1
|
Li Y, Yue X, Ren X, Pang Y, Wang T, Huangfu B, Mikhailovich ZA, Vasilievich KV, Zhang M, Luan Y, Wang Q, He X. Mare milk and fermented mare milk alleviate dextran sulfate sodium salt-induced ulcerative colitis in mice by reducing inflammation and modulating intestinal flora. J Dairy Sci 2025; 108:2182-2198. [PMID: 39647629 DOI: 10.3168/jds.2024-25181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Mare milk (MM) and fermented mare milk (FM) are specialized animal milks with high nutritional value, containing a variety of functionally active substances that are capable of resisting inflammatory responses and oxidative stress. However, little relevant research on the maintenance of intestinal homeostasis has been performed. This study aimed to investigate the effects of MM and FM on the prevention of dextran sulfate sodium salt (DSS)-induced ulcerative colitis in a mouse model and to preliminarily elucidate the underlying mechanisms. The results showed that MM and FM had different degrees of protective effects against the damage caused by DSS and alleviated ulcerative colitis by inhibiting weight loss, reducing colon length shortening, and restoring intestinal structure. Additionally, MM and FM maintained intestinal tight junction protein levels to repair barrier function, downregulated inflammatory cytokines (e.g., IL-1β, TNF-α, IL-6, and iNOS) and bolstered the body's antioxidant defense system. Moreover, MM and FM regulated dysregulation of the intestinal microenvironment by improving the diversity of the gut microbiota and reshaping its structure, including increasing the proportion of Firmicutes and Bacteroidetes and the relative abundance of beneficial bacterial genera (e.g., Akkermansia). In summary, MM and FMM can serve as dietary resources for preventing ulcerative colitis and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Xiaoyu Yue
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Yang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Teng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | | | | | - Mu Zhang
- Shenyang Agricultural University, Shenyang, China 110161
| | - Yue Luan
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Qin Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083.
| |
Collapse
|
2
|
Li J, Luo T, Wang D, Zhao Y, Jin Y, Yang G, Zhang X. Therapeutic application and potential mechanism of plant-derived extracellular vesicles in inflammatory bowel disease. J Adv Res 2025; 68:63-74. [PMID: 38341033 PMCID: PMC11785581 DOI: 10.1016/j.jare.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Plant-derived extracellular vesicles (PDEVs) are membrane vesicles characterized by a phospholipid bilayer as the basic skeleton that is wrapped by various functional components of proteins and nucleic acids. An increasing number of studies have confirmed that PDEVs can be a potential treatment of inflammatory bowel disease (IBD) and can, to some extent, compensate for the limitations of existing therapies. AIM OF REVIEW This review summarizes the recent advances and potential mechanisms underlying PDEVs obtained from different sources to alleviate IBD. In addition, the review discusses the possible applications and challenges of PDEVs, providing a theoretical basis for exploring novel and practical therapeutic strategies for IBD. KEY SCIENTIFIC CONCEPTS OF REVIEW In IBD, the crosstalk mechanism of PDEVs may regulate the intestinal microenvironment homeostasis, especially immune responses, the intestinal barrier, and the gut microbiota. In addition, drug loading enhances the therapeutic potential of PDEVs, particularly regarding improved tissue targeting and stability. In the future, not only immunotherapy based on PDEVs may be an effective treatment for IBD, but also the intestinal barrier and intestinal microbiota will be a new direction for the treatment of IBD.
Collapse
Affiliation(s)
- Jinling Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Yao Zhao
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China; Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China.
