1
|
Nagaraj S, Narayan S. Protective effect of histatin 5 and amphotericin B conjugated nanostructures in C. albicans challenged Swiss albino mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03997-0. [PMID: 40088334 DOI: 10.1007/s00210-025-03997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
This study explores the development of silica-gold nanostructures conjugated with histatin 5 (H5) and amphotericin B (AmpB) for the management of Candida albicans-induced candidiasis. H5 and AmpB were covalently attached to the silica-gold nanostructures (ASinp-GN) using EDC-NHS chemistry, with fluorescent FITC labeling employed in a parallel experiment to study nanostructure localization. Characterization techniques, including UV-Vis spectroscopy, dynamic light scattering, zeta potential analysis, fluorescence spectroscopy, differential scanning calorimetry, thermogravimetric analysis, high-resolution transmission electron microscopy, atomic force microscopy, and drug release studies, confirmed the successful conjugation and stability of the nanostructures. Biological evaluations using C. albicans demonstrated a minimum inhibitory concentration (MIC50) of 5.42 μM for AmpB in the nanostructures, along with enhanced localization as observed via fluorescence microscopy. The nanostructures effectively inhibited biofilm formation and showed high biocompatibility in hemolysis and MTT assays. In vivo studies using a disseminated candidiasis model in Swiss albino mice revealed significant therapeutic efficacy, evidenced by reduced C. albicans burden, decreased AmpB toxicity, improved heart function, and preserved tissue integrity. These results highlight the role of H5 conjugation in targeted drug delivery, enhancing the therapeutic potential of AmpB while minimizing adverse effects, making it a promising approach for candidiasis management. However, a detailed pharmacokinetic investigation on the use of these nanostructures is warranted before taking this to the clinical side.
Collapse
Affiliation(s)
- Saraswathi Nagaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
3
|
Donadoni E, Siani P, Frigerio G, Di Valentin C. Multi-scale modeling of folic acid-functionalized TiO 2 nanoparticles for active targeting of tumor cells. NANOSCALE 2022; 14:12099-12116. [PMID: 35959762 PMCID: PMC9404434 DOI: 10.1039/d2nr02603a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 05/22/2023]
Abstract
Strategies based on the active targeting of tumor cells are emerging as smart and efficient nanomedical procedures. Folic acid (FA) is a vitamin and a well-established tumor targeting agent because of its strong affinity for the folate receptor (FR), which is an overexpressed protein on the cell membranes of the tumor cells. FA can be successfully anchored to several nanocarriers, including inorganic nanoparticles (NPs) based on transition metal oxides. Among them, TiO2 is extremely interesting because of its excellent photoabsorption and photocatalytic properties, which can be exploited in photodynamic therapy. However, it is not yet clear in which respects direct anchoring of FA to the NP or the use of spacers, based on polyethylene glycol (PEG) chains, are different and whether one approach is better than the other. In this work, we combine Quantum Mechanics (QM) and classical Molecular Dynamics (MD) to design and optimize the FA functionalization on bare and PEGylated TiO2 models and to study the dynamical behavior of the resulting nanoconjugates in a pure water environment and in physiological conditions. We observe that they are chemically stable, even under the effect of increasing temperature (up to 500 K). Using the results from long MD simulations (100 ns) and from free energy calculations, we determine how the density of FA molecules on the TiO2 NP and the presence of PEG spacers impact on the actual exposure of the ligands, especially by affecting the extent of FA-FA intermolecular interactions, which are detrimental for the targeting ability of FA towards the folate receptor. This analysis provides a solid and rational basis for experimentalists to define the optimal FA density and the more appropriate mode of anchoring to the carrier, according to the final purpose of the nanoconjugate.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
- BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| |
Collapse
|
4
|
Li X, Zhang Y, Liu G, Luo Z, Zhou L, Xue Y, Liu M. Recent progress in the applications of gold-based nanoparticles towards tumor-targeted imaging and therapy. RSC Adv 2022; 12:7635-7651. [PMID: 35424775 PMCID: PMC8982448 DOI: 10.1039/d2ra00566b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer death rate remains high all over the world, scientists are paying increasing attention to meet the requirements for precise diagnosis and therapy. Therefore, early diagnosis and active treatment can effectively improve the five-year survival rate of patients. In recent years, gold-based nanomaterials have received increasing attention in medical fields due to their excellent biocompatibility, low toxicity and unique properties. In addition, because of the inherent nature of gold nanomaterials including for computed tomography (CT), fluorescence/optical imaging (FI/OI), surface enhanced Raman spectroscopy imaging (SERS), photoacoustic imaging (PAI) and photothermal therapy (PTT), various gold nanomaterials were developed as theranostic nanoplatforms. In this review, we summarized the latest developments of nanomaterials in imaging and combined therapy, and the prospects for the future application of gold-based theranostic nanoplatforms were also proposed.
