1
|
Li Y, Huang Y, Zhao P, Fei J, Xie Y. A review on Pd-M bimetallic electrochemical sensors: Techniques, performance, and applications. Talanta 2025; 282:126989. [PMID: 39383725 DOI: 10.1016/j.talanta.2024.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, People's Republic of China.
| |
Collapse
|
2
|
Jiang F, Meng Y, Mo M, Li Y, Liu Q, Wang P, Li Y, Wei Q. A sensitive electrochemical immunosensor based on high-efficiency catalytic cycle amplification strategy for detection of cardiac troponin I. Bioelectrochemistry 2024; 159:108730. [PMID: 38762950 DOI: 10.1016/j.bioelechem.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
An electrochemical immunosensor based on the novel high efficiency catalytic cycle amplification strategy for the sensitive detection of cardiac troponin I (cTnI). With its variable valence metal elements and spiny yolk structure, the Cu2O/CuO@CeO2 nanohybrid exhibits high speed charge mobility and exceptional electrochemical performance. Notably, fluorite-like cubic crystal CeO2 shell would undergo redox reaction with Cu2O core, which successfully ensures the continuous recycling occurrence of "fresh" Cu (II)/Cu (I) and Ce (Ⅳ)/Ce (Ⅲ) pairs at the electrode interface. The "fresh" active sites continue to emerge constantly, resulting in a significant increase in the current signal. In light of the electrochemical characterization, the electron transfer pathway and catalytic cycle mechanism among CeO2, Cu2O and CuO were further discussed. The developed electrochemical immunosensor detected cTnI from 100 fg/mL to 100 ng/mL with a LOD of 15.85 fg/mL under optimal conditions. The analysis results indicate that the immunosensor would hold promise for broad application prospects in the biological detection for other biomarkers.
Collapse
Affiliation(s)
- Feng Jiang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yaoyao Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Mengxiao Mo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, the Republic of Korea.
| |
Collapse
|
3
|
Song C, Guo J, Wang Y, Xiang H, Yang Y. Electrochemical Glucose Sensors: Classification, Catalyst Innovation, and Sampling Mode Evolution. Biotechnol J 2024; 19:e202400349. [PMID: 39385538 DOI: 10.1002/biot.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Glucose sensors are essential tools for monitoring blood glucose concentration in diabetic patients. In recent years, with the increasing number of individuals suffering from diabetes, blood glucose monitoring has become extremely necessary, which expedites the iteration and upgrade of glucose sensors greatly. Currently, two main types of glucose sensors are available for blood glucose testing: enzyme-based glucose sensor (EBGS) and enzyme-free glucose sensor (EFGS). For EBGS, several progresses have been made to comprehensively improve detection performance, ranging from enhancing enzyme activity, thermostability, and electron transfer properties, to introducing new materials with superior properties. For EFGS, more and more new metallic materials and their oxides are being applied to further optimize its blood glucose monitoring. Here the latest progress of electrochemical glucose sensors, their manufacturing methods, electrode materials, electrochemical parameters, and applications were summarized, the development glucose sensors with various noninvasive sampling modes were also compared.
Collapse
Affiliation(s)
- Chenyang Song
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Jian Guo
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Yuhan Wang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Hongying Xiang
- Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yufeng Yang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Li G, Feng H, Li X, Li S, Liang J, Zhou Z. A dual-signal output electrochemical aptasensor for glypican-3 ultrasensitive detection based on reduced graphene oxide-cuprous oxide nanozyme catalytic amplification strategy. Bioelectrochemistry 2024; 158:108709. [PMID: 38621313 DOI: 10.1016/j.bioelechem.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Glypican-3 (GPC3) is an essential reference target for hepatocellular carcinoma detection, follow-up and prediction. Herein, a dual-signal electrochemical aptasensor based on reduced graphene oxide-cuprous oxide (RGO-Cu2O) nanozyme was developed for GPC3 detection. The RGO-Cu2O nanoenzyme displayed excellent electron transport effect, large specific surface area and outstanding peroxidase-like ability. The differential pulse voltammetry (DPV) signal of Cu2O oxidation fraction and the chronoamperometry (i-t) signal of H2O2 decomposition catalyzed by RGO-Cu2O nanozyme were used as dual-signal detection. Under optimal conditions, the log-linear response ranges were 0.1 to 500.0 ng/mL with the limit of detection 0.064 ng/mL for DPV technique, and 0.1-50.0 ng/mL for i-t technique (detection limit of 0.0177 ng/mL). The electrochemical aptasensor has remarkably analytical performance with wide response range, low detection limit, excellent repeatability and specificity, good recovery in human serum samples. The two output signals of one sample achieve self-calibration of the results, effectively avoiding the occurrence of possible leakage and misdiagnosis of a single detection signal, suggesting that it will be a promising method in the early biomarker detection.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China