| |
Collapse
|
3
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Chen C, Alfredo YY, Lee YY, Tan CP, Wang Y, Qiu C. Physicochemical and biological characterization of the lipid particles with bovine serum albumin corona. Int J Biol Macromol 2024; 281:136223. [PMID: 39366617 DOI: 10.1016/j.ijbiomac.2024.136223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Diacylglycerol-based nanoparticles are promising bioactive delivery systems. However, limited understanding of their interaction with biological entities restricts their clinical use. This study investigated the protein corona formed on medium and long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (NPs) modified by Polyoxethylene stearate (PEG) and compared to glyceryl tristearate (TG) and cetyl palmitate (CP) nanoparticles. Bovine serum albumin (BSA) formed corona with MLCD NPs through hydrophobic interactions and hydrogen bonding, contributing to a decrease in α-helix, an increase in β-sheet and a change in the microenvironment of Tyr residues. Owing to higher lipid hydrophilicity, MLCD NPs showed a much lower affinity for BSA than TG and CP NPs, and the binding constant with BSA was increased for larger NPs. PEG modification and the protein corona reduced the uptake of NPs by macrophages but exerted little influence on B16 cell. Among the NPs with different lipid core, the MLCD NPs showed a lower macrophages cell uptake but higher B16 cell uptake, suggesting a longer circulation time in blood but higher cancer cell internalization. This work shed light on the interactions between MLCD NPs and proteins, which is significant for application as nanocarriers with improved biological efficacy.
Collapse
Affiliation(s)
- Canfeng Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Ye Alfredo
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
6
|
Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine (Lond) 2024; 19:1347-1368. [PMID: 39105753 PMCID: PMC11318742 DOI: 10.1080/17435889.2024.2350356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Naveen Singh
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sri Pada Datta Chigurupati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Shivani Rai Paliwal
- Department of Pharmacy, Guru Ghasidas Vishwavidhyalaya (A Central University), Koni Bilaspur, Chhattisgarh, 495009, India
| | - Rishi Paliwal
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| |
Collapse
|
7
|
Fang X, Feng J, Zhu X, Feng D, Zheng L. Plant-derived vesicle-like nanoparticles: A new tool for inflammatory bowel disease and colitis-associated cancer treatment. Mol Ther 2024; 32:890-909. [PMID: 38369751 PMCID: PMC11163223 DOI: 10.1016/j.ymthe.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.
Collapse
Affiliation(s)
- Xuechun Fang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingcheng Zhu
- Medical Laboratory Department, Second People's Hospital, Qujing 655000, China
| | - Dan Feng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Chen M, Lan H, Jin K, Chen Y. Responsive nanosystems for targeted therapy of ulcerative colitis: Current practices and future perspectives. Drug Deliv 2023; 30:2219427. [PMID: 37288799 PMCID: PMC10405869 DOI: 10.1080/10717544.2023.2219427] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
The pharmacological approach to treating gastrointestinal diseases is suffering from various challenges. Among such gastrointestinal diseases, ulcerative colitis manifests inflammation at the colon site specifically. Patients suffering from ulcerative colitis notably exhibit thin mucus layers that offer increased permeability for the attacking pathogens. In the majority of ulcerative colitis patients, the conventional treatment options fail in controlling the symptoms of the disease leading to distressing effects on the quality of life. Such a scenario is due to the failure of conventional therapies to target the loaded moiety into specific diseased sites in the colon. Targeted carriers are needed to address this issue and enhance the drug effects. Conventional nanocarriers are mostly readily cleared and have nonspecific targeting. To accumulate the desired concentration of the therapeutic candidates at the inflamed area of the colon, smart nanomaterials with responsive nature have been explored recently that include pH responsive, reactive oxygen species responsive (ROS), enzyme responsive and thermo - responsive smart nanocarrier systems. The formulation of such responsive smart nanocarriers from nanotechnology scaffolds has resulted in the selective release of therapeutic drugs, avoiding systemic absorption and limiting the undesired delivery of targeting drugs into healthy tissues. Recent advancements in the field of responsive nanocarrier systems have resulted in the fabrication of multi-responsive systems i.e. dual responsive nanocarriers and derivitization that has increased the biological tissues and smart nanocarrier's interaction. In addition, it has also led to efficient targeting and significant cellular uptake of the therapeutic moieties. Herein, we have highlighted the latest status of the responsive nanocarrier drug delivery system, its applications for on-demand delivery of drug candidates for ulcerative colitis, and the prospects are underpinned.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
