1
|
Lavogina D, Kask K, Kopanchuk S, Visser N, Laws M, Flaws JA, Kallak TK, Olovsson M, Damdimopoulou P, Salumets A. Phthalate monoesters affect membrane fluidity and cell-cell contacts in endometrial stromal adherent cell lines and spheroids. Reprod Toxicol 2024; 130:108733. [PMID: 39396682 DOI: 10.1016/j.reprotox.2024.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Phthalate monoesters have been identified as endocrine disruptors in a variety of models, yet understanding of their exact mechanisms of action and molecular targets in cells remains incomplete. Here, we set to determine whether epidemiologically relevant mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) can affect biological processes by altering cell plasma membrane fluidity or formation of cell-cell contacts. As a model system, we chose endometrial stromal cell lines, one of which was previously used in a transcriptomic study with MEHHP or MEHHP-containing mixtures. A short-term exposure (1 h) of membrane preparations to endocrine disruptors was sufficient to induce changes in membrane fluidity/rigidity, whereas different mixtures showed different effects at various depths of the bilayer. A longer exposure (96 h) affected the ability of cells to form spheroids and highlighted issues with membrane integrity in loosely assembled spheroids. Finally, in spheroids assembled from T-HESC cells, MEHHP interfered with the formation of cell-cell contacts as indicated by the immunostaining of zonula occludens 1 protein. Overall, this study emphasized the need to consider plasma membrane, membrane-bound organelles, and secretory vesicles as possible biological targets of endocrine disruptors and offered an explanation for a multitude of endocrine disruptor roles documented earlier.
Collapse
Affiliation(s)
- Darja Lavogina
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia.
| | - Keiu Kask
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sergei Kopanchuk
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Pereira D, Santamaria A, Pawar N, Carrascosa-Tejedor J, Sardo M, Mafra L, Guzmán E, Owen DJ, Zaccai NR, Maestro A, Marín-Montesinos I. Engineering phosphatidylinositol-4,5-bisphosphate model membranes enriched in endocytic cargo: A neutron reflectometry, AFM and QCM-D structural study. Colloids Surf B Biointerfaces 2023; 227:113341. [PMID: 37210796 DOI: 10.1016/j.colsurfb.2023.113341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The combination of in vitro models of biological membranes based on solid-supported lipid bilayers (SLBs) and of surface sensitive techniques, such as neutron reflectometry (NR), atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D), is well suited to provide quantitative information about molecular level interactions and lipid spatial distributions. In this work, cellular plasma membranes have been mimicked by designing complex SLB, containing phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) lipids as well as incorporating synthetic lipo-peptides that simulate the cytoplasmic tails of transmembrane proteins. The QCM-D results revealed that the adsorption and fusion kinetics of PtdIns4,5P2 are highly dependent of Mg2+. Additionally, it was shown that increasing concentrations of PtdIns4,5P2 leads to the formation of SLBs with higher homogeneity. The presence of PtdIns4,5P2 clusters was visualized by AFM. NR provided important insights about the structural organization of the various components within the SLB, highlighting that the leaflet symmetry of these SLBs is broken by the presence of CD4-derived cargo peptides. Finally, we foresee our study to be a starting point for more sophisticated in vitro models of biological membranes with the incorporation of inositol phospholipids and synthetic endocytic motifs.
Collapse
Affiliation(s)
- Daniel Pereira
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; Large Scale Structures Group, Institut Laue-Langevin, 38042 Cedex 9, Grenoble, France
| | - Andreas Santamaria
- Large Scale Structures Group, Institut Laue-Langevin, 38042 Cedex 9, Grenoble, France; Departamento de Química Física, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Nisha Pawar
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Javier Carrascosa-Tejedor
- Large Scale Structures Group, Institut Laue-Langevin, 38042 Cedex 9, Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, M13 9PT Manchester, UK
| | - Mariana Sardo
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, CB22 7QQ Cambridge, UK
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, CB22 7QQ Cambridge, UK
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| | | |
Collapse
|
3
|
Andreyeva AY, Lobko VV, Gostyukhina OL, Tkachuk AA, Murashