1
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
2
|
Jongrungsomran S, Pissuwan D, Yavirach A, Rungsiyakull C, Rungsiyakull P. The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review. J Funct Biomater 2024; 15:291. [PMID: 39452589 PMCID: PMC11508227 DOI: 10.3390/jfb15100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, including titanium, polymethylmethacrylate (PMMA) and resin composites. This review aims to summarize the advancements in the application of modified AuNPs in dental materials and to assess their effects on related cellular processes in the dental field. Relevant articles published in English on AuNPs in association with dental materials were identified through a systematic search of the PubMed/MEDLINE, Embase, Scopus and ScienceDirect databases from January 2014 to April 2024. Future prospects for the utilization of AuNPs in the field of dentistry are surveyed.
Collapse
Affiliation(s)
- Saharat Jongrungsomran
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| | - Dakrong Pissuwan
- Nanobiotechnology and Nanobiomaterials Research Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Apichai Yavirach
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| | - Chaiy Rungsiyakull
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimduen Rungsiyakull
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| |
Collapse
|
3
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Jiang S, Liu W, Shi D, Cheng H, Deng T, Chen G, Ma L, Zhang X, Gong P. Black Phosphorus as a Targeting PPAR-γ Agonist to Reverse Chemoresistance in Patient-derived Organoids, Mice, and Pancreatic Tumor Cells. Adv Healthc Mater 2023; 12:e2301324. [PMID: 37531231 DOI: 10.1002/adhm.202301324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Black phosphorus (BP) exhibits significant potential for clinical applications. However, further research is necessary to uncover the unknown biological functions of BP and broaden its applications across various fields. This study investigates the potential of BP as a targeting PPAR-γ agonist to overcome chemoresistance in the treatment of pancreatic adenocarcinoma (PAAD) using 2D and 3D cell lines, patient-derived organoids (PDOs), and mouse models. RNA-sequencing analysis shows that BP treatment enriches differentially expressed genes in the PPAR pathway, and molecular modeling predicts the potential docking site between BP and PPAR-γ. Transcriptional activity assays are further to verify the activation of PPAR-γ. BP-activated PPAR-γ inhibits cancer stem cell (CSC) properties and expression of biomarkers such as CD44 and c-Myc, which are involved in chemoresistance. Notably, CD44 overexpression in tumor cells renders them susceptible to BP while insensitive to gemcitabine. This indicates that BP preferentially targets stem-like cells, which exhibit heightened resistance to chemotherapeutic drugs. A combination treatment strategy involving BP and gemcitabine is developed, demonstrating enhanced treatment efficacy of PAAD in both in vitro and in vivo models. Thus, BP serves as a PPAR-γ agonist capable of reversing chemoresistance, establishing it as a potent anti-tumor approach for the treatment of PAAD.
Collapse
Affiliation(s)
- Shengwei Jiang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Weihan Liu
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Dan Shi
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Huan Cheng
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Tingwei Deng
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Guoyong Chen
- Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Xianbin Zhang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| |
Collapse
|
5
|
Abuarqoub D, Mahmoud N, Alshaer W, Mohammad M, Ibrahim AA, Al-Mrahleh M, Alnatour M, Alqudah DA, Esawi E, Awidi A. Biological Performance of Primary Dental Pulp Stem Cells Treated with Gold Nanoparticles. Biomedicines 2023; 11:2490. [PMID: 37760931 PMCID: PMC10525781 DOI: 10.3390/biomedicines11092490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) are one of the most stable nanoparticles that have been prevalently used as examples for biological and biomedical applications. Herein, we evaluate the effect of AuNPs on the biological processes of dental pulp stem cells derived from exfoliated deciduous teeth (SHED). Two different shapes of PEGylated AuNPs, rods (AuNR-PEG) and spheres (AuNS-PEG), were prepared and characterized. SHED cells were treated with different concentrations of AuNR-PEG and AuNS-PEG to determine their effect on the stemness profile of stem cells (SCs), proliferation, cytotoxicity, cellular uptake, and reactive oxygen species (ROS), for cells cultured in media containing-fetal bovine serum (FBS) and serum-free media (SFM). Our results showed that both nanoparticle shapes maintained the expression profile of MSC surface markers. Moreover, AuNS-PEG showed a stimulatory effect on the proliferation rate and lower toxicity on SHED, compared to AuNR-PEG. Higher concentrations of 0.5-0.125 nM of AuNR-PEG have been demonstrated to cause more toxicity in cells. Additionally, cells treated with AuNPs and cultured in FBS showed a higher proliferative rate and lower toxicity when compared to the SFM. For cellular uptake, both AuNS-PEG and AuNR-PEG were uptaken by treated cells efficiently. However, cells cultured in SFM media showed a higher percentage of cellular uptake. For ROS, AuNR-PEG showed a significant reduction in ROS at lower concentrations (<0.03 nM), while AuNS-PEG did not show any significant difference compared to the control untreated cells. Thus, our results give evidence about the optimum concentration and shape of AuNPs that can be used for the differentiation of stem cells into specific cell lineages in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Nouf Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Walhan Alshaer
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Marwa Mohammad
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA;
| | - Mairvat Al-Mrahleh
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Mohammad Alnatour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Dana A. Alqudah
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Ezaldeen Esawi
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Abdalla Awidi
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
- School of Medicine, University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Hospital of Jordan University, Amman University, Amman 11942, Jordan
| |
Collapse
|
6
|
Qiao M, Tang W, Xu Z, Wu X, Huang W, Zhu Z, Wan Q. Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair. J Mater Chem B 2023; 11:2307-2333. [PMID: 36809480 DOI: 10.1039/d2tb02563a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone defects are a common bone disease, which are usually caused by accidents, trauma and tumors. However, the treatment of bone defects is still a great clinical challenge. In recent years, research on bone repair materials has continued with great success, but there are few reports on the repair of bone defects at a high lipid level. Hyperlipidemia is a risk factor in the process of bone defect repair, which has a negative impact on the process of osteogenesis, increasing the difficulty of bone defect repair. Therefore, it is necessary to find materials that can promote bone defect repair under the condition of hyperlipidemia. Gold nanoparticles (AuNPs) have been applied in the fields of biology and clinical medicine for many years and developed to modulate osteogenic differentiation and adipogenic differentiation. In vitro and vivo studies displayed that they promoted bone formation and inhibited fat accumulation. Further, the metabolism and mechanisms of AuNPs acting on osteogenesis/adipogenesis were partially revealed by researchers. This review further clarifies the role of AuNPs in osteogenic/adipogenic regulation during the process of osteogenesis and bone regeneration by summarizing the related in vitro and in vivo research, discussing the advantages and challenges of AuNPs and highlighting several possible directions for future research, with the aim to provide a new strategy for dealing with bone defects in hyperlipidemic patients.