9
|
Yilmaz Usta D, Olgac S, Timur B, Teksin ZS. Development and pharmacokinetic evaluation of Neusilin® US2-based S-SNEDDS tablets for bosentan: Fasted and fed states bioavailability, IVIS® real-time biodistribution, and ex-vivo imaging. Int J Pharm 2023; 643:123219. [PMID: 37433349 DOI: 10.1016/j.ijpharm.2023.123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
The study reported here aimed to develop and optimize the S-SNEDDS tablet of bosentan (BOS) and to investigate its pharmacokinetic and biodistribution properties. The BOS-loaded SNEDDS have been developed and characterized in a previous study. The BOS-loaded SNEDDS formulation was converted to S-SNEDDS using Neusilin® US2. The S-SNEDDS tablets were obtained using the direct compression technique, and in vitro dissolution, in vitro lipolysis, and ex-vivo permeability studies of the tablets were performed. The S-SNEDDS tablet and reference tablet (Tracleer®) were administered to male Wistar rats at 50 mg/kg dose by oral gavage in fasted and fed state conditions. The biodistribution of the S-SNEDDS tablet was investigated in Balb/c mice using fluorescent dye. The tablets were dispersed in distilled water before administration to animals. The relationship between in vitro dissolution data and in vivo plasma concentration was examined. The S-SNEDDS tablets showed 2.47, 7.49, 3.70, and 4.39 increases in the percentages of cumulative dissolution in FaSSIF, FeSSIF, FaSSIF-V2, and FeSSIF-V2, respectively, when compared to the reference, and increased the Cmax and AUC 2.65 and 1.28-fold and 4.73 and 2.37-fold in fasted and fed states, respectively, when compared to the reference. S-SNEDDS tablets also significantly reduced interindividual variability in both fasted and fed states (p < 0.05). The XenoLight™ DiR and VivoTag® 680XL labeled S-SNEDDS tablet formulation increased the real-time biodistribution in the body by factors of 2.4 and 3.4 and organ uptake and total emission increased by factors of 2.8 and 3.1, respectively. The IVIVR has been successfully established for S-SNEDDS tablets (R2 > 0.9). The present study confirms the potential of the S-SNEDDS tablet to enhance the in vitro and in vivo performance of BOS.
Collapse
Affiliation(s)
- Duygu Yilmaz Usta
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkiye.
| | - Seval Olgac
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkiye.
| | - Burcu Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, Esenkoy, 67600, Zonguldak, Turkiye.
| | - Zeynep Safak Teksin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkiye.
| |
Collapse
|
10
|
Jain N, Pandey M, Sharma P, Gupta G, Gorain B, Dua K. Recent developments in plant-derived edible nanoparticles as therapeutic nanomedicines. J Food Biochem 2022; 46:e14479. [PMID: 36268842 DOI: 10.1111/jfbc.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
The use of nanotechnology in the treatment of numerous disorders has proven effective. The predicted development of plant-derived edible nanoparticles (PDNPs) as potential therapeutic agents for treating illness or in the delivery of drugs is inevitable. PDNPs generated from plants resemble mammal-extracted exosomes structurally. In contrast to their excellent biocompatibility with healthy cells, PDNPs are skewed toward malignancies by selectively targeting those cells via unique endocytic pathways. They can be generated in large quantities, are nontoxic, and have tissue-specific targeting abilities. Thus, with fewer off-target effects, using these PDNPs could broaden the breadth of pharmacological therapy. In this discussion, we emphasize the properties and biological activities of PDNPs isolated from fruits and vegetables and discuss the promising implications of these particles as nanomedicines. PRACTICAL APPLICATIONS: PDNPs have reportedly been employed for therapeutic applications for several ailments and are believed to have characteristics in common with exosomes generated from mammals. The advantages of PDNPs over mammalian-derived exosomes are numerous. Firstly, they may be produced on a commercial scale using a variety of efficient renewable sources. Secondly, the PDNPs' natural components developed in plant cells promise improved cytocompatibility, tolerability, low cytotoxicity, or other adverse effects. We evaluated some current studies on the applications and potential of PDNPs in this article. PDNPs could create new opportunities for drug discovery because of recent advancements in medicine and drug delivery system nanotechnology. Unfortunately, the precise mechanisms behind PDNP's functions and interaction in pathogenic processes have not yet been completely elucidated; as a result, the potential consequences of their clinical use are uncertain. Overall, PDNPs show a wide range of therapeutic possibilities that may be advantageous to patients and might eventually make up the next generation of pharmaceuticals.
