1
|
Meier N, Berten‐Schunk L, Roger Y, Hänsch R, Hoffmann A, Bunjes H, Dempwolf W, Menzel H. Characterization of Thin Polymer Layer Prepared from Liposomes and Polyelectrolytes for TGF-β 3 Release in Tissue Engineering. Macromol Biosci 2025; 25:e2400447. [PMID: 39803844 PMCID: PMC11995839 DOI: 10.1002/mabi.202400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Indexed: 04/15/2025]
Abstract
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors. Sustained release is desired for many in vivo applications. The layer-by-layer technique also allows for the addition of extra layers, which can serve as "barriers" to delay the release. Electrospun Polycaprolactone (PCL) fiber mats are modified with a Chitosan (CS) grafted with PCL sidechains (CS-g-PCL24) and coated with transforming growth factor beta 3 (TGF-β3) loaded Chitosan/tripolyphosphate nanoparticles as a drug delivery system. Additional layers including polystyrene sulfonate, alginate, carboxymethyl cellulose, and liposomes (phosphatidylcholine) are applied. Streaming potential and X-ray photoelectron spectroscopy (XPS) measurements indicated a strong interpenetration of the chitosan and polyanion layers, while liposomes formed separate layers, which are more promising for sustained release. All samples release TGF-β3 at different cumulative levels without altering release kinetics. Variations in layer structure, interpenetration, and stability depending on the chitosan used are observed, which ultimately has minimal impact on the release kinetics. Polyelectrolyte layers strongly interpenetrated the active layers and therefore do not act as effective diffusion barriers, while the liposome layer, though separated, lacked sufficient stability.
Collapse
Affiliation(s)
- Nils Meier
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Leonie Berten‐Schunk
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigMendelssohnstrasse 138106BraunschweigGermany
| | - Yvonne Roger
- Department of Orthopedic SurgeryHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
- Graded Implants and Regenerative StrategiesNiedersächsisches Zentrum für BiomedizintechnikImplantatforschung und Entwicklung (NIFE)Stadtfelddamm 3430625HannoverGermany
| | - Robert Hänsch
- Institute of Plant BiologyTU BraunschweigHumboldtstraße 138106BraunschweigGermany
| | - Andrea Hoffmann
- Department of Orthopedic SurgeryHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
- Graded Implants and Regenerative StrategiesNiedersächsisches Zentrum für BiomedizintechnikImplantatforschung und Entwicklung (NIFE)Stadtfelddamm 3430625HannoverGermany
| | - Heike Bunjes
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigMendelssohnstrasse 138106BraunschweigGermany
| | - Wibke Dempwolf
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Henning Menzel
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
2
|
De Mori A, Aydin N, Lostia G, Manca A, Blunn G, Roldo M. Influence of Cell Seeding Density and Material Stiffness on Chondrogenesis of Human Stem Cells Within Soft Hydrogels, Without the Use of Exogenous Growth Factors. Gels 2025; 11:213. [PMID: 40136918 PMCID: PMC11941925 DOI: 10.3390/gels11030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into chondrocytes provided with the appropriate environmental cues. In this study, we loaded human adipose-derived stem cells (hAdMSCs) into collagen/alginate hydrogels, which have been shown to induce chondrogenesis in ovine bone marrow stem cells without the use of any exogenous chondrogenic growth factors. We examined the influence of hydrogel stiffness (5.75 and 6.85 kPa) and cell seeding density (1, 2, 4, and 16 × 106 cells/mL) on the chondrogenic induction of hAdMSCs, without exogenous differentiation growth factors. Over time, the behaviour of the hAdMSCs in the scaffolds was investigated by analysing the amount of DNA; their morphology; their cell viability; the expression of chondrogenic genes (RT-qPCR); and the deposition of collagen I, collagen II, and aggrecan. The results showed that all scaffolds supported the acquisition of a rounded morphology and the formation of cell aggregates, which were larger with higher cell seeding densities. Furthermore, the cells were viable within the hydrogels throughout the experiment, indicating that high cell density did not have a detrimental effect on viability. All the conditions supported the upregulation of chondrogenic genes (SOX9, COL2A1, SOX5, and ACAN). By comparison, only the highest cell seeding density (16 × 106 cells/mL) promoted a superior extracellular matrix deposition composed of collagen II and aggrecan with limited production of collagen I. These molecules were deposited in the pericellular space. Furthermore, no histological difference was noted between the two stiffnesses.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (A.D.M.); (G.B.)
| | - Nadide Aydin
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (A.D.M.); (G.B.)
| | - Giada Lostia
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (A.D.M.); (G.B.)
| | - Alessia Manca
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (A.D.M.); (G.B.)