| | - Huafu Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xinhao Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Shengnan Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| |
Collapse
|
5
|
Wang S, Wang D, Li M, Wang S, Xiang S, Feng K, Liu Q, Wang P, Li Y, Tang F. Interfacial galvanic replacement strategy for Pd-doped NiFe MOF nanosheets with highly efficient dopamine detection. Mikrochim Acta 2024; 191:280. [PMID: 38649540 DOI: 10.1007/s00604-024-06359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
An interfacial galvanic replacement strategy to controllable synthesize palladium nanoparticles (Pd NPs)-modified NiFe MOF nanocomposite on nickel foam, which served as an efficient sensing platform for quantitative determination of dopamine (DA). Pd NPs grown in situ on the nanosheets of NiFe MOF via self-driven galvanic replacement reaction (GRR) and well uniform distribution was achieved. This method effectively reduced the aggregation of metallic nanoparticles and significantly promoted the electron transfer rate during the electrochemical process, leading to improved electrocatalytic activity for DA oxidation. Remarkably, the precisely constructed biosensor achieved a low detection limit (LOD) of 0.068 µM and recovery of 94.1% (RSD 6.7%, N = 3) for simulated real sample detection and also exhibited superior selectivity and stability. The results confirmed that the as-fabricated Pd-NiFe/NF composite electrode could realize the quantitative determination of DA and showed promising prospects in real sample biosensing.
Collapse
Affiliation(s)
- Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Dongyu Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Shuangna Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Shaowen Xiang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| | - Kai Feng
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, People's Republic of China.
| |
Collapse
|
6
|
Ji XX, Liu YL, Chang XY, Li RL, Ye F, Yang L, Fu Y. An electrochemical sensor derived from Cu-BTB MOF for the efficient detection of diflubenzuron in food and environmental samples. Food Chem 2023; 428:136802. [PMID: 37421661 DOI: 10.1016/j.foodchem.2023.136802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Diflubenzuron is widely used as a benzoylurea insecticide, and its impact on human health should not be underestimated. Therefore, the detection of its residues in food and the environment is crucial. In this paper, octahedral Cu-BTB was fabricated using a simple hydrothermal method. It served as a precursor for synthesizing Cu/Cu2O/CuO@C with a core-shell structure through annealing, creating an electrochemical sensor for the detection of diflubenzuron. The response of Cu/Cu2O/CuO@C/GCE, expressed as ΔI/I0 exhibited a linear correlation with the logarithm of the diflubenzuron concentration ranging from 1.0 × 10-4 to 1.0 × 10-12 mol·L-1. The limit of detection (LOD) was determined to be 130 fM using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated excellent stability, reproducibility, and anti-interference properties. Moreover, Cu/Cu2O/CuO@C/GCE was successfully employed to quantitatively determine diflubenzuron in actual food samples (tomato and cucumber) and environmental samples (Songhua River water, tap water, and local soil) with good recoveries. Finally, the possible mechanism of Cu/Cu2O/CuO@C/GCE for monitoring diflubenzuron was thoroughly investigated.
Collapse
Affiliation(s)
- Xian-Xian Ji
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu-Long Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xin-Yue Chang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Rui-Long Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
7
|
Wei C, Wang Z, Xiao Y, Du F, Yu Z, Wang H, Liu Q. In-situ construction of Au/Cu 2O nanowire arrays for sensitive glucose sensing. Talanta 2023; 254:124194. [PMID: 36549137 DOI: 10.1016/j.talanta.2022.124194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Architecture design is widely regarded as a rational strategy to enhance the sensing performance of electrocatalysts. Herein, the novel three-dimensional hybrids based on Au and Cu2O were successfully synthesized via steps of in-situ growth, including anodic oxidation, annealing and galvanic displacement. Cu2O appeared in the morphology of nanowire array on conductive substrate, and was decorated by Au nanoparticles. Benefiting from the unique architecture and binder-free fabrication process, the Au/Cu2O nanowire arrays possessed high conductivity and abundant exposed active sites, as well as facilitated the direct electron transfer among detection object, electrocatalyst and current collector. Moreover, Au/Cu2O particles as contrast were fabricated to clarify the effect of structure on sensing ability. The Au/Cu2O nanowire arrays drove the glucose electro-oxidation reaction with great catalytic activity, in which a potential as low as 0.4 V was needed to reach a high sensitivity of 2.098 mA mM-1 cm-2. The excellent selectivity, stability and reproducibility were also obtained by the sensor. Furthermore, the quantitative detection of glucose level in diluted human serum were performed and the satisfactory result make the obtained sensor have the potential for practical applications.
Collapse
Affiliation(s)
- Chenhuinan Wei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, 430068, PR China
| | - Zhuo Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yimo Xiao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Fan Du
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Ziyang Yu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Huihu Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, 430068, PR China
| | - Qiming Liu
- Key Laboratory of Ariticial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
8
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Martinez-Saucedo G, Cuevas-Muñiz FM, Sanchez-Fraga R, Mejia I, Alcantar-Peña JJ, Chavez-Urbiola IR. Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples. Talanta 2023; 253:123926. [PMID: 36115100 DOI: 10.1016/j.talanta.2022.123926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
A cellulose microfluidic pH boosting layer adapts a non-enzymatic copper oxide glucose sensor strip for neutral pH samples. This adaptation allows the non-enzymatic technology to realize in-situ glucose measurements. A three-electrode system is constructed to test samples in a classical electrochemical cell, and in a sensing strip to test the microfluidic system. The system consists of copper oxide as working electrode, and silver and carbon paints as reference, and counter electrodes, respectively. The fabrication of the pH-boosting layer is made with natural cellulose. Within this layer are NaOH crystals, grown by a drying processes after immersion of cellulose in a concentrated solution of NaOH. The microfluidic layer is placed on top of the sensing electrodes, and while it transports the fluid sample to the sensing electrodes, the fluid dissolves the NaOH crystals, increasing the pH of the sample. This change allows the non-enzymatic mechanism to sense the glucose concentration in the fluid. Our system shows the capability to measure glucose in samples with neutral pH and human blood with a sensitivity of 70 μA/mM cm2, enough to distinguish between hypoglycemia and hyperglycemia.
Collapse
Affiliation(s)
- G Martinez-Saucedo
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - F M Cuevas-Muñiz
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico
| | - R Sanchez-Fraga
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - I Mejia
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - J J Alcantar-Peña
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - I R Chavez-Urbiola
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico.
| |
Collapse
|
10
|
Efficient methanol electrooxidation on activated pencil graphite electrode modified with PtCu catalyst. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ren Z, Dong R, Liu Y. Free-standing hybrid material of Cu/Cu 2O/CuO modified by graphene with commercial Cu foil using for non-enzymatic glucose detection. NANOTECHNOLOGY 2022; 33:505702. [PMID: 36084452 DOI: 10.1088/1361-6528/ac90cd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Free-standing Cu/Cu2O/CuO modified by graphene was formed through two steps: Firstly, the commercial Cu foil was thermal annealed to form Cu/Cu2O/CuO; Secondly, the Cu/Cu2O/CuO was modified by graphene through electrochemical exfoliated method. The SEM, XRD, TEM and XPS have been used to characterize the morphology, the crystalline phase, and the surface composition of the hybrid electrode as-prepared. The effects of Cu and its oxides on graphene has been uncovered by the Raman results. The sensitivity of the glucose sensor in 0.1 M NaOH by using the as-prepared hybrid material reaches 3102μA·mM-1cm-2within a linear range of 0.002-2.88 mM, which is better than that of the Cu/graphene and the Cu/Cu2O/CuO prepared at the same conditions. The sensor also shows excellent anti-interference ability, good cycling stability and time stability. The advantage of the sensor is caused by the strengthened synergistic effects between the graphene and the Cu/Cu2O/CuO due to the alleviated detrimental effects of the metal on the property of the graphene through using oxides middle layer as well as the large active area that obtained. This work provides a new way to study the effects of graphene in improving the property of the metal oxide especially in using for glucose sensor.