Collapse
Affiliation(s)
- Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Palak Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
11
|
Hu Y, Zhang S, Wen Z, Fu H, Hu J, Ye X, Kang L, Li X, Yang X. Oral delivery of curcumin via multi-bioresponsive polyvinyl alcohol and guar gum based double-membrane microgels for ulcerative colitis therapy. Int J Biol Macromol 2022; 221:806-820. [PMID: 36099999 DOI: 10.1016/j.ijbiomac.2022.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Anti-inflammatory drugs for ulcerative colitis (UC) treatment should specifically penetrate and accumulate in the colon tissue. Herein, a multi-bioresponsive anti-inflammatory drug (curcumin, CUR)-loaded heterogeneous double-membrane microgels (CUR@microgels) for oral administration was fabricated in this study, in which the inner core was derived from polyvinyl alcohol (PVA) and guar gum (GG) and the outer gel was decoration with alginate and chitosan by polyelectrolyte interactions. The structure and morphology of microgels were characterized. In vitro, the formulation exhibited good bio-responses at different pH conditions and sustained-release properties in simulated colon fluid with a drug-release rate of 84.6 % over 34 h. With the assistance of the outlayer gels, the microgels effectively delayed the premature drug release of CUR in the upper gastrointestinal tract. In vivo studies revealed that CUR@microgels specifically accumulated in the colon tissue for 24 h, which suggest that the interlayer gels were apt to reach colon lesion. As expected, the oral administration of microgels remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. The above results indicated that these facilely fabricated microgels which exhibited excellent biocompatibility and multi-bioresponsive drug release, had an apparent effect on the treatment of UC, which represents a promising drug delivery strategy for CUR in a clinical application.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
12
|
Liu S, Cao Y, Ma L, Sun J, Ramos-Mucci L, Ma Y, Yang X, Zhu Z, Zhang J, Xiao B. Oral antimicrobial peptide-EGCG nanomedicines for synergistic treatment of ulcerative colitis. J Control Release 2022; 347:544-560. [PMID: 35580812 DOI: 10.1016/j.jconrel.2022.05.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
The pathogenesis of ulcerative colitis (UC) is associated with severe inflammation, damaged colonic barriers, increased oxidative stress, and intestinal dysbiosis. The majority of current medications strive to alleviate inflammation but fail to target additional disease pathologies. Addressing multiple symptoms using a single 'magic bullet' remains a challenge. To overcome this, a smart epigallocatechin-3-gallate (EGCG)-loaded silk fibroin-based nanoparticle (NP) with the surface functionalization of antimicrobial peptides (Cathelicidin-BF, CBF) was constructed, which were internalized by Colon-26 cells and RAW 264.7 macrophages with high efficiencies. These CBF-EGCG-NPs efficiently restored colonic epithelial barriers by relieving oxidative stress and promoting epithelium migration. They also alleviated immune responses through the downregulation of pro-inflammatory factors, upregulation of anti-inflammatory factors, M2 macrophage polarization, and lipopolysaccharide (LPS) elimination. Interestingly, oral administration of hydrogel (chitosan/alginate)-embedding CBF-EGCG-NPs could not only retard progression and treat UC, but also modulate intestinal microbiota by increasing their overall diversity and richness and augmenting the abundance of beneficial bacteria (e.g., Firmicutes and Lactobacillaceae). Our work provides a "many birds with one stone" strategy for addressing UC symptoms using a single NP-based oral platform that targets immune microenvironment modulation, LPS clearance, and microbial remodeling.