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Gordon Blunn
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (A.D.M.); (G.B.)
| | - Marta Roldo
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (A.D.M.); (G.B.)
| |
Collapse
|
3
|
Pitts J, Hänsch R, Roger Y, Hoffmann A, Menzel H. 3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering. Polymers (Basel) 2025; 17:383. [PMID: 39940585 PMCID: PMC11820431 DOI: 10.3390/polym17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Tissue engineering has emerged as a promising approach for improved regeneration of native tissue and could increase the quality of life of many patients. However, the treatment of injured tissue transitions is still in its early stages, relying primarily on a purely physical approach in medical surgery. A biodegradable implant with a modified surface that is capable of biological active protein delivery via a nanoparticulate release system could advance the field of musculoskeletal disorder treatments enormously. In this study, interconnected 3D macroporous scaffolds based on Polycaprolactone (PCL) were fabricated in a successive process of blending, annealing and leaching. Blending with varying parts of Polyethylene oxide (PEO), NaCl and (powdered) sucrose and altering processing conditions yielded scaffolds with a huge variety of morphologies. The resulting unmodified hydrophobic scaffolds were modified using two graft polymers (CS-g-PCLx) with x = 29 and 56 (x = PCL units per chitosan unit). Due to the chitosan backbone hydrophilicity was increased and a platform for a versatile nanoparticulate release system was introduced. The graft polymers were synthesized via ring opening polymerization (ROP) of ε-Caprolactone using hydroxy groups of the chitosan backbone as initiators (grafting from). The suspected impact on biocompatibility of the modification was investigated by in vitro cell testing. In addition, the CS-g-PCL modification opened up the possibility of Layer by Layer (LbL) coating with alginate (ALG) and TGF-β3-loaded chitosan tripolyphosphate (CS-TGF-β3-TPP) nanoparticles. The subsequent release study showed promising amounts of growth factor released regarding successful in vitro cell differentiation and therefore could have a possible therapeutic impact.
Collapse
Affiliation(s)
- Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
5
|
Bauer B, Emonts C, Pitts J, Buhl EM, Eschweiler J, Hänsch R, Betsch M, Gries T, Menzel H. Topographically and Chemically Enhanced Textile Polycaprolactone Scaffolds for Tendon and Ligament Tissue Engineering. Polymers (Basel) 2024; 16:488. [PMID: 38399866 PMCID: PMC10893359 DOI: 10.3390/polym16040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.
Collapse
Affiliation(s)
- Benedict Bauer
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Caroline Emonts
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| | - Eva Miriam Buhl
- Institute of Pathology, Electron Microscopy Facility, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Department of Trauma and Reconstructive Surgery, BG Hospital Bergmannstrost, Merseburgerstr. 165, 06112 Halle (Saale), Germany;
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstraße 1, 38106 Braunschweig, Germany
| | - Marcel Betsch
- Department of Orthopaedics and Trauma Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Thomas Gries
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Walewska A, Janucik A, Tynecka M, Moniuszko M, Eljaszewicz A. Mesenchymal stem cells under epigenetic control - the role of epigenetic machinery in fate decision and functional properties. Cell Death Dis 2023; 14:720. [PMID: 37932257 PMCID: PMC10628230 DOI: 10.1038/s41419-023-06239-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Mesenchymal stem cells (mesenchymal stromal cells, MSC) are multipotent stem cells that can differentiate into cells of at least three mesodermal lineages, namely adipocytes, osteoblasts, and chondrocytes, and have potent immunomodulatory properties. Epigenetic modifications are critical regulators of gene expression and cellular differentiation of mesenchymal stem cells (MSCs). Epigenetic machinery controls MSC differentiation through direct modifications to DNA and histones. Understanding the role of epigenetic machinery in MSC is crucial for the development of effective cell-based therapies for degenerative and inflammatory diseases. In this review, we summarize the current understanding of the role of epigenetic control of MSC differentiation and immunomodulatory properties.
Collapse
Affiliation(s)
- Alicja Walewska
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Adrian Janucik
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marlena Tynecka
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland.