Collapse
Affiliation(s)
- Zhaodi Ren
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Rui Dong
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yuanan Liu
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
12
|
Yin C, Liu T, Wu M, Liu H, Sun Q, Sun X, Niu N, Chen L. Smartphone-integrated dual-emission fluorescence sensing platform based on carbon dots and aluminum ions-triggered aggregation-induced emission of copper nanoclusters for on-site visual detecting sulfur ions. Anal Chim Acta 2022; 1232:340460. [DOI: 10.1016/j.aca.2022.340460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/01/2022]
|
13
|
Preparation of three dimensional Cu2O/Au/GO hybrid electrodes and its application as a non-enzymatic glucose sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Evaluation of the Structural Deviation of Cu/Cu2O Nanocomposite Using the X-ray Diffraction Analysis Methods. CRYSTALS 2022. [DOI: 10.3390/cryst12040566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We successfully synthesized Cu/Cu2O nanocomposites using the wet chemical synthesis method. All X-ray diffraction (XRD), Reference Intensity Ratio (RIR), and Rietveld refinement methods confirmed that the compounds Cu and Cu2O are free of impurities. Scanning Electron Microscope (SEM) and Transmission electron microscopy (TEM) images show the morphology and interactions of Cu and Cu2O in the structure. The formation mechanism is also explained by five stages: precursor, nucleation, growth, aging, and reduction. The changes in crystallization parameters under variations in reaction temperature (Tv) and stirring speed (Sv) were confirmed by agreement with the XRD database. The lattice constant in the crystal of nanocomposite increases with rising temperature in the reaction, leading to unit cell expansion, while increasing the stirring—rate leads to a random size distribution of the lattice parameter. Due to the imperfect growth of the crystal, the induced crystallite size was calculated using the Williamson-Hall model, and the precise lattice parameter values were calculated using the Nelson-Riley function.
Collapse
|
15
|
Białas K, Moschou D, Marken F, Estrela P. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Mikrochim Acta 2022; 189:172. [PMID: 35364739 PMCID: PMC8975783 DOI: 10.1007/s00604-022-05252-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/26/2022] [Indexed: 01/06/2023]
Abstract
Biosensors have attracted a great deal of attention, as they allow for the translation of the standard laboratory-based methods into small, portable devices. The field of biosensors has been growing, introducing innovations into their design to improve their sensing characteristics and reduce sample volume and user intervention. Enzymes are commonly used for determination purposes providing a high selectivity and sensitivity; however, their poor shelf-life is a limiting factor. Researchers have been studying the possibility of substituting enzymes with other materials with an enzyme-like activity and improved long-term stability and suitability for point-of-care biosensors. Extra attention is paid to metal and metal oxide nanoparticles, which are essential components of numerous enzyme-less catalytic sensors. The bottleneck of utilising metal-containing nanoparticles in sensing devices is achieving high selectivity and sensitivity. This review demonstrates similarities and differences between numerous metal nanoparticle-based sensors described in the literature to pinpoint the crucial factors determining their catalytic performance. Unlike other reviews, sensors are categorised by the type of metal to study their catalytic activity dependency on the environmental conditions. The results are based on studies on nanoparticle properties to narrow the gap between fundamental and applied research. The analysis shows that the catalytic activity of nanozymes is strongly dependent on their intrinsic properties (e.g. composition, size, shape) and external conditions (e.g. pH, type of electrolyte, and its chemical composition). Understanding the mechanisms behind the metal catalytic activity and how it can be improved helps designing a nanozyme-based sensor with the performance matching those of an enzyme-based device.
Collapse
Affiliation(s)
- Katarzyna Białas
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Despina Moschou
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Frank Marken
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK. .,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
16
|
Nanoporous Cauliflower-like Pd-Loaded Functionalized Carbon Nanotubes as an Enzyme-Free Electrocatalyst for Glucose Sensing at Neutral pH: Mechanism Study. SENSORS 2022; 22:s22072706. [PMID: 35408320 PMCID: PMC9002983 DOI: 10.3390/s22072706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023]
Abstract
In this work, we propose a novel functionalized carbon nanotube (f-CNT) supporting nanoporous cauliflower-like Pd nanostructures (PdNS) as an enzyme-free interface for glucose electrooxidation reaction (GOR) in a neutral medium (pH 7.4). The novelty resides in preparing the PdNS/f-CNT biomimetic nanocatalyst using a cost-effective and straightforward method, which consists of drop-casting well-dispersed f-CNTs over the Screen-printed carbon electrode (SPCE) surface, followed by the electrodeposition of PdNS. Several parameters affecting the morphology, structure, and catalytic properties toward the GOR of the PdNS catalyst, such as the PdCl2 precursor concentration and electrodeposition conditions, were investigated during this work. The electrochemical behavior of the PdNS/f-CNT/SPCE toward GOR was investigated through Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), and amperometry. There was also a good correlation between the morphology, structure, and electrocatalytic activity of the PdNS electrocatalyst. Furthermore, the LSV response and potential-pH diagram for the palladium–water system have enabled the proposal for a mechanism of this GOR. The proposed mechanism would be beneficial, as the basis, to achieve the highest catalytic activity by selecting the suitable potential range. Under the optimal conditions, the PdNS/f-CNT/SPCE-based biomimetic sensor presented a wide linear range (1–41 mM) with a sensitivity of 9.3 µA cm−2 mM−1 and a detection limit of 95 µM (S/N = 3) toward glucose at a detection potential of +300 mV vs. a saturated calomel electrode. Furthermore, because of the fascinating features such as fast response, low cost, reusability, and poison-free characteristics, the as-proposed electrocatalyst could be of great interest in both detection systems (glucose sensors) and direct glucose fuel cells.