Collapse
Affiliation(s)
- Shengsheng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yingui Cao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Lingli Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7LD, UK
| | - Lorenzo Ramos-Mucci
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7LD, UK
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
13
|
Vidović BB, Milinčić DD, Marčetić MD, Djuriš JD, Ilić TD, Kostić AŽ, Pešić MB. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants (Basel) 2022; 11:248. [PMID: 35204130 PMCID: PMC8868247 DOI: 10.3390/antiox11020248] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Goji berries have long been used for their nutritional value and medicinal purposes in Asian countries. In the last two decades, goji berries have become popular around the world and are consumed as a functional food due to wide-range bioactive compounds with health-promoting properties. In addition, they are gaining increased research attention as a source of functional ingredients with potential industrial applications. This review focuses on the antioxidant properties of goji berries, scientific evidence on their health effects based on human interventional studies, safety concerns, goji berry processing technologies, and applications of goji berry-based ingredients in developing functional food products.
Collapse
Affiliation(s)
- Bojana B. Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Danijel D. Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana D. Marčetić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Jelena D. Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Tijana D. Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Aleksandar Ž. Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana B. Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| |
Collapse
|
14
|
Liu P, Li Y, Wang R, Ren F, Wang X. Oxidative Stress and Antioxidant Nanotherapeutic Approaches for Inflammatory Bowel Disease. Biomedicines 2021; 10:85. [PMID: 35052764 PMCID: PMC8773244 DOI: 10.3390/biomedicines10010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress, caused by the accumulation of reactive species, is associated with the initiation and progress of inflammatory bowel disease (IBD). The investigation of antioxidants to target overexpressed reactive species and modulate oxidant stress pathways becomes an important therapeutic option. Nowadays, antioxidative nanotechnology has emerged as a novel strategy. The nanocarriers have shown many advantages in comparison with conventional antioxidants, owing to their on-site accumulation, stability of antioxidants, and most importantly, intrinsic multiple reactive species scavenging or catalyzing properties. This review concludes an up-to-date summary of IBD nanomedicines according to the classification of the delivered antioxidants. Moreover, the concerns and future perspectives in this study field are also discussed.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
15
|
Xu Y, Zhu BW, Li X, Li YF, Ye XM, Hu JN. Glycogen-based pH and redox sensitive nanoparticles with ginsenoside Rh 2 for effective treatment of ulcerative colitis. Biomaterials 2021; 280:121077. [PMID: 34890974 DOI: 10.1016/j.biomaterials.2021.121077] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this study is to construct a pH and redox sensitive nanoparticle to effectively deliver ginsenoside Rh2 for the treatment of ulcerative colitis (UC). Herein, glycogen was modified by urocanic acid and α-lipoic acid (α-LA) to obtain an amphiphilic polymer (LA-UaGly). Such polymer LA-UaGly could self-assemble to form nanoparticles (Blank NPs) in water with excellent stability, which could also successfully encapsulated ginsenoside Rh2 to form Rh2 nanoparticles (Rh2 NPs) with encapsulation efficiency of 74.36 ± 0.34%. DLS analysis indicated Rh2 NPs were spherical with a particle size of 128.9 ± 0.3 nm. As expected, Rh2 NPs exhibited typical pH and redox dual response release behaviour as well as the excellent in vivo safety. In vitro tests showed that Rh2 NPs could effectively internalize and release Rh2 into RAW264.7 cells, and protect cells from apoptosis (p < 0.05). More interestingly, Rh2 NPs exhibited strong anti-inflammatory activity via significantly inhibiting the overproduction of nitric oxide (NO) and inflammatory cytokines (TNF-α, IL-1β and IL-6) (p < 0.05). In vivo experiments suggested that Rh2 NPs significantly ameliorated the weight loss, colon length, disease activity index (DAI) score, and myeloperoxidase (MPO) activity in mice caused by dextran sulfate sodium salt (DSS) (p < 0.05). Simultaneously, pathological analysis proved that Rh2 NPs could significantly reduce histological damage and inflammatory infiltration in mice. Rh2 NPs could also effectively regulate the intestinal flora of mice by improving the species uniformity and abundance of the intestinal flora of mice and restoring the species diversity of the intestinal flora. In addition, both in vivo and in vitro experiments proved that Rh2 NPs had stronger anti-inflammatory activity than Rh2. This study provides a promising strategy for the effective treatment of UC.