- Tissue and Cell Bank, Medical University of Bialystok Clinical Hospital, ul. Waszyngtona 13, 15-069, Bialystok, Poland.
| |
Collapse
|
7
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
8
|
Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives. Bioact Mater 2023; 23:274-299. [DOI: 10.1016/j.bioactmat.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
|
9
|
Berten-Schunk L, Roger Y, Bunjes H, Hoffmann A. Release of TGF-β 3 from Surface-Modified PCL Fiber Mats Triggers a Dose-Dependent Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Pharmaceutics 2023; 15:pharmaceutics15041303. [PMID: 37111788 PMCID: PMC10146193 DOI: 10.3390/pharmaceutics15041303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The design of implants for tissue transitions remains a major scientific challenge. This is due to gradients in characteristics that need to be restored. The rotator cuff in the shoulder, with its direct osteo-tendinous junction (enthesis), is a prime example of such a transition. Our approach towards an optimized implant for entheses is based on electrospun fiber mats of poly(ε-caprolactone) (PCL) as biodegradable scaffold material, loaded with biologically active factors. Chitosan/tripolyphosphate (CS/TPP) nanoparticles were used to load transforming growth factor-β3 (TGF-β3) with increasing loading concentrations for the regeneration of the cartilage zone within direct entheses. Release experiments were performed, and the concentration of TGF-β3 in the release medium was determined by ELISA. Chondrogenic differentiation of human mesenchymal stromal cells (MSCs) was analyzed in the presence of released TGF-β3. The amount of released TGF-β3 increased with the use of higher loading concentrations. This correlated with larger cell pellets and an increase in chondrogenic marker genes (SOX9, COL2A1, COMP). These data were further supported by an increase in the glycosaminoglycan (GAG)-to-DNA ratio of the cell pellets. The results demonstrate an increase in the total release of TGF-β3 by loading higher concentrations to the implant, which led to the desired biological effect.
Collapse
Affiliation(s)
- Leonie Berten-Schunk
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), 38106 Braunschweig, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| |
Collapse
|
10
|
Wu A, Pathak JL, Li X, Cao W, Zhong W, Zhu M, Wu Q, Chen W, Han Q, Jiang S, Hei Y, Zhang Z, Wu G, Zhang Q. Human Salivary Histatin-1 Attenuates Osteoarthritis through Promoting M1/M2 Macrophage Transition. Pharmaceutics 2023; 15:pharmaceutics15041272. [PMID: 37111757 PMCID: PMC10147060 DOI: 10.3390/pharmaceutics15041272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoarthritis (OA) is an inflammation-driven degenerative joint disease. Human salivary peptide histatin-1 (Hst1) shows pro-healing and immunomodulatory properties. but its role in OA treatment is not fully understood. In this study, we investigated the efficacy of Hst1 in the inflammation modulation-mediated attenuation of bone and cartilage damage in OA. Hst1 was intra-articularly injected into a rat knee joint in a monosodium iodoacetate (MIA)-induced OA model. Micro-CT, histological, and immunohistochemical analyses showed that Hst1 significantly attenuates cartilage and bone deconstruction as well as macrophage infiltration. In the lipopolysaccharide-induced air pouch model, Hst1 significantly reduced inflammatory cell infiltration and inflammation. Enzyme-linked immunosorbent assay (ELISA), RT-qPCR, Western blot, immunofluorescence staining, flow cytometry (FCM), metabolic energy analysis, and high-throughput gene sequencing showed that Hst1 significantly triggers M1-to-M2 macrophage phenotype switching, during which it significantly downregulated nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathways. Furthermore, cell migration assay, Alcian blue, Safranin O staining, RT-qPCR, Western blot, and FCM showed that Hst1 not only attenuates M1-macrophage-CM-induced apoptosis and matrix metalloproteinase expression in chondrogenic cells, but it also restores their metabolic activity, migration, and chondrogenic differentiation. These findings show the promising potential of Hst1 in treating OA.