Collapse
|
17
|
Liu W, Zhao X, Dai Y, Qi Y. Study on the oriented self-assembly of cuprous oxide micro-nano cubes and its application as a non-enzymatic glucose sensor. Colloids Surf B Biointerfaces 2022; 211:112317. [PMID: 35038655 DOI: 10.1016/j.colsurfb.2021.112317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
Herein, cuprous oxide (Cu2O) micro-nano cubes were successfully synthesized via a seed-medium process. It is worth noting that the microcubes were formed by oriented self-assembly of 2 × 2 × 2 nanocubes. The oriented self-assembly process can be effective controlled by simply adjusting the concentration of reactants. What's more, the obtained samples were applied for non-enzymatic glucose detection and exhibited excellent performance. The Cu2O nanocubes obtained at the highest concentration exhibited the highest sensitivity (2864 μAmM-1cm-2), while the Cu2O microcubes obtained at the lowest concentration shared the widest linear range (up to 10.65 mM) and lowest limit of detection (LOD, 0.87 μΜ). The acceptable anti-interference ability, excellent stability together with the practical application ability make our obtained electrodes a new strategy for monitoring glucose in biological and food samples.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xingming Zhao
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yuxiang Dai
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Yang Qi
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.
| |
Collapse
|
18
|
Zhan T, Feng XZ, An QQ, Li S, Xue M, Chen Z, Han GC, Kraatz HB. Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC Adv 2022; 12:5072-5079. [PMID: 35425584 PMCID: PMC8981370 DOI: 10.1039/d1ra09213h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
Gold electrodes (GE) were modified by the deposition of copper nanoparticles (CuNPs) and cobalt nanoparticles (CoNPs), followed by drop-casting of the ferrocene derivative FcCO-Glu-Cys-Gly-OH (Fc-ECG), resulting in two enzyme-free electrochemical sensors Fc-ECG/CuNPs/GE and Fc-ECG/CuNPs/GE. The ferrocene-peptide conjugate acts as an effective redox mediator for glucose oxidation, while metal nanoparticles acted as non-biological sites for glucose oxidation. Field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out for characterization, while differential pulse voltammetry (DPV) was used for glucose quantification. Under optimized conditions, DPV shows a linear relationship between glucose concentration and the peak current. Both sensors showed a surprisingly high sensitivity of 217.27 and 378.70 μA mM-1 cm-2, respectively. A comparison to other glucose sensors shows a sensitivity that is 25 times higher. The sensors exhibit good reproducibility, stability, and repeatability. In injection experiments, recovery rates were 87.39-107.65% and 100.00-106.88%, respectively.
Collapse
Affiliation(s)
- Tao Zhan
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 P. R. China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Qi-Qi An
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Shiyong Li
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Mingyue Xue
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Zhencheng Chen
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 P. R. China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough Toronto Ontario M1C 1A4 Canada
| |
Collapse
|
19
|
A highly sensitive non-enzymatic glucose sensor based on CuNi nanoalloys through one-step electrodeposition strategy. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
P AK, Suneesh PV, G Nair BK, T G SB. Complete fabrication of a nonenzymatic glucose sensor with a wide linear range for the direct testing of blood samples. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
The dependence of Cu 2O morphology on different surfactants and its application for non-enzymatic glucose detection. Colloids Surf B Biointerfaces 2021; 208:112087. [PMID: 34500204 DOI: 10.1016/j.colsurfb.2021.112087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Herein, the Cu2O yolk-shell nanospheres, nanocubes and microcubes were successfully prepared by a simple seed-medium process. The formation of the Cu2O yolk-shell nanospheres can be attributed to the self-assembly process caused by the introduction of the seed medium. The formation mechanism of our obtained Cu2O yolk-shell nanospheres and the dependence of Cu2O morphology on different surfactants have been studied. The obtained samples were applied in the field of non-enzymatic glucose detection. The electrochemical response characteristics of the modified electrodes toward glucose were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrode modified with C-Cu2O (obtained by using CTAB as surfactant) shared the highest sensitivity of 3123 μAmM-1 cm-2, whereas, the electrode modified with S-Cu2O (obtained by using SDBS as surfactant) exhibited the lowest LOD of 0.87 μM and the widest linear range of 0.05-10.65 mM. All obtained sensors showed fast response to the addition of glucose. The obtained electrodes showed better responses to glucose than other coexisting interferences, indicating that the obtained electrodes had the acceptable selectivity to glucose. In addition, the stability for 5 consecutive weeks had also been studied and exhibited satisfactory results. The obtained electrode was also used to detect the glucose content in real serum. The acceptable selectivity, stability together with the excellent sensing ability in real serum make the obtained electrodes a potential for practical applications.
Collapse
|
22
|
Shen M, Li W, Chen L, Chen Y, Ren S, Han D. NiCo-LDH nanoflake arrays-supported Au nanoparticles on copper foam as a highly sensitive electrochemical non-enzymatic glucose sensor. Anal Chim Acta 2021; 1177:338787. [PMID: 34482893 DOI: 10.1016/j.aca.2021.338787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
The detection of glucose in human blood is of great importance in the diagnosis and prevention of diabetes. In this work, we fabricated a novel electrochemical non-enzymatic glucose sensor, NiCo-LDH nanoflake arrays-supported Au nanoparticles on copper foam (NiCo-LDH@ Au/Cu) by galvanic replacement and electrodeposition methods. Owing to the synergistic effect of three-dimensional (3D) architecture of Cu foam, high electrocatalytic activity of Au nanoparticles and NiCo-LDH nanoflake arrays, the NiCo-LDH@Au/Cu electrode exhibits excellent electrocatalytic ability for glucose oxidation in NaOH solution. Under optimized conditions, the NiCo-LDH@Au/Cu electrode shows excellent activity with a linear range from 0.5 to 3000 μM at the potential of 0.50 V (vs. Ag/AgCl), a low detection limit of 0.23 μM (S/N = 3), an ultra-prompt response time of 0.5 s, and a high sensitivity of 23100 μA mM-1 cm-2, as well as good selectivity and stability. Furthermore, the as-fabricated non-enzymatic glucose sensor was successfully applied to the glucose detection in human serum as a promising candidate in the development of electrochemical non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- Mao Shen
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Wei Li
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Lei Chen
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Yuxiang Chen
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Shibin Ren
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China.
| | - Deman Han
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
23
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Phan LMT, Vo TAT, Hoang TX, Selvam SP, Pham HL, Kim JY, Cho S. Trending Technology of Glucose Monitoring during COVID-19 Pandemic: Challenges in Personalized Healthcare. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100020. [PMID: 34179343 PMCID: PMC8212092 DOI: 10.1002/admt.202100020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Indexed: 05/11/2023]
Abstract
The COVID-19 pandemic has continued to spread rapidly, and patients with diabetes are at risk of experiencing rapid progression and poor prognosis for appropriate treatment. Continuous glucose monitoring (CGM), which includes accurately tracking fluctuations in glucose levels without raising the risk of coronavirus exposure, becomes an important strategy for the self-management of diabetes during this pandemic, efficiently contributing to the diabetes care and the fight against COVID-19. Despite being less accurate than direct blood glucose monitoring, wearable noninvasive systems can encourage patient adherence by guaranteeing reliable results through high correlation between blood glucose levels and glucose concentrations in various other biofluids. This review highlights the trending technologies of glucose sensors during the ongoing COVID-19 pandemic (2019-2020) that have been developed to make a significant contribution to effective management of diabetes and prevention of coronavirus spread, from off-body systems to wearable on-body CGM devices, including nanostructure and sensor performance in various biofluids. The advantages and disadvantages of various human biofluids for use in glucose sensors are also discussed. Furthermore, the challenges faced by wearable CGM sensors with respect to personalized healthcare during and after the pandemic are deliberated to emphasize the potential future directions of CGM devices for diabetes management.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- School of Medicine and PharmacyThe University of DanangDanang550000Vietnam
| | - Thuy Anh Thu Vo
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Thi Xoan Hoang
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sathish Panneer Selvam
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Hoang Lan Pham
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Jae Young Kim
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sungbo Cho
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- Department of Health Sciences and TechnologyGAIHSTGachon UniversityIncheon21999Republic of Korea
| |
Collapse
|