Collapse
Affiliation(s)
- Xinxin Li
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Yiwei Zhang
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - GuangKuo Liu
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Ziyi Luo
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Lu Zhou
- Department of Medical Mycology, Shanghai Dermatology Hospital Affiliated to Tongji University Shanghai 200443 China
| | - Yanan Xue
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Min Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University Wuhan 430056 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| |
Collapse
|
5
|
Wang Q, Qu B, Li J, Liu Y, Dong J, Peng X, Zhang R. Multifunctional MnO 2/Ag 3SbS 3 Nanotheranostic Agent for Single-Laser-Triggered Tumor Synergistic Therapy in the NIR-II Biowindow. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4980-4994. [PMID: 35050589 DOI: 10.1021/acsami.1c21752] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regulating the level of reactive oxygen species (ROS) in a tumor is an efficient and innovative anticancer strategy. However, the therapeutic efficacy of ROS-based therapies, such as chemodynamic therapy (CDT) and photodynamic therapy (PDT), offers finite outcomes due to the oxygen dependence and limited concentration of hydrogen peroxide (H2O2) and overexpression of glutathione (GSH) within the tumor microenvironment (TME), so a single therapeutic strategy is insufficient to completely eliminate tumors. Therefore, we demonstrated an omnipotent nanoplatform MnO2/Ag3SbS3 (abbreviated as MA) with strong optical absorbance in the NIR-II biowindow and oxygen self-sufficient ROS-mediated ability, which not only relieves tumor hypoxia significantly but also enhances the photothermal therapy (PTT)/PDT/CDT efficacy. By 1064 nm laser irradiation, MnO2/Ag3SbS3 nanoparticles (NPs) reveal a favorable photothermal conversion efficiency of 23.15% and achieve a single-laser-triggered NIR-II PTT/PDT effect, resulting in effective tumor elimination. Once internalized into the tumor, MnO2/Ag3SbS3 NPs will be degraded to Mn2+ and Ag3SbS3. The released Ag3SbS3 NPs as a NIR-II phototherapy agent could be utilized for photoacoustic imaging-guided NIR-II PDT/PTT. Mn2+ could be used as a Fenton-like catalyst to continuously catalyze endogenous H2O2 for generating highly virulent hydroxyl radicals (•OH) for CDT and O2 for PDT, enhancing the efficiency of PDT and CDT, respectively. Meanwhile, Mn2+ realizes magnetic resonance imaging-guided accurate tumor therapy. Moreover, the MnO2/Ag3SbS3 NPs could deplete intracellular GSH in TME to promote oxidative stress of the tumor, further strengthening ROS-mediated antitumor treatment efficacy. Overall, this work presents a distinctive paradigm of TME-responsive PDT/CDT/PTT in the second near-infrared biowindow by depleting GSH and decomposing H2O2 for efficient and precise cancer treatment.