Collapse
Affiliation(s)
- Yu Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Bei-Wei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xiang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yan-Fei Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xi-Mei Ye
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiang-Ning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China.
| |
Collapse
|
16
|
Aparecida Plastina Cardoso M, Windson Isidoro Haminiuk C, Pedro AC, de Andrade Arruda Fernandes Fernandes I, Akemi Casagrande Yamato M, Maciel GM, Do Prado IN. Biological Effects of Goji Berry and the Association with New Industrial Applications: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2007261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Alessandra Cristina Pedro
- Programa de Pós-Graduação Em Engenharia de Alimentos (Ppgeal), Cep (81531–980), Universidade Federal Do Paraná (UFPR), Curitiba, Brasil
| | | | | | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal Do Paraná (UTFPR), Cep (81280–340), Curitiba, Brasil
| | - Ivanor Nunes Do Prado
- Programa de Pós-Graduação Em Ciência de Alimentos (Ppc), Cep (87020–900), Universidade Estadual de Maringá (UEM), Maringá, Brasil
| |
Collapse
|
17
|
Encapsulation of Polyphenols from Lycium barbarum Leaves into Liposomes as a Strategy to Improve Their Delivery. NANOMATERIALS 2021; 11:nano11081938. [PMID: 34443768 PMCID: PMC8398605 DOI: 10.3390/nano11081938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022]
Abstract
This study is focused on the encapsulation of polyphenols from Lycium barbarum leaves into liposomes as a strategy to improve their delivery. Liposomes loaded with Lycium barbarum leaves extract were obtained and characterized for particle size, polydispersity, entrapment efficiency, and stability. Liposomes presented entrapment efficiency higher than 75%, nanometric particle size, narrow polydispersity, and good stability over three months at 4 °C. The liposomes containing Lycium barbarum offered a slower release of polyphenols with attenuated burst effect compared with the dissolution of free Lycium barbarum extract in phosphate buffer solution at pH 7.4. Moreover, an in vitro pretreatment of 24 h with loaded liposomes showed a cytoprotective effect against H2O2-induced cytotoxicity on L-929 mouse fibroblasts cells. These preliminary findings imply that liposomes could be successfully employed as carriers for polyphenols in pharmaceutical applications.
Collapse
|
18
|
Zhang W, Michalowski CB, Beloqui A. Oral Delivery of Biologics in Inflammatory Bowel Disease Treatment. Front Bioeng Biotechnol 2021; 9:675194. [PMID: 34150733 PMCID: PMC8209478 DOI: 10.3389/fbioe.2021.675194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) has been posed as a great worldwide health threat. Having an onset during early adulthood, IBD is a chronic inflammatory disease characterized by remission and relapse. Due to its enigmatic etiology, no cure has been developed at the moment. Conventionally, steroids, 5-aminosalicylic acid, and immunosuppressants have been applied clinically to relieve patients’ syndrome which, unfavorably, causes severe adverse drug reactions including diarrhea, anemia, and glaucoma. Insufficient therapeutic effects also loom, and surgical resection is mandatory in half of the patients within 10 years after diagnosis. Biologics demonstrated unique and differentiative therapeutic mechanism which can alleviate the inflammation more effectively. However, their application in IBD has been hindered considering their stability and toxicity. Scientists have brought up with the concept of nanomedicine to achieve the targeted drug delivery of biologics for IBD. Here, we provide an overview of biologics for IBD treatment and we review existing formulation strategies for different biological categories including antibodies, gene therapy, and peptides. This review highlights the current trends in oral delivery of biologics with an emphasis on the important role of nanomedicine in the development of reliable methods for biologic delivery in IBD treatment.
