melanoma cells, showing significant photodamage for HaCat cells. However, the exposition of B16-F10 cells to Hyp-loaded SM- and FA-functionalized P123 micelles under light irradiation revealed the lowest CC50 values. The interpretation of these results suggested that the combination of SM and FA on P123 micelles is the main factor in enhancing the HYP uptake by melanoma cells, consequently leading to its photoinactivation.
Collapse
Affiliation(s)
| | | | | | - Danielle Lazarin Bidóia
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Rodolfo Bento Balbinot
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Celso Vataru Nakamura
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Odair Dos Santos Monteiro
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, MA, Brazil
| | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
5
|
Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation. MATERIALS 2022; 15:ma15155387. [PMID: 35955322 PMCID: PMC9369513 DOI: 10.3390/ma15155387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Chemotherapy drugs are mainly administered via intravenous injection or oral administration in a very a high dosage. If there is a targeted drug vehicle which can be deployed on the tumor, the medical treatment is specific and precise. Binary mixing of biocompatible Pluronic® F127 and Pluronic® L121 was used in this study for a drug carrier of pluronic biomedical hydrogels (PBHs). Based on the same PBH ingredients, the addition of fluorouracil (5-FU) was separated in three ways when it was incorporated with pluronics: F127-L121-(5-FU), F127-(5-FU), and L121-(5-FU). Small angle X-ray scattering experiments were performed to uncover the self-assembled structures of the PBHs. Meanwhile, the expected micelle and lamellar structural changes affected by the distribution of 5-FU were discussed with respect to the corresponding drug release monitoring. PBH-all with the mixing method of F127-L121-(5-FU) has the fastest drug release rate owing to the undulated amphiphilic boundary. In contrast, PBH-2 with the mixing method of L121-(5-FU) has a prolonged drug release rate at 67% for one month of the continuous drug release experiment because the flat lamellar amphiphilic boundary of PBH-2 drags the migration of 5-FU from the hydrophobic core. Therefore, the PBHs developed in the study possess great potential for targeted delivery and successfully served as a microenvironment model to elucidate the diffusion pathway of 5-FU.
Collapse
|
6
|
Tiwari S, Singh K, Gerrard Marangoni D, Bahadur P. Amphiphilic star block copolymer micelles in saline as effective vehicle for quercetin solubilization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Lakshmi SN, Bahadur P, Choudhury SD. Fate of Photoinduced Electron Transfer Reactions with Temperature- and pH-Induced Assembly/Disassembly of Star Block Copolymer Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14125-14134. [PMID: 34797674 DOI: 10.1021/acs.langmuir.1c02383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The assembly/disassembly of star block copolymers induced by changes in temperature or pH of the medium is anticipated to have interesting implications for hosting/releasing drugs and tuning chemical reactions. This study investigates the possibility of employing the dually sensitive self-assembly of an ethylene oxide-propylene oxide star block copolymer, Tetronic T904, to influence photoinduced electron transfer (ET) reactions, on switching from the assembled state (micelle) when temperature is above the critical micelle temperature (CMT) and pH of the medium is above the pKa of T904 to the dissociated (unimer) state when either the temperature is below the CMT or the polymer is protonated. Steady-state and time-resolved fluorescence techniques have been used to characterize the microenvironments of the reactants in T904 solutions under different temperature and pH conditions and to determine ET rate constants. Interestingly, the bimolecular ET rate constants in both assembled and disassembled states of T904 depict a bell-shaped correlation with the driving force of the reaction, in accordance with Marcus inversion behavior instead of the usual Rehm-Weller behavior seen in conventional solvents. The assembly/disassembly of T904 stimulated by temperature or pH affects the micropolarity in the reactant environment, the magnitude of ET rate constants, and the position of inversion on the exergonicity scale.