Collapse
Affiliation(s)
- Antong Wu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Janak Lal Pathak
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xingyang Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qiuyu Wu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wanyi Chen
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qiao Han
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Siqing Jiang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuzhuo Hei
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Ziyi Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), 1081 LA Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
11
|
S/O/W microparticles prepared with hydroxyethyl starch-based emulsifier showed reduced macrophage affinity. Colloids Surf B Biointerfaces 2022; 220:112917. [DOI: 10.1016/j.colsurfb.2022.112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
12
|
Ileiwat ZE, Tabish TA, Zinovkin DA, Yuzugulen J, Arghiani N, Pranjol MZI. The mechanistic immunosuppressive role of the tumour vasculature and potential nanoparticle-mediated therapeutic strategies. Front Immunol 2022; 13:976677. [PMID: 36045675 PMCID: PMC9423123 DOI: 10.3389/fimmu.2022.976677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
The tumour vasculature is well-established to display irregular structure and hierarchy that is conducive to promoting tumour growth and metastasis while maintaining immunosuppression. As tumours grow, their metabolic rate increases while their distance from blood vessels furthers, generating a hypoxic and acidic tumour microenvironment. Consequently, cancer cells upregulate the expression of pro-angiogenic factors which propagate aberrant blood vessel formation. This generates atypical vascular features that reduce chemotherapy, radiotherapy, and immunotherapy efficacy. Therefore, the development of therapies aiming to restore the vasculature to a functional state remains a necessary research target. Many anti-angiogenic therapies aim to target this such as bevacizumab or sunitinib but have shown variable efficacy in solid tumours due to intrinsic or acquired resistance. Therefore, novel therapeutic strategies such as combination therapies and nanotechnology-mediated therapies may provide alternatives to overcoming the barriers generated by the tumour vasculature. This review summarises the mechanisms that induce abnormal tumour angiogenesis and how the vasculature’s features elicit immunosuppression. Furthermore, the review explores examples of treatment regiments that target the tumour vasculature.
Collapse
Affiliation(s)
- Zakaria Elias Ileiwat
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| | - Md Zahidul I. Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| |
Collapse
|
13
|
Zhu L, Yang Y, Yan Z, Zeng J, Weng F, Shi Y, Shen P, Liu L, Yang H. Controlled Release of TGF-β3 for Effective Local Endogenous Repair in IDD Using Rat Model. Int J Nanomedicine 2022; 17:2079-2096. [PMID: 35592099 PMCID: PMC9113136 DOI: 10.2147/ijn.s358396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Lifan Zhu
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Lifan Zhu, Department of Orthopedics, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou, 215200, People’s Republic of China, Email
| | - Yanjun Yang
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Zhanjun Yan
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Jincai Zeng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Fengbiao Weng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Yuhui Shi
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Pengcheng Shen
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Correspondence: Huilin Yang, Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People’s Republic of China, Email
| |
Collapse
|
14
|
Tsiapalis D, Kearns S, Kelly JL, Zeugolis DI. Growth factor and macromolecular crowding supplementation in human tenocyte culture. BIOMATERIALS AND BIOSYSTEMS 2021; 1:100009. [PMID: 36825160 PMCID: PMC9934496 DOI: 10.1016/j.bbiosy.2021.100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/18/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023] Open
Abstract
Cell-assembled tissue engineering strategies hold great potential in regenerative medicine, as three-dimensional tissue-like modules can be produced, even from a patient's own cells. However, the development of such implantable devices requires prolonged in vitro culture time, which is associated with cell phenotypic drift. Considering that the cells in vivo are subjected to numerous stimuli, multifactorial approaches are continuously gaining pace towards controlling cell fate during in vitro expansion. Herein, we assessed the synergistic effect of simultaneous and serial growth factor supplementation (insulin growth factor-1, platelet-derived growth factor ββ, growth differentiation factor 5 and transforming growth factor β3) to macromolecular crowding (carrageenan) in human tenocyte function; collagen synthesis and deposition; and gene expression. TGFβ3 supplementation (without/with carrageenan) induced the highest (among all groups) DNA content. In all cases, tenocyte proliferation was significantly increased as a function of time in culture, whilst metabolic activity was not affected. Carrageenan supplementation induced significantly higher collagen deposition than groups without carrageenan (without/with any growth factor). Of all the growth factors used, TGFβ3 induced the highest collagen deposition when used together with carrageenan in both simultaneous and serial fashion. At day 13, gene expression analysis revealed that TGFβ3 in serial supplementation to carrageenan upregulated the most and downregulated the least collagen- and tendon- related genes and upregulated the least and downregulated the most osteo-, chondro-, fibrosis- and adipose- related trans-differentiation genes. Collectively, these data clearly advocate the beneficial effects of multifactorial approaches (in this case, growth factor and macromolecular crowding supplementation) in the development of functional cell-assembled tissue surrogates.
Collapse
Affiliation(s)
- Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Corresponding authors.
| |
Collapse
|