Collapse
Affiliation(s)
- Wunan Zhang
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Cecilia Bohns Michalowski
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Chen Q, Luo R, Han X, Zhang J, He Y, Qi S, Pu X, Nie W, Dong L, Xu H, Liu F, Lin M, Zhong H, Fu C, Gao F. Entrapment of Macrophage-Target Nanoparticles by Yeast Microparticles for Rhein Delivery in Ulcerative Colitis Treatment. Biomacromolecules 2021; 22:2754-2767. [PMID: 34019390 DOI: 10.1021/acs.biomac.1c00425] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we developed an advanced colitis-targeted nanoparticles (NPs)-into-yeast cell wall microparticles (YPs) drug delivery system for ulcerative colitis (UC) therapy. In brief, YPs entrap hyaluronic acid (HA), and polyethylenimine (PEI) modified rhein (RH)-loaded ovalbumin NPs (HA/PEI-RH NPs) to form HA/PEI-RH NYPs. YPs can make HA/PEI-RH NPs pass through gastric environment stably and be degraded by β-glucanase to promote drug release from HA/PEI-RH NYPs in the colon. Cellular uptake evaluation confirmed that HA/PEI-RH NPs could specifically target and enhance the uptake rate via HA ligands. In biodistribution studies, HA/PEI-RH NYPs were able to efficiently accumulate in the inflammed colon in mice. In vivo experiments revealed that the HA/PEI-RH NYPs could significantly alleviate inflammation by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Therefore, HA/PEI-RH NYPs have advantages of good gastric stability, β-glucanase-sensitive release ability, macrophage-targeted ability, and anti-UC effects. These advantages indicate YPs-entrapped multifunctional NPs are a promising oral drug delivery system for UC therapy.
Collapse
Affiliation(s)
- Qiyan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xiulan Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Lingling Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Haiting Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Meisi Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.,Sichuan Provincial Acupuncture School, Chengdu 611731, China
| | - Huiyun Zhong
- Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| |
Collapse
|
20
|
Hmar EBL, Paul S, Boruah N, Sarkar P, Borah S, Sharma HK. Apprehending Ulcerative Colitis Management With Springing Up Therapeutic Approaches: Can Nanotechnology Play a Nascent Role? CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-020-00218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Nanoparticle-based therapeutics of inflammatory bowel diseases: a narrative review of the current state and prospects. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Zhang S, Kang L, Hu S, Hu J, Fu Y, Hu Y, Yang X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int J Biol Macromol 2020; 167:1598-1612. [PMID: 33220374 DOI: 10.1016/j.ijbiomac.2020.11.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
A major drawback of oral treatment of inflammatory bowel disease (IBD) is the non-specific distribution of drugs during long-term treatment. Despite its effectiveness as an anti-inflammatory drug, curcumin (CUR) is limited by its low bioavailability in IBD treatment. Herein, a pH-sensitive composite hyaluronic acid/gelatin (HA/GE) hydrogel drug delivery system containing carboxymethyl chitosan (CC) microspheres loaded with CUR was fabricated for IBD treatment. The composition and structure of the composite system were optimized and the physicochemical properties were characterized using infrared spectroscopy, X-ray diffraction, swelling, and release behavior studies. In vitro, the formulation exhibited good sustained release property and the drug release rate was 65% for 50 h. In vivo pharmacokinetic experiments indicated that high level of CUR was maintained in the colon tissue for more than 24 h; it also played an anti-inflammatory role by evaluating the histopathological changes through hematoxylin and eosin (H&E), myeloperoxidase (MPO), and immunofluorescent staining. Additionally, the formulation substantially inhibited the level of the main pro-inflammatory cytokines of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secreted by macrophages, compared to the control group. The pharmacodynamic experiment showed that the formulation group of CUR@gels had the best therapeutic effect on colitis in mice. The composite gel delivery system has potential for the effective delivery of CUR in the treatment of colitis. This study also provides a reference for the design and preparation of a new oral drug delivery system with controlled release behavior.
Collapse
Affiliation(s)
- Shangwen Zhang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Sheng Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanping Fu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|