1
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
2
|
Ferdous Anik MJ, Mim SR, Swapno SS, Munira S, Roy O, Billah MM. Vacancy induced enhanced photocatalytic activity of nitrogen doped CuO NPs synthesized by Co-precipitation method. Heliyon 2024; 10:e27613. [PMID: 38533010 PMCID: PMC10963243 DOI: 10.1016/j.heliyon.2024.e27613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The chemical co-precipitation method, an effective approach in the synthesis of nanomaterials, was used to synthesize CuO nanoparticles (NPs). Structural and morphological modification of undoped and nitrogen (N) doped CuO nanoparticles were studied thoroughly using X-ray diffraction (XRD), FT-IR and field emission scanning electron microscope (FE SEM). Doping effect on defects was investigated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL) spectroscopy. Thus, the effect of doping on crystallinity, crystallite size, strain induced in lattice, defects and electron-hole recombination rate were investigated. Optical band gap was calculated using Kubelka-Munk function from the diffuse reflectance spectra (DRS) obtained using ultraviolet visible (UV-Vis) spectroscopy. Finally, photocatalytic performance was studied from rhodamine B (Rh B) degradation and reaction kinetics were analyzed. Maximum degradation efficiency was obtained for 1.0 mol% N doped CuO NPs which also exhibited minimum band gap and lowest electron-hole recombination rate. For the optimum doping concentration, nitrogen was found to create oxygen vacancies while substituting oxygen in the lattice, and thus reduce electron-hole recombination rate and increase photocatalytic degradation rate effectively.
Collapse
Affiliation(s)
| | | | - Syed Sammo Swapno
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Sirajum Munira
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Oishy Roy
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Md Muktadir Billah
- Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| |
Collapse
|
3
|
Yadav VK, Choudhary N, Inwati GK, Rai A, Singh B, Solanki B, Paital B, Sahoo DK. Recent trends in the nanozeolites-based oxygen concentrators and their application in respiratory disorders. Front Med (Lausanne) 2023; 10:1147373. [PMID: 37181347 PMCID: PMC10174459 DOI: 10.3389/fmed.2023.1147373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Medical-grade oxygen is the basic need for all medical complications, especially in respiratory-based discomforts. There was a drastic increase in the demand for medical-grade oxygen during the current pandemic. The non-availability of medical-grade oxygen led to several complications, including death. The oxygen concentrator was only the last hope for the patient during COVID-19 pandemic around the globe. The demands also are everlasting during other microbial respiratory infections. The yield of oxygen using conventional molecular zeolites in the traditional oxygen concentrator process is less than the yield noticed when its nano-form is used. Nanotechnology has enlightened hope for the efficient production of oxygen by such oxygen concentrators. Here in the current review work, the authors have highlighted the basic structural features of oxygen concentrators along with the current working principle. Besides, it has been tried to bridge the gap between conventional oxygen concentrators and advanced ones by using nanotechnology. Nanoparticles being usually within 100 nm in size have a high surface area to volume ratio, which makes them suitable adsorbents for oxygen. Here authors have suggested the use of nano zeolite in place of molecular zeolites in the oxygen concentrator for efficient delivery of oxygen by the oxygen concentrators.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
- *Correspondence: Virendra Kumar Yadav,
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
- Department of Environment Sciences, School of Sciences, P P Savani University, Surat, Gujarat, India
| | | | - Ashita Rai
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Bijendra Singh
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Bharat Solanki
- Department of Biochemistry, M B Patel Science College, Anand, Gujarat, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
- Biswaranjan Paital,
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Dipak Kumar Sahoo, ;
| |
Collapse
|
4
|
Satpathy SK, Panigrahi UK, Biswal R, Mallick P. Tuning the Optical Properties of ZnO Nanorods Through Gd Doping. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2022. [DOI: 10.1007/s40010-022-00798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Functionalized Microbial Consortia with Silver-Doped Hydroxyapatite (Ag@HAp) Nanostructures for Removal of RO84 from Industrial Effluent. CRYSTALS 2022. [DOI: 10.3390/cryst12070970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Considering that freshwater is a necessity for human life, sewage treatment has been a serious concern for an increasing number of scientists and academics in recent years. To clean industrial effluents, innovative catalysts with good adsorption, chemical stability, and physicochemical properties have been constructed. Here, a prospective microbial consortium was extracted from the wastewater and used as a low-cost catalyst that was functionalized with silver and silver-doped hydroxyapatite (Ag@HAp) nanostructures made using a sonochemical approach. The structural, optical, and crystal phases of Ag and Ag-doped hydroxyapatite (Ag@HAp) nanostructures were studied using ultraviolet-visible (UV-Vis), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The degradation action of functionalized microbial consortia was examined against reactive orange 84 (RO84) organic discharge. Excellent efficiency for the removal of industrial effluents was found for the Ag NPs and Ag-doped hydroxyapatite (Ag@HAp) loaded with microbial consortia. A maximum of 95% of the decolorization properties of the RO84 dye were obtained in the case of microbial consortia with Ag and Ag@HAp, which was better than the consortia alone (80.32% for 5 ppm and 69.54% for 20 ppm). The consortia/Ag showed 93.34% for 5 ppm and 85.43% for 20 ppm, while was higher for consortia/Ag@HAp (95.34 and 88.43%). The use of these surface-modified nanocatalysts for wastewater treatment and waste effluents discharged from laboratories, the chemical industry, and other sources could be expanded.