25
|
Welles TS, Ahn J. Investigation of the effects of electrochemical reactions on complex metal tribocorrosion within the human body. Heliyon 2021; 7:e07023. [PMID: 34041392 PMCID: PMC8144002 DOI: 10.1016/j.heliyon.2021.e07023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
Although total hip arthroplasty (THA) is considered to be the most successful orthopedic operation in restoring mobility and relieving pain, common Metal-on-Metal (MoM) implants developed in the past decade suffer from severe inflammatory reactions of the surrounding tissue caused by the premature corrosion and degradation of the implant. A substantial amount of research has been dedicated to the investigation of mechanically driven fretting and crevice corrosion as the primary mechanism of implant failure. However, the exact mechanism by which hip implant breakdown occurs remains unknown, as current in vitro fretting and crevice corrosion studies have failed to completely replicate the corrosion characteristics of recovered implants. Here, we show that minor electric potential oscillations on a model hip implant replicate the corrosion of failed implants without the introduction of mechanical wear. We found in a controlled lab setting that small electrical oscillations, of similar frequency and magnitude as those resulting from ambient electromagnetic waves interacting with the metal of the implant, can force electrochemical reactions within a simulated synovial fluid environment that have not been previously predicted. In lab testing we have shown the replication of titanium, phosphorous, and oxygen deposition onto the surface of ASTM astm:F75 CoCrMo metal alloy test specimens, matching the chemical composition of previously retrieved wear particles from failed patient prosthetics. Our results demonstrate that the electrical activity and ensuing electrochemical activity excites two corrosion failure modes: direct dissolution of the medically implantable alloy, leaching metal ions into the body, and surface deposition growth, forming the precursor of secondary wear particles. We anticipate our findings to be the foundation for the future development and testing of electrochemically resistant implantable material.
Collapse
Affiliation(s)
- Thomas S. Welles
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244-1240, USA
| | - Jeongmin Ahn
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244-1240, USA
| |
Collapse
|
26
|
Chowdhury SR, Mukherjee P, Bhattacharya SK. A Highly Sensitive Nonenzymatic Glucose Sensor Based on Carbon Electrode Amplified with Pd
x
Cu
y
Catalyst. ELECTROANAL 2021. [DOI: 10.1002/elan.202060268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sreya Roy Chowdhury
- Physical Chemistry Section Department of Chemistry Jadavpur University Kolkata 700032 India
| | | | | |
Collapse
|
27
|
Zhu T, Wang X, Chang W, Zhang Y, Maruyama T, Luo L, Zhao X. Green fabrication of Cu/rGO decorated SWCNT buckypaper as a flexible electrode for glucose detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111757. [PMID: 33545898 DOI: 10.1016/j.msec.2020.111757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/27/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
As a paper-like membrane composed of single-walled carbon nanotube (SWCNT), buckypaper possesses high conductivity, ideal flexibility, large surface area, great thermal/chemical stability and biocompatibility, which has manifested its potential as an alternative support material. However, due to the lack of defects, high quality SWCNT synthesized by arc-discharge method is difficult to be modified with metal nanoparticles for electro-catalysis. In this paper, a novel green strategy has been developed to fabricate SWCNT buckypaper decorated with Cu/reduced graphene oxide (Cu/rGO-BP) for the first time, in which graphene oxide functions as the intermediate between SWCNT and Cu nanoparticles. The fabricated Cu/rGO-BP was applied as a flexible electrode for electrochemical glucose detection. The electrode exhibited excellent electro-catalytic activity for glucose oxidation. The sensor based on Cu/rGO-BP performed a high upper limit of linear range (25 mM), which is close to commercial glucose sensors. The proposed strategy for Cu/rGO-BP fabrication can be extended to modify buckypaper with other metal or metal oxide nanoparticles, and thus opens an innovative route to potential practical applications of flexible buckypaper in wearable bioelectronics.