Collapse
Affiliation(s)
- Qian Wang
- General Surgery Department, The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Botao Qu
- General Surgery Department, The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- School of Basic Medical Sciences, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Juan Li
- School of Basic Medical Sciences, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqin Liu
- School of Basic Medical Sciences, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- General Surgery Department, The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Xiaoyang Peng
- School of Basic Medical Sciences, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- General Surgery Department, The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- School of Basic Medical Sciences, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
6
|
Lin Q, Jia M, Fu Y, Li B, Dong Z, Niu X, You Z. Upper-Critical-Solution-Temperature Polymer Modified Gold Nanorods for Laser Controlled Drug Release and Enhanced Anti-Tumour Therapy. Front Pharmacol 2021; 12:738630. [PMID: 34630113 PMCID: PMC8495017 DOI: 10.3389/fphar.2021.738630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023] Open
Abstract
Photothermal therapy (PTT) has become effective method for the treatment of malignant cancer. The development of PTT system with high anti-tumour effect is still the feasible research direction. Here, a new type of gold nanorods (AuNRs)-doxorubicin (DOX)/mPEG10K-peptide/P(AAm-co-AN) (APP-DOX) nano drug delivery system was proposed. Among them, AuNRs was used as high-efficiency photothermal agent. APP-DOX had a suitable size and can be targeted to accumulate in tumour tissues through circulation in the body. The abundant matrix metalloproteinase 2 (MMP-2) in the tumour environment intercepted and cut off the short peptide chain structure grafted on APP-DOX. At the same time, the removal of the PEG segment leaded to an increase in the hydrophobic properties of the system. Nanoparticles aggregated into large particles, causing them to stay and aggregate further at the tumour site. When irradiated by 808 nm near-infrared laser, APP-DOX achieved a gradual heating process. High temperature can effectively ablate tumours and enable UCST polymer to achieve phase transition, resulting in more anti-cancer drugs loaded in the polymer layer DOX was released, effectively killing cancer cells. Animal experiments had verified the possibility of the nano drug-carrying system and good tumour treatment effect. What’s more worth mentioning is that compared with free DOX, the nano drug delivery system had lower biological toxicity and not cause obvious harmful effects on normal organs and tissues.
Collapse
Affiliation(s)
- Que Lin
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Mao Jia
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoya Niu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Guo C, Sun J, Dong J, Cai W, Zhao X, Song B, Zhang R. A natural anthocyanin-based multifunctional theranostic agent for dual-modal imaging and photothermal anti-tumor therapy. J Mater Chem B 2021; 9:7447-7460. [PMID: 34551057 DOI: 10.1039/d1tb00988e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nowadays, cancer is one of the most serious diseases threatening the health of human beings, and imaging-guided photothermal therapy (PTT) is rapidly emerging as a potent oncotherapy strategy due to its unique advantages of high efficiency, noninvasiveness, visualization, and accuracy. In this study, a multifunctional nanoplatform based on gadolinium ion chelated natural anthocyanins (ACNs) is reported, which can be used not only as an excellent photoacoustic/magnetic resonance (PA/MR) dual-modal contrast agent but also for imaging-guided tumor PTT. The nanoparticles obtained have a suitable size, good dispersity, and physiological stability. The excellent biocompatibility and remarkable photothermal effect of the nanoparticles in vitro were demonstrated by CCK-8 assays and co-staining experiments. Moreover, the magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) results obtained in vivo showed that the nanoparticles were ideal dual-modal contrast agents whether given by intravenous or intratumoral injection. After intratumoral injection, the dual-modal PAI/MRI was used for determining the maximum diffusion time of the probe in the tumor site to guide laser treatment, achieving complete tumor elimination without normal tissue injury. Importantly, ACN is a natural compound extracted from black carrots, possessing native biocompatibility and biodegradability, which was further proved by the results of the detailed safety evaluation. Overall, the as-prepared nanoparticles displayed significant tumor diagnosis and treatment effects while mitigating biosafety concerns, and thus this was found to be a promising nanotherapeutic method for cancer treatment.
