1
|
Huang C, Miao X, Li J, Liang J, Xu J, Wu Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int J Nanomedicine 2023; 18:3141-3155. [PMID: 37333732 PMCID: PMC10276606 DOI: 10.2147/ijn.s404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving the biological sealing around dental abutments could promote the long-term success of implants. Although titanium abutments have a wide range of clinical applications, they incur esthetic risks due to their color, especially in the esthetic zone. Currently, zirconia has been applied as an esthetic alternative material for implant abutments; however, zirconia is purported to be an inert biomaterial. How to improve the biological activities of zirconia has thus become a popular research topic. In this study, we presented a novel self-glazed zirconia (SZ) surface with nanotopography fabricated by additive 3D gel deposition and investigated its soft tissue integration capability compared to that of clinically used titanium and polished conventional zirconia surfaces. Materials and Methods Three groups of disc samples were prepared for in vitro study and the three groups of abutment samples were prepared for in vivo study. The surface topography, roughness, wettability and chemical composition of the samples were examined. Moreover, we analyzed the effect of the three groups of samples on protein adsorption and on the biological behavior of human gingival keratinocytes (HGKs) and human gingival fibroblasts (HGFs). Furthermore, we conducted an in vivo study in which the bilateral mandibular anterior teeth of rabbits were extracted and replaced with implants and corresponding abutments. Results The surface of SZ showed a unique nanotopography with nm range roughness and a greater ability to absorb protein. The promoted expression of adhesion molecules in both HGKs and HGFs was observed on the SZ surface compared to the surfaces of Ti and PCZ, while the cell viability and proliferation of HGKs and the number of HGFs adhesion were not significant among all groups. In vivo results showed that the SZ abutment formed strong biological sealing at the abutment-soft tissue interface and exhibited markedly more hemidesmosomes when observed with a transmission electron microscope. Conclusion These results demonstrated that the novel SZ surface with nanotopography promoted soft tissue integration, suggesting its promising application as a zirconia surface for the dental abutment.
Collapse
Affiliation(s)
- Chaoyi Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Xinchao Miao
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jiang Li
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jieyi Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Junxi Xu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Leonardi de Oliveira Rigotti R, Dias Corpa Tardelli J, Cândido dos Reis A. Influence of antibacterial surface treatment on dental implants on cell viability: A systematic review. Heliyon 2023; 9:e13693. [PMID: 36895374 PMCID: PMC9988489 DOI: 10.1016/j.heliyon.2023.e13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
There is no consensus in the literature about the best non-cytotoxic antibacterial surface treatment for dental implants. Critically evaluate the existing literature and answer the question: "which surface treatment for dental implants made of titanium and its alloys has the greatest non-cytotoxic antibacterial activity for osteoblastic cells?" This systematic review was registered in the Open Science Framework (osf.io/8fq6p) and followed the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols. The search strategy was applied to four databases. Articles were selected that evaluated in both studies the properties of 1) antibacterial activity and 2) cytotoxicity on osteoblastic cells of titanium and their alloy dental implants when treated superficially. Systematic reviews, book chapters, observational studies, case reports, articles that studied non-dental implants, and articles that evaluated only the development of surface treatment were excluded. The Joanna Briggs Institute, a quasi-experimental study assessment tool, was adapted to assess the risk of bias. The search strategy found 1178 articles in the databases after removing duplicates in EndNote Web, resulting in 1011 articles to be evaluated by title and abstract, of which 21 were selected for full reading, of which 12 were included by eligibility criteria, and nine were excluded. Quantitative synthesis could not be performed due to the heterogeneity of the data (surface treatment, antibacterial assay, bacteria strain, cell viability assay, and cell type). Risk of bias assessment showed that ten studies were classified as low risk and two studies as moderate risk. The evaluated literature allowed us to conclude that: 1) The literature surveyed did not allow answering the question due to the heterogeneity of the studies; 2) Ten of the 12 studies evaluated presented surface treatments with non-cytotoxic antibacterial activity; 3) Adding nanomaterials, QPEI, BG, and CS, reduce the chances of bacterial resistance by controlling their adhesion by electrical forces.