Collapse
Affiliation(s)
- Suresh Nayana Lakshmi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
8
|
Kumari K, Kumar A, Bahadur I, Singh P. Investigate the interaction of testosterone/progesterone with ionic liquids on varying the anion to combat COVID-19: Density functional theory calculations and molecular docking approach. J PHYS ORG CHEM 2021; 34:e4273. [PMID: 34511718 PMCID: PMC8420490 DOI: 10.1002/poc.4273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Hormones like testosterone and progesterone in the humans play significant role in the regulation of various biological processes like the body growth, reproduction, and others. In last two decades, researchers are using ionic liquids (ILs) extensively in different areas of sciences, and they are a novel class of compounds as well as their polarity can be tuned. ILs are multidisciplinary in nature and can be used in chemistry, materials science, chemical engineering, and environmental science. Further, ILs are being explored to increase the solubility of drugs or biological potential molecules. Testosterone and progesterone are found to be not very polar in nature; therefore, the authors attempt to increase the solubility of testosterone and progesterone via interaction with ILs. It was studied with density functional theory calculations using Gaussian, and an increase in the value of dipole moment is observed for the complex of testosterone/progesterone with the ILs in comparison of individual one. The optimization energy and other thermodynamic energies of the ILs (IL1-IL3), testosterone (T), testosterone-IL (T-IL1 to T-IL3), progesterone (P), and progesterone-ILs (P-IL1 to P-IL3) are found to be negative. Further, the change in free energy for the formation of complexes at room temperature is calculated. Further, the authors have investigated the synergistic effect of testosterone and progesterone against the main protease of new coronavirus using molecular docking. It is observed that the testosterone-IL1 {IL1-3-(2-hydroxyethyl)-1-methyl-1H-imidazol-3-ium 2,4,6-trinitrophenolate} is found to be prominent against the main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya CollegeUniversity of DelhiNew DelhiIndia
| | - Ajay Kumar
- Department of ChemistryIndian Institute of TechnologyNew DelhiIndia
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural SciencesNorth‐West UniversityMmabathoSouth Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma CollegeUniversity of DelhiNew DelhiIndia
| |
Collapse
|
9
|
Photoinduced electron transfer reactions in mixed micelles of a star block copolymer and surface active ionic liquids: Role of the anion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Solubilization of quercetin in P123 micelles: Scattering and NMR studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Revisiting the salt-triggered self-assembly in very hydrophilic triblock copolymer Pluronic® F88 using multitechnique approach. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04833-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
13
|
Pillai SA, Sharma AK, Desai SM, Sheth U, Bahadur A, Ray D, Aswal VK, Kumar S. Characterization and application of mixed micellar assemblies of PEO-PPO star block copolymers for solubilization of hydrophobic anticancer drug and in vitro release. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Lee CF, Wang MR, Lin TL, Yang CH, Chen LJ. Dynamic Behavior of the Structural Phase Transition of Hydrogel Formation Induced by Temperature Ramp and Addition of Ibuprofen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8929-8938. [PMID: 32654495 DOI: 10.1021/acs.langmuir.0c01437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the dynamic behavior of hydrogel formation induced by a temperature ramp is essential for the design of gel-based injectable formulation as drug-delivery vehicles. In this study, the dynamic behavior of the hydrogel formation of Pluronic F108 aqueous solutions within different heating rates was explored in both macroscopic and microscopic views. It was discovered that when the heating rate is increased, the gelation temperature window (hard gel region) shrinks and the mechanical strength of the hydrogel decreases. A given system at different heating rates would lead to different crystalline structural evolutions. The time-resolved small-angle X-ray scattering (SAXS) experiments at a heating rate of 10 °C/min disclose that the crystalline structure of micelle packing in the hydrogel exhibits a series of transitions: hexagonal close-packed (HCP) to face-centered cubic (FCC) and body-centered cubic (BCC) structures coexisting and then to the BCC structure along with the increasing temperature. For the system at equilibrium, the BCC structure exclusively dominates the system. Furthermore, the addition of a hydrophobic model drug (ibuprofen) to the F108 aqueous solution promotes hard gel formation at even lower temperatures and concentrations of F108. The SAXS results for the system with ibuprofen at a heating rate of 10 °C/min demonstrate a mixture of FCC and BCC structures coexisting over the whole gelation window compared to the BCC structure that exclusively dominates the system at equilibrium. The addition of ibuprofen would alter the structural evolution to change the delivery path of the encapsulated drug, which is significantly related to the performance of drug release.
Collapse
Affiliation(s)
- Chin-Fen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Mu-Rong Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tsang-Lang Lin
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Hsun Yang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-Jen Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Targeting anticancer drugs with pluronic aggregates: Recent updates. Int J Pharm 2020; 586:119544. [DOI: 10.1016/j.ijpharm.2020.119544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
|
16
|
|