Collapse
Affiliation(s)
- Chunyan Guo
- First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China.,Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| | - Jinghua Sun
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| | - Jie Dong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| | - Wenwen Cai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| | - Xuhui Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| | - Bin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| | - Ruiping Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
8
|
Borlan R, Stoia D, Gaina L, Campu A, Marc G, Perde-Schrepler M, Silion M, Maniu D, Focsan M, Astilean S. Fluorescent Phthalocyanine-Encapsulated Bovine Serum Albumin Nanoparticles: Their Deployment as Therapeutic Agents in the NIR Region. Molecules 2021; 26:molecules26154679. [PMID: 34361832 PMCID: PMC8348139 DOI: 10.3390/molecules26154679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (−13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; (R.B.); (D.M.)
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Daria Stoia
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Luiza Gaina
- The Research Centre on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania;
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Maria Perde-Schrepler
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania;
| | - Mihaela Silion
- Physics of Polymers and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania;
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; (R.B.); (D.M.)
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
- Correspondence: (M.F.); (S.A.)
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; (R.B.); (D.M.)
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
- Correspondence: (M.F.); (S.A.)
| |
Collapse
|
9
|
Verma D, Sharma SK. Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol 2021; 181:653-671. [PMID: 33766594 DOI: 10.1016/j.ijbiomac.2021.03.087] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023]
Abstract
Guar gum-based drug carrier systems have gained attention for the delivery of various therapeutic agents via different administration routes for attaining controlled and sustained release. Guar gum offers a safe and effective system for drug delivery due to its natural occurrence, easy availability, biocompatibility, and biodegradability, besides simple and mild preparation techniques. Furthermore, the possibility of using various routes such as oral, buccal, transdermal, intravenous, and gene delivery further diversify guar gum applications in the biomedical field. This review delineates the recent investigation on guar gum-based drug carrier systems like hydrogels, nanoparticles, nanocomposites, and scaffolds along with their related delivery routes. Also, the inclusion of data of the loading and subsequent release of the drugs enables to explore the noble and improved drug targeting therapies.
Collapse
Affiliation(s)
- Diksha Verma
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
10
|
Choi G, Rejinold NS, Piao H, Choy JH. Inorganic-inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 2021; 12:5044-5063. [PMID: 34168768 PMCID: PMC8179608 DOI: 10.1039/d0sc06724e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues. Our present review highlights recent developments in inorganic-inorganic nanohybrids, and their applications in bio-imaging, drug delivery, and photo-therapy. In addition, their future scope is also discussed in detail.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- College of Science and Technology, Dankook University Cheonan 31116 Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- Department of Pre-medical Course, College of Medicine, Dankook University Cheonan 31116 Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| |
Collapse
|
11
|
Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, Wu A, Maiti TK, Varma RS, Smith BR. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv 2021; 48:107711. [PMID: 33592279 DOI: 10.1016/j.biotechadv.2021.107711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Biopolymers are of prime importance among which gum polysaccharides hold an eminent standing owing to their high availability and non-toxic nature. Gum biopolymers offer a greener alternative to synthetic polymers and toxic chemicals in the synthesis of metal nanostructures. Metal nanostructures accessible via eco-friendly means endow astounding characteristics to gum-based biocomposites in the field of diagnosis and therapy towards cancer diseases. In this review, assorted approaches for the assembly of nanomaterials mediated by gum biopolymers are presented and their utility in cancer diagnosis and therapy, e.g., bioimaging, radiotherapy, and phototherapy, are deliberated to provide a groundwork for future stimulative research.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interface, Pontedera 56025, Pisa, Italy.
| | - Zahra Baghbantaraghdari
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Wenxian Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Romila Manchanda
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials (RCPTM), Palacky University, Olomouc, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Liang X, Xie Y, Wu J, Wang J, Petković M, Stepić M, Zhao J, Ma J, Mi L. Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112122. [PMID: 33433386 DOI: 10.1016/j.jphotobiol.2020.112122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/27/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment that can be implemented using various agents. The conventional photosensitizer Al (III) phthalocyanine chloride tetrasulfonic acid (Pc) has limitations of selectivity in tumor targeting, low affinity to cancer cells, and low two-photon absorption. This study presents a novel photosensitizer FA-TiO2-Pc, which has the TiO2 nanoparticle conjugated with a tumor targeting agent of folic acid (FA), and Pc. FA-TiO2-Pc possessed high targeted photodynamic therapeutic activity and excellent biocompatibility. This promising photosensitizer showed high therapeutic drug efficiency in vitro at a low concentration dose and short incubation time under one-photon excitation (OPE). In vivo, when treated with a low dose of FA-TiO2-Pc and low light irradiation, the tumor growth was depressed in mice bearing HeLa xenograft tumors with minimal side effects. In addition, the two-photon absorption of FA-TiO2-Pc was also enhanced compared to Pc, proving that FA-TiO2-Pc system has a great potential to be used for the therapy of the folate receptor positive cancer cells in both OPE-PDT and two-photon excitation (TPE)-PDT agents.