Collapse
Affiliation(s)
- Renan Leonardi de Oliveira Rigotti
- Department of Dental Materials and Prosthesis; School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthesis; School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthesis; School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide. Heliyon 2022; 8:e09748. [PMID: 35761932 PMCID: PMC9233213 DOI: 10.1016/j.heliyon.2022.e09748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Porous bone scaffolds based on high-precision 3D printing technology gave recently been developed for use in bone defect repair. However, conventional scaffold materials have poor mechanical properties and low osteogenic activity, limiting their clinical use. In this study, a porous composite tissue-engineered bone scaffold was prepared using polylactic acid, nano-hydroxyapatite, and nano-magnesium oxide as raw materials for high-precision 3D printing. The composite scaffold takes full advantage of the personalized manufacturing features of 3D printers and can be used to repair complex bone defects in clinical settings. The composite scaffold combines the advantages of nano-hydroxyapatite, which improves the formability of scaffold printing, and of nano-magnesium oxide, which regulates pH during degradation and provide a good environment for cell growth. Additionally, nano-magnesium oxide and nano-hydroxyapatite have a bidirectional effect on promoting the compressive strength and osteogenic activity of the scaffolds. The prepared composite porous scaffolds based on 3D printing technology show promise for bone defect repair.
Collapse
|
5
|
Wang Y, Gan Z, Lu H, Liu Z, Shang P, Zhang J, Yin W, Chu H, Yuan R, Ye Y, Chen P, Rong M. Impact of High-Altitude Hypoxia on Early Osseointegration With Bioactive Titanium. Front Physiol 2021; 12:689807. [PMID: 35035356 PMCID: PMC8753411 DOI: 10.3389/fphys.2021.689807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Nowadays, the bone osseointegration in different environments is comparable, but the mechanism is unclear. This study aimed to investigate the osseointegration of different bioactive titanium surfaces under normoxic or high-altitude hypoxic environments. Titanium implants were subjected to one of two surface treatments: (1) sanding, blasting, and acid etching to obtain a rough surface, or (2) extensive polishing to obtain a smooth surface. Changes in the morphology, proliferation, and protein expression of osteoblasts on the rough and smooth surfaces were examined, and bone formation was studied through western blotting and animal-based experiments. Our findings found that a hypoxic environment and rough titanium implant surface promoted the osteogenic differentiation of osteoblasts and activated the JAK1/STAT1/HIF-1α pathway in vitro. The animal study revealed that following implant insertion in tibia of rabbit, bone repair at high altitudes was slower than that at low altitudes (i.e., in plains) after 2weeks; however, bone formation did not differ significantly after 4weeks. The results of our study showed that: (1) The altitude hypoxia environment would affect the early osseointegration of titanium implants while titanium implants with rough surfaces can mitigate the effects of this hypoxic environment on osseointegration, (2) the mechanism may be related to the activation of JAK1/STAT1/HIF-1α pathway, and (3) our results suggest the osteogenesis of titanium implants, such as oral implants, is closely related to the oxygen environment. Clinical doctors, especially dentists, should pay attention to the influence of hypoxia on early osseointegration in patients with high altitude. For example, it is better to choose an implant system with rough implant surface in the oral cavity of patients with tooth loss at high altitude.
Collapse
Affiliation(s)
- Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zekun Gan
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haibin Lu
- Department of Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Wuwei Yin
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongxing Chu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | | | - Yingxin Ye
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Pei Chen,
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Mingdeng Rong,
| |
Collapse
|
6
|
Topolnitskiy E, Chekalkin T, Marchenko E, Yasenchuk Y, Kang SB, Kang JH, Obrosov A. Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors. J Funct Biomater 2021; 12:jfb12040060. [PMID: 34842727 PMCID: PMC8628886 DOI: 10.3390/jfb12040060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we assessed the outcomes after surgical treatment of thoracic post-excision defects in 15 patients, using TiNi knitted surgical meshes and customized artificial TiNi-based ribs. Methods: Eight patients were diagnosed with advanced non-small cell lung cancer (NSCLC) invading the chest wall, of which five patients were T3N0M0, two were T3N1M0, and one was T3N2M0. Squamous cell carcinoma was identified in three of these patients and adenocarcinoma in five. In two cases, chest wall resection and repair were performed for metastases of kidney cancer after radical nephrectomy. Three-dimensional CT reconstruction and X-ray scans were used to plan the surgery and customize the reinforcing TiNi-based implants. All patients received TiNi-based devices and were prospectively followed for a few years. Results: So far, there have been no lethal outcomes, and all implanted devices were consistent in follow-up examinations. Immediate complications were noted in three cases (ejection of air through the pleural drains, paroxysm of atrial fibrillation, and pleuritis), which were conservatively managed. In the long term, no complications, aftereffects, or instability of the thoracic cage were observed. Conclusion: TiNi-based devices used for extensive thoracic lesion repair in this context are promising and reliable biomaterials that demonstrate good functional, clinical, and cosmetic outcomes.