Collapse
|
6
|
Modi S, Inwati GK, Gacem A, Saquib Abullais S, Prajapati R, Yadav VK, Syed R, Alqahtani MS, Yadav KK, Islam S, Ahn Y, Jeon BH. Nanostructured Antibiotics and Their Emerging Medicinal Applications: An Overview of Nanoantibiotics. Antibiotics (Basel) 2022; 11:708. [PMID: 35740115 PMCID: PMC9219893 DOI: 10.3390/antibiotics11060708] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial strains resistant to antimicrobial treatments, such as antibiotics, have emerged as serious clinical problems, necessitating the development of novel bactericidal materials. Nanostructures with particle sizes ranging from 1 to 100 nanometers have appeared recently as novel antibacterial agents, which are also known as "nanoantibiotics". Nanomaterials have been shown to exert greater antibacterial effects on Gram-positive and Gram-negative bacteria across several studies. Antibacterial nanofilms for medical implants and restorative matters to prevent bacterial harm and antibacterial vaccinations to control bacterial infections are examples of nanoparticle applications in the biomedical sectors. The development of unique nanostructures, such as nanocrystals and nanostructured materials, is an exciting step in alternative efforts to manage microorganisms because these materials provide disrupted antibacterial effects, including better biocompatibility, as opposed to minor molecular antimicrobial systems, which have short-term functions and are poisonous. Although the mechanism of action of nanoparticles (NPs) is unknown, scientific suggestions include the oxidative-reductive phenomenon, reactive ionic metals, and reactive oxygen species (ROS). Many synchronized gene transformations in the same bacterial cell are essential for antibacterial resistance to emerge; thus, bacterial cells find it difficult to build resistance to nanoparticles. Therefore, nanomaterials are considered as advanced solution tools for the fields of medical science and allied health science. The current review emphasizes the importance of nanoparticles and various nanosized materials as antimicrobial agents based on their size, nature, etc.
Collapse
Affiliation(s)
- Shreya Modi
- Department of Microbiology, Shri Sarvajanik Science College, Mehsana 384001, India; (S.M.); (R.P.)
| | - Gajendra Kumar Inwati
- Department of Chemistry, HVHP Institute of Post Graduate Studies and Research, Sarva Vishwavidyalaya, Kadi 382715, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia;
| | - Rajendra Prajapati
- Department of Microbiology, Shri Sarvajanik Science College, Mehsana 384001, India; (S.M.); (R.P.)
| | - Virendra Kumar Yadav
- Department of Microbiology-Biosciences, School of Liberal Arts & Sciences, Mody University, Laxmangarh, Sikar, Rajasthan 332311, India;
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.S.); (M.S.A.)
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.S.); (M.S.A.)
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal 462044, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Yongtae Ahn
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| |
Collapse
|
7
|
Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts. CRYSTALS 2022. [DOI: 10.3390/cryst12050589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Numerous specialists and academics have backed the improved physicochemical characteristics of metal substrate (Ag, Au) based composite nanoparticles for a number of applications, including pharmaceuticals, optoelectronics, and environmental impact. Insights of Ag and Au NPs-based nanomaterials will be discussed, as well as important production, physicochemical, and biotechnological characteristics. The plasmon capacities of Ag and Au NPs, along with their customisable form, scale, and surface modification could be described by specified geometries and constituent contents. It was revealed that interaction dynamics of Ag and Au implanted nanomaterials with dopants/defects ratios seem to be more effective in stimulating pathogens by interrupting biochemical reactions. As a result, we focus on defect science in Ag and Au-based nanoscale materials, taking into account surface morphology, ionic packing, and chemical phase assessment. This chapter will cover the important optical, geometrical, and physicochemical features of Ag and Au nanomaterials, and their pharmacological significance.
Collapse
|
8
|
2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous scholars in the scientific and management areas have been overly focused on contemporary breakthroughs in two-dimensional objects for multiple prospective applications. Photochemical and electrocatalytic functions of integrated circuits associated with multi-component tools have been enhanced by designing the macro- and microstructures of the building blocks. Therefore, the current research attempts to explore a larger spectrum of layered graphitic carbon nitrides (g-C3N4) and their derivatives as an efficient catalyst. By executing systematic manufacturing, optimization, and evaluation of its relevance towards astonishing energy storage devices, adsorption chemistry, and remediation, many researchers have focused on the coupling of such 2D carbon nitrides combined with suitable elementals. Hybrid carbon nitrides have been promoted as reliable 2D combinations for the enhanced electrophotocatalytic functionalities, proved by experimental observations and research outputs. By appreciating the modified structural, surface, and physicochemical characteristics of the carbon nitrides, we aim to report a systematic overview of the g-C3N4 materials for the application of energy storages and environments. It has altered energy band gap, thermal stability, remarkable dimensional texturing, and electrochemistry, and therefore detailed studies are highlighted by discussing the chemical architectures and atomic alternation of g-C3N4 (2D) structures.