Collapse
Affiliation(s)
- Xinyue Liang
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yonghui Xie
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430014, China
| | - Junxin Wu
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jing Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road, Shanghai 201800, China
| | - Marijana Petković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Milutin Stepić
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Jiong Ma
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China; Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Lan Mi
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
13
|
Kharkar PS, Soni G, Rathod V, Shetty S, Gupta MK, Yadav KS. An outlook on procedures of conjugating folate to (co)polymers and drugs for effective cancer targeting. Drug Dev Res 2020; 81:823-836. [PMID: 32515120 DOI: 10.1002/ddr.21698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
Folate receptors (FRs) are expressed in vast majority of cancers. Selective targeting of the FRs is, therefore, one of the most popular and sought-after strategies for improving the efficacy of cancer therapeutics. Variety of approaches involving folate conjugation to several well-known and novel, nontoxic, biodegradable, and biocompatible (co)polymers have been attempted and successfully applied to a large number of nanoparticulate drug delivery systems (micelles, liposomes, nanoparticles, quantum dots, mesoporous silica-based materials, and others) in the last decade-and-a-half. Standard and novel synthetic approaches were utilized for the conjugation, followed by the formulation of the drug delivery modality. In most of the cases, the targeted system lived up to its reputation, validating its usefulness in targeted cancer therapeutics. The present review summarizes the progress and state-of-the-art synthetic methodologies for folate conjugation to (co)polymers, drugs, and nucleic acids. The limitations of the FR targeting are discussed in brief to give the reader the other side of the story. Finally, the information on marketed folic acid conjugates highlight their industrial applications.
Collapse
Affiliation(s)
- Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Govind Soni
- Oriental College of Pharmacy and Research, Oriental University, Indore, India
| | - Vaibhavi Rathod
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Saritha Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - M K Gupta
- Oriental College of Pharmacy and Research, Oriental University, Indore, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
14
|
Sheena TS, Dhivya R, Rajiu V, Jeganathan K, Palaniandavar M, Mathan G, Akbarsha MA. Folate-engineered mesoporous silica-encapsulated copper (II) complex [Cu(L)(dppz)]+: An active targeting cell-specific platform for breast cancer therapy. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Giri P, Zandu SK, Singh I. Chemical Modifications of Guar Gum for Drug Delivery Applications: A Review. ACTA ACUST UNITED AC 2020. [DOI: 10.14233/ajchem.2020.22607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Guar gum is a natural excipient extracted from the plant seed of Cyamopsis tetragonolobus, belonging
to the Leguminosae family. In the pharmaceutical industries, it contributes an important role due to its
non-toxicity, ease of availability, biodegradability and eco-friendly nature. The major constituents of
guar gum is galactomannan which is composed of D-galactose anhydride and mannose anhydride.
Hydroxyl groups present in galactomannan can be modified by carboxymethylation, grafting or
cross-linking with other excipients for developing modified polymers having desirable properties.
Guar gum is commonly used as a suspending, emulsifying, stabilizing, gelling and thickening agent
in various dosage forms. The guar gum derivatives are also useful in controlling the drug release from
the pharmaceutical dosage forms. In this review, different aspects of synthesis of guar gum derivatives
and its applications in various drug delivery systems is described.
Collapse
Affiliation(s)
- Pankaj Giri
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura-140401, India
| | - Simran Kaur Zandu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura-140401, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura-140401, India
| |
Collapse
|