Collapse
Affiliation(s)
- Tianxiang Zhu
- Department of Physics, Shanghai University, Shanghai 200444, China; Institute of Low-dimensional Carbons and Device Physics, Shanghai University, Shanghai 200444, China
| | - Xiaoer Wang
- Department of Physics, Shanghai University, Shanghai 200444, China; Institute of Low-dimensional Carbons and Device Physics, Shanghai University, Shanghai 200444, China
| | - Weiwei Chang
- Department of Physics, Shanghai University, Shanghai 200444, China; Institute of Low-dimensional Carbons and Device Physics, Shanghai University, Shanghai 200444, China
| | - Yifan Zhang
- Department of Physics, Shanghai University, Shanghai 200444, China; Institute of Low-dimensional Carbons and Device Physics, Shanghai University, Shanghai 200444, China
| | - Takahiro Maruyama
- Department of Applied Chemistry, Meijo University, Nagoya 468-8502, Japan
| | - Liqiang Luo
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
| | - Xinluo Zhao
- Department of Physics, Shanghai University, Shanghai 200444, China; Institute of Low-dimensional Carbons and Device Physics, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
28
|
Shi Y, Li W, Feng X, Lin L, Nie P, Shi J, Zou X, He Y. Sensing of mercury ions in Porphyra by Copper @ Gold nanoclusters based ratiometric fluorescent aptasensor. Food Chem 2020; 344:128694. [PMID: 33277121 DOI: 10.1016/j.foodchem.2020.128694] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
A novel aptamer-modified Copper @ Gold nanoclusters (apt-Cu@Au NCs) based ratiometric fluorescent probe was developed for mercury ions (Hg2+) determination in Porphyra. The apt-Cu@Au NCs were well dispersed in solution without Hg2+ but combined together for the formation of thymidine-Hg-thymidine structure with the addition of Hg2+, which further caused the changes in their fluorescence intensities owing to fluorescence resonance energy transfer. Along with that, the changes in fluorescent colors are visible to the naked eye. Accordingly, Hg2+ were determined ranging from 0.1 to 9.0 μM by fluorescence analysis with the detection limit of 4.92 nM. Moreover, a homemade device utilizing smartphone and microfluidic chip was designed for colorimetric determination of Hg2+ ranging from 0.5 to 7.0 μM with good portability and usefulness. The proposed methods were used for Hg2+ detection in Porphyra with the recoveries of 101.83-114.00%, suggesting the considerable potential for evaluating Hg2+ levels in aquatic products.
Collapse
Affiliation(s)
- Yongqiang Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
29
|
Li W, Hu X, Li Q, Shi Y, Zhai X, Xu Y, Li Z, Huang X, Wang X, Shi J, Zou X, Kang S. Copper nanoclusters @ nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead (II) ions detection in porphyra. Food Chem 2020; 320:126623. [PMID: 32220707 DOI: 10.1016/j.foodchem.2020.126623] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 01/12/2023]
Abstract
A novel ratiometric fluorescence probe was proposed for detecting lead (II) ions (Pb2+) in porphyra, the approach was based on copper nanoclusters and nitrogen-doped carbon quantum dots (CuNCs-CNQDs). In this probe, the CuNCs delivered the response signal, the fluorescence of which was enhanced by Pb2+ due to the aggregation-induced emission enhancement (AIEE) between Pb2+ and CuNCs. The CNQDs provided the self-calibration signal, whose fluorescence remained almost unchanged in coexistence with Pb2+. According to the change of fluorescence intensity ratio between the fluorophores, CuNCs-CNQDs nanohybrid was used as ratiometric probes for the sensitive detection of Pb2+ in the range of 0.010-2.5 mg L-1, with a detection limit of 0.0031 mg L-1. Finally, the probe was successfully applied to detect Pb2+ in porphyra with relative standard deviations (RSDs) lower than 5%. This study provides a straightforward, stable, and sensitive approach for detecting Pb2+ in porphyra.
Collapse
Affiliation(s)
- Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Li
- Shandong Zhonghetiancheng Inspection Co., Ltd. Qingdao, Shandong 266100, China
| | - Yongqiang Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yiwei Xu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shifei Kang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
30
|
Hossain M, Slaughter G. PtNPs decorated chemically derived graphene and carbon nanotubes for sensitive and selective glucose biosensing. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113990] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Liu W, Chai G, Zhang J, Wang M, Dai Y, Yang Q. Preparation of Cu2O nanocubes with different sizes and rough surfaces by a seed-mediated self-assembly process and their application as a non-enzymatic glucose sensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj02763d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, ultrafine and uniform cuprous oxide (Cu2O) nanocubes with different sizes and rough surfaces were prepared via a seed-mediated process.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Guochun Chai
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Jian Zhang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Mingguang Wang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Yuxiang Dai
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Qi Yang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| |
Collapse
|