Collapse
|
9
|
Modified 7-Chloro-11H-Indeno[1,2-b]Quinoxaline Heterocyclic System for Biological Activities. Catalysts 2022. [DOI: 10.3390/catal12020213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent advances in functionalized organic Spiro heterocyclic compounds composed of nitrogen bonded five- and six-membered rings have been made, establishing them as a synthetic target in organic-based biomedical applications. In this work, we report a synthesis of spirocyclic compounds under a one-pot reaction using 1,3-dipolar cycloaddition in a regio and diastereoselective manner. The higher atomic economy with higher yield (95%) and regio and stereoselectivity were achieved by a multi-component reaction of L-proline (1), Indenoquinoxaline (2), and the dipolarophile of malononitrile (3) solvents followed by reflux conditions. The reaction intermediate comprised azomethineylides derived from reactive primary amines, and the spiro derivatives were synthesized up to a ≈ 95% yield. The structural and characteristic chemical components of the as-prepared Spiro compounds were characterized by 1H-NMR, FTIR, and Mass spectroscopy. The functionalized spiro-pyrrolizidines were found to be effective for biological uses by considering their in vitro screening and antimicrobial impacts. Spiro constituents were found to be much more effective for Gram-positive bacteria due to the stronger lipophilic character of the molecules, and they resulted feasible membrane permeation in a biological system. Based on the planarity geometry of the Spiro pyrrolizidines, meta-substitution possesses steric hindrance and hence shows less effectiveness compared to para-substitution on the same nucleus, which shows a marginal steric effect. The biological studies showed that the derived spiro heterocyclic systems have an inhibitory effect of 50%.
Collapse
|
10
|
Sa΄aedi A, Akl AA, Hassanien AS. Effective role of Rb doping in controlling crystallization, crystal imperfections, microstructural, and morphological features of ZnO-NPs synthesized by Sol-Gel way. CrystEngComm 2022. [DOI: 10.1039/d2ce00483f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, RbxZn1-xO-NPs (x=0.0, 0.02, 0.04, 0.06 mol) using sol-gel technology. Synthesized samples have been characterized and studied utilizing X-ray...
Collapse
|
11
|
Rajendran S, Inwati GK, Yadav VK, Choudhary N, Solanki MB, Abdellattif MH, Yadav KK, Gupta N, Islam S, Jeon BH. Enriched Catalytic Activity of TiO 2 Nanoparticles Supported by Activated Carbon for Noxious Pollutant Elimination. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2808. [PMID: 34835573 PMCID: PMC8620053 DOI: 10.3390/nano11112808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
Cleaning wastewater has become one of the most serious issues for a number of scientists and researchers in recent years, as water is the most basic need for the daily life of humans. There has been a focus on the removal of noxious pollutants from wastewater effluents by using nanocatalysts owing to their unique physicochemical actions and stability. Herein we manufactured TiO2 nanoparticles supported by activated carbon (AC-TiO2) using a cost-effective sonochemical method. The band structures of the AC-TiO2 and TiO2 were modified from 3.2 to 3.1 eV, thus increasing the catalytic activity. The structural, optical and anatase crystal phase properties, with morphological confirmation, were studied by applying UV-DRS, PL, FESEM, XRD, along with HRTEM, respectively. The specific surface area, calculated by BET analysis, was found to be ~241 m2/gm and ~46 m2/gm for AC-TiO2 and TiO2. The degradation efficiency of the as-prepared nanocatalysts against the very toxic but rarely studied organic textile dye pollutant RO 84 was investigated and 97% efficiency were found for the AC-TiO2 as compared to pure TiO2, which is a highly appreciated finding in the catalytic dye degradation application domain. Such surface-modified nanocatalysts could be further implemented for the treatment of wastewaters/waste effluents released from chemical industries, laboratories and other sources.
Collapse
Affiliation(s)
- Suriyaprabha Rajendran
- School of Nanosciences, Central University of Gujarat, Gandhinagar 302030, Gujarat, India; (S.R.); (N.C.)
| | - Gajendra Kumar Inwati
- Department of Chemistry, D. P. Chaturvedi College, Rani Durgavati University, Seoni, Jabalpur 480661, Madhya Pradesh, India;
| | - Virendra Kumar Yadav
- Department of Microbiology, School of Sciences, P P Savani University, Kosamba 394125, Gujarat, India;
| | - Nisha Choudhary
- School of Nanosciences, Central University of Gujarat, Gandhinagar 302030, Gujarat, India; (S.R.); (N.C.)
| | - Mitesh B. Solanki
- Step-Up Jewels PVT. Ltd. Khatodara Gate, Surat 395002, Gujarat, India;
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, Madhya Pradesh, India;
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Saudi Arabia;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|