Collapse
Affiliation(s)
- Mingxin Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Wen Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Wei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Qi G, Xu C, Wang J, Tian Y, Wang B, Zhang Y, Ma K, Diao X, Jin Y. Optoplasmonic Modulation of Cell Metabolic State Promotes Rapid Cell Differentiation. Anal Chem 2022; 94:8354-8364. [PMID: 35622722 DOI: 10.1021/acs.analchem.2c00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell differentiation plays a vital role in mediating organ formation and tissue repair and regeneration. Although rapid and effective methods to stimulate cell differentiation for clinical purposes are highly desired, it remains a great challenge in the medical fields. Herein, a highly effective and conceptual optical method was developed based on a plasmonic chip platform (made of 2D AuNPs nanomembranes). through effective light-augmented plasmonic regulation of cellular bioenergetics (CBE) and an entropy effect at bionano interfaces, to promote rapid cell differentiation. Compared with traditional methods, the developed optoplasmonic method greatly shortens cell differentiation time from usually more than 10 days to only about 3 days. Upon the optoplasmonic treatment of cells, the conformational and vibration entropy changes of cell membranes were clearly revealed through theoretical simulation and fingerprint spectra of cell membranes. Meanwhile, during the treatment process, bioenergetics levels of cells were elevated with increasing mitochondrial membrane potential (Δψm), which accelerates cell differentiation and proliferation. The developed optoplasmonic method is highly efficient and easy to implement, provides a new perspective and avenue for cell differentiation and proliferation, and has potential application prospects in accelerating tissue repair and regeneration.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
10
|
Moore JA, Chow JCL. Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abddd3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Liu Y, Li Z, Li J, Yang S, Zhang Y, Yao B, Song W, Fu X, Huang S. Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels. BURNS & TRAUMA 2020; 8:tkaa029. [PMID: 32733974 PMCID: PMC7382973 DOI: 10.1093/burnst/tkaa029] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Background Hydrogels with tuneable mechanical properties are an attractive material platform for 3D bioprinting. Thus far, numerous studies have confirmed that the biophysical cues of hydrogels, such as stiffness, are known to have a profound impact on mesenchymal stem cell (MSC) differentiation; however, their differentiation potential within 3D-bioprinted hydrogels is not completely understood. Here, we propose a protocol for the exploration of how the stiffness of alginate-gelatin (Alg-Gel) composite hydrogels (the widely used bioink) affects the differentiation of MSCs in the presence or absence of differentiation inducing factors. Methods Two types of Alg-Gel composite hydrogels (Young's modulus: 50 kPa vs. 225 kPa) were bioprinted independently of porosity. Then, stiffness-induced biases towards adipogenic and osteogenic differentiation of the embedded MSCs were analysed by co-staining with alkaline phosphatase (ALP) and oil red O. The expression of specific markers at the gene level was detected after a 3-day culture. Results Confocal microscopy indicated that all tested hydrogels supported MSC growth and viability during the culture period. Higher expression of adipogenic and osteogenic markers (ALP and lipoprotein lipase (LPL)) in stiffer 3D-bioprinted matrices demonstrated a more significant response of MSCs to stiffer hydrogels with respect to differentiation, which was more robust in differentiation-inducing medium. However, the LPL expression in stiffer 3D-bioprinted constructs was reduced at day 3 regardless of the presence of differentiation-inducing factors. Although MSCs embedded in softer hydrogels to some extent proceeded toward adipogenic and osteogenic lineages within a few days, their differentiation seemed to be slower and more limited. Interestingly, the hydrogel itself (without differentiation-inducing factors) exhibited a slight effect on whether MSCs differentiated towards an adipogenic or an osteogenic fate. Considering that the mechano-regulated protein Yes-associated protein (YAP) is involved in MSC fate decisions, we further found that inhibition of YAP significantly downregulated the expression of ALP and LPL in MSCs in stiffer constructs regardless of the induced growth factors present. Conclusions These results demonstrate that the differentiation of MSCs in 3D-bioprinted matrices is dependent on hydrogel stiffness, which emphasizes the importance of biophysical cues as a determinant of cellular behaviour.
Collapse
Affiliation(s)
- Yufan Liu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Siming Yang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Yijie Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| |
Collapse
|
12
|
Zhao X, Zang SQ, Chen X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev 2020; 49:2481-2503. [DOI: 10.1039/d0cs00093k] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is ubiquitous in nature and plays mysterious and essential roles in maintaining key biological and physiological processes.
Collapse
Affiliation(s)
- Xueli Zhao
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|