Collapse
Affiliation(s)
- Evgeniy Topolnitskiy
- Laboratory of Medical Materials, Tomsk State University, 634045 Tomsk, Russia; (E.T.); (E.M.); (Y.Y.); (A.O.)
- Department of Surgery, Siberian State Medical University, 634050 Tomsk, Russia
| | - Timofey Chekalkin
- Laboratory of Medical Materials, Tomsk State University, 634045 Tomsk, Russia; (E.T.); (E.M.); (Y.Y.); (A.O.)
- R&D Center, TiNiKo Co., Ochang 28119, Korea;
- Correspondence:
| | - Ekaterina Marchenko
- Laboratory of Medical Materials, Tomsk State University, 634045 Tomsk, Russia; (E.T.); (E.M.); (Y.Y.); (A.O.)
| | - Yuri Yasenchuk
- Laboratory of Medical Materials, Tomsk State University, 634045 Tomsk, Russia; (E.T.); (E.M.); (Y.Y.); (A.O.)
| | - Seung-Baik Kang
- Boramae Medical Center, Seoul National University Hospital, Seoul 07061, Korea;
| | | | - Aleksei Obrosov
- Laboratory of Medical Materials, Tomsk State University, 634045 Tomsk, Russia; (E.T.); (E.M.); (Y.Y.); (A.O.)
- Department of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, 03-046 Cottbus, Germany
| |
Collapse
|
7
|
Huang X, Ge Y, Yang B, Han Q, Zhou W, Liang J, Li M, Peng X, Ren B, Yang B, Weir MD, Guo Q, Wang H, Zhou X, Lu X, Oates TW, Xu HHK, Deng D, Zhou X, Cheng L. Novel dental implant modifications with two-staged double benefits for preventing infection and promoting osseointegration in vivo and in vitro. Bioact Mater 2021; 6:4568-4579. [PMID: 34095616 PMCID: PMC8141509 DOI: 10.1016/j.bioactmat.2021.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023] Open
Abstract
Peri-implantitis are a major problem causing implant failure these days. Accordingly, anti-infection during the early stage and subsequent promotion of osseointegration are two main key factors to solve this issue. Micro-arc oxidation (MAO) treatment is a way to form an oxidation film on the surface of metallic materials. The method shows good osteogenic properties but weak antibacterial effect. Therefore, we developed combined strategies to combat severe peri-implantitis, which included the use of a novel compound, PD, comprising dendrimers poly(amidoamine) (PAMAM) loading dimethylaminododecyl methacrylate (DMADDM) as well as MAO treatment. Here, we explored the chemical properties of the novel compound PD, and proved that this compound was successfully synthesized, with the loading efficiency and encapsulation efficiency of 23.91% and 31.42%, respectively. We further report the two-stage double benefits capability of PD + MAO: (1) in the first stage, PD + MAO could decrease the adherence and development of biofilms by releasing DMADDM in the highly infected first stage after implant surgery both in vitro and in vivo; (2) in the second stage, PD + MAO indicated mighty anti-infection and osteoconductive characteristics in a rat model of peri-implantitis in vivo. This study first reports the two-staged, double benefits of PD + MAO, and demonstrates its potential in clinical applications for inhibiting peri-implantitis, especially in patients with severe infection risk.
