1
|
Huang H, Liu X, Wang J, Suo M, Zhang J, Sun T, Wang H, Liu C, Li Z. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials. J Mater Chem B 2024; 12:4533-4552. [PMID: 38477504 DOI: 10.1039/d3tb02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chengde Liu
- Department of Polymer Science & Materials, Dalian University of Technology, Dalian, People's Republic of China.
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| |
Collapse
|
2
|
Luo Y, Peng X, Cheng C, Deng Y, Lei N, Feng S, Yu X. 3D Molybdenum Disulfide Nanospheres Loaded with Metformin to Enhance SCPP Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:201-216. [PMID: 38127723 DOI: 10.1021/acsami.3c14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conventional strontium-doped calcium polyphosphate (SCPP) ceramics have attracted a lot of attention due to good cytocompatibility and controlled degradation. However, their poor mechanical strength, brittleness, and difficulty in eliminating unavoidable postoperative inflammation and bacterial infections in practical applications limit their further clinical application. In this study, carboxylated molybdenum disulfide nanospheres (MoS2-COOH) were first prepared via a one-step hydrothermal method. The optimal doping concentration of MoS2-COOH was then incorporated into SCPP to overcome its poor mechanical strength. To further enhance the anti-inflammatory properties of scaffolds, metformin (MET) was loaded onto MoS2-COOH through covalent bond cross-linking (MoS2-MET). Then MoS2-MET was doped into SCPP (SCPP/MoS2-MET) according to the previously obtained concentration, resulting in the controlled and sustained release of MET from the SCPP/MoS2-MET scaffolds for 21 days in vitro. The SCPP/MoS2-MET scaffolds were shown to have good biological activity in vitro to promote stem cell proliferation and the potential to promote mineralization in vitro. It also showed good osteoimmunomodulatory activity could reduce the expression of proinflammatory factors and effectively induce the differentiation of BMSCs under inflammatory conditions, upregulating the expression of relevant osteoblastic cytokines. In addition, SCPP/MoS2-MET scaffolds could effectively inhibit Staphylococcus aureus and Escherichia coli. In vivo experiments also demonstrated better osteogenic potential of SCPP/MoS2-MET scaffolds compared with the other scaffold-samples. Thus, the introduction of carboxylated molybdenum disulfide nanospheres is a promising approach to improve the properties of SCPP and may provide a new modification strategy for inert ceramic scaffolds and the construction of multifunctional composite scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Chan Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
3
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Ma T, Zhang J, Sun S, Meng W, Zhang Y, Wu J. Current treatment methods to improve the bioactivity and bonding strength of PEEK for dental application: A systematic review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
6
|
Chen J, Cao G, Li L, Cai Q, Dunne N, Li X. Modification of polyether ether ketone for the repairing of bone defects. Biomed Mater 2022; 17:042001. [PMID: 35395651 DOI: 10.1088/1748-605x/ac65cd] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022]
Abstract
Bone damage as a consequence of disease or trauma is a common global occurrence. For bone damage treatment-bone implant materials are necessary across three classifications of surgical intervention (i.e. fixation, repair, and replacement). Many types of bone implant materials have been developed to meet the requirements of bone repair. Among them, polyether ether ketone (PEEK) has been considered as one of the next generation of bone implant materials, owing to its advantages related to good biocompatibility, chemical stability, x-ray permeability, elastic modulus comparable to natural bone, as well as the ease of processing and modification. However, as PEEK is a naturally bioinert material, some modification is needed to improve its integration with adjacent bones after implantation. Therefore, it has become a very hot topic of biomaterials research and various strategies for the modification of PEEK including blending, 3D printing, coating, chemical modification and the introduction of bioactive and/or antibacterial substances have been proposed. In this systematic review, the recent advances in modification of PEEK and its application prospect as bone implants are summarized, and the remaining challenges are also discussed.
Collapse
Affiliation(s)
- Junfeng Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Qiang Cai
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
7
|
Panin SV, Alexenko VO, Buslovich DG. High Performance Polymer Composites: A Role of Transfer Films in Ensuring Tribological Properties-A Review. Polymers (Basel) 2022; 14:polym14050975. [PMID: 35267795 PMCID: PMC8912496 DOI: 10.3390/polym14050975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this review is to summarize data on the structure, mechanical and tribological properties, and wear patterns of composites based on high-performance polymers (HPPs) intended for use in friction units. The review includes three key sections, divided according to the tribological contact schemes regardless of the polymer matrix. In the second part, the analysis of composites is carried out in point contacts. The third section is devoted to the results of studies of HPP-based composites in linear ones. The fourth section summarizes information on flat contacts. Particular attention is paid to the formation of transfer films (TFs) in the contacts and their influence on the tribological patterns of the studied rubbing materials. As a conclusion, it is noted that the challenge of experimental methods for analyzing TFs, stated by K. Friedrich, is effectively solved in recent studies by the XPS method, which enables us to accurately determine their composition. Although this determination is completed after the tribological tests, it allows not only a more accurate interpretation of their results considering specific conditions and loading schemes, but also the ability to design HPP-based composites that form required TFs performing their preset functions.
Collapse
Affiliation(s)
- Sergey V. Panin
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia; (V.O.A.); (D.G.B.)
- Department of Materials Science, Engineering School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence:
| | - Vladislav O. Alexenko
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia; (V.O.A.); (D.G.B.)
| | - Dmitry G. Buslovich
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia; (V.O.A.); (D.G.B.)
| |
Collapse
|
8
|
Ma Z, Zhao X, Zhao J, Zhao Z, Wang Q, Zhang C. Biologically Modified Polyether Ether Ketone as Dental Implant Material. Front Bioeng Biotechnol 2020; 8:620537. [PMID: 33392178 PMCID: PMC7775513 DOI: 10.3389/fbioe.2020.620537] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Polyether ether ketone (PEEK) is a non-toxic polymer with elastic modulus close to human bone. Compared with metal implants, PEEK has advantages such as evasion of stress shielding effect, easy processing, and similar color as teeth, among others. Therefore, it is an excellent substitute material for titanium dental orthopedic implants. However, PEEK's biological inertia limits its use as an implant. To change PEEK's biological inertia and increase its binding ability with bone tissue as an implant, researchers have explored a number of modification methods to enhance PEEK's biological activities such as cellular compatibility, osteogenic activity, and antibacterial activity. This review summarizes current biological activity modification methods for PEEK, including surface modification and blending modification, and analyzes the advantages and disadvantages of each modification method. We believe that modified PEEK will be a promising dental and orthopedic implant material.
Collapse
Affiliation(s)
- Zhangyu Ma
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Xingyu Zhao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Stomatology, China-Japan Friendship Hospital, Beijing, China
| | - Zhilong Zhao
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Qihui Wang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Congxiao Zhang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|