Collapse
Affiliation(s)
- Xiaoyu Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yang Ge
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.,Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.,Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bina Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pathology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatrics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Bangcheng Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Xugang Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Barberi J, Spriano S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1590. [PMID: 33805137 PMCID: PMC8037091 DOI: 10.3390/ma14071590] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Titanium and its alloys, specially Ti6Al4V, are among the most employed materials in orthopedic and dental implants. Cells response and osseointegration of implant devices are strongly dependent on the body-biomaterial interface zone. This interface is mainly defined by proteins: They adsorb immediately after implantation from blood and biological fluids, forming a layer on implant surfaces. Therefore, it is of utmost importance to understand which features of biomaterials surfaces influence formation of the protein layer and how to guide it. In this paper, relevant literature of the last 15 years about protein adsorption on titanium-based materials is reviewed. How the surface characteristics affect protein adsorption is investigated, aiming to provide an as comprehensive a picture as possible of adsorption mechanisms and type of chemical bonding with the surface, as well as of the characterization techniques effectively applied to model and real implant surfaces. Surface free energy, charge, microroughness, and hydroxylation degree have been found to be the main surface parameters to affect the amount of adsorbed proteins. On the other hand, the conformation of adsorbed proteins is mainly dictated by the protein structure, surface topography at the nano-scale, and exposed functional groups. Protein adsorption on titanium surfaces still needs further clarification, in particular concerning adsorption from complex protein solutions. In addition, characterization techniques to investigate and compare the different aspects of protein adsorption on different surfaces (in terms of roughness and chemistry) shall be developed.
Collapse
Affiliation(s)
- Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | | |
Collapse
|
9
|
López-Valverde N, Flores-Fraile J, Ramírez JM, Macedo de Sousa B, Herrero-Hernández S, López-Valverde A. Bioactive Surfaces vs. Conventional Surfaces in Titanium Dental Implants: A Comparative Systematic Review. J Clin Med 2020; 9:jcm9072047. [PMID: 32610687 PMCID: PMC7408888 DOI: 10.3390/jcm9072047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/15/2022] Open
Abstract
Animal studies and the scarce clinical trials available that have been conducted suggest that bioactive surfaces on dental implants could improve the osseointegration of such implants. The purpose of this systematic review was to compare the effectiveness of osseointegration of titanium (Ti) dental implants using bioactive surfaces with that of Ti implants using conventional surfaces such as sandblasted large-grit acid-etched (SLA) or similar surfaces. Applying the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, the MEDLINE, PubMed Central and Web of Science databases were searched for scientific articles in April 2020. The keywords used were “dental implants”, “bioactive surfaces”, “biofunctionalized surfaces”, and “osseointegration”, according to the question: “Do bioactive dental implant surfaces have greater osseointegration capacity compared with conventional implant surfaces?” Risk of bias was assessed using the Cochrane Collaboration tool. 128 studies were identified, of which only 30 met the inclusion criteria: 3 clinical trials and 27 animal studies. The average STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) and ARRIVE (Animal Research: Reporting of In Vivo Experiments) scores were 15.13 ± 2.08 and 17.7±1.4, respectively. Implant stability quotient (ISQ) was reported in 3 studies; removal torque test (RTT)—in 1 study; intraoral periapical X-ray and microcomputed tomography radiological evaluation (RE)—in 4 studies; shear force (SF)—in 1 study; bone-to-implant contact (BIC)—in 12 studies; and BIC and bone area (BA) jointly—in 5 studies. All animal studies reported better bone-to-implant contact surface for bioactive surfaces as compared to control implants with a statistical significance of p < 0.05. Regarding the bioactive surfaces investigated, the best results were yielded by the one where mechanical and chemical treatment methods of the Ti surfaces were combined. Hydroxyapatite (HA) and calcium–phosphate (Ca–Ph) were the most frequently used bioactive surfaces. According to the results of this systematic review, certain bioactive surfaces have a positive effect on osseointegration, although certain coating biomolecules seem to influence early peri-implant bone formation. Further and more in-depth research in this field is required to reduce the time needed for osseointegration of dental implants.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (N.L.-V.); (J.F.-F.); (S.H.-H.)
| | - Javier Flores-Fraile
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (N.L.-V.); (J.F.-F.); (S.H.-H.)
| | - Juan Manuel Ramírez
- Department of Morphological Sciences, University of Cordoba, Avenida Menéndez Pidal s/n, 14071 Cordoba, Spain;
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain Faculty of Medicine, University of Coimbra, Polo I - Edifício Central Rua Larga, 3004-504 Coimbra, Portugal;
| | - Silvia Herrero-Hernández
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (N.L.-V.); (J.F.-F.); (S.H.-H.)
| | - Antonio López-Valverde
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (N.L.-V.); (J.F.-F.); (S.H.-H.)
- Correspondence:
| |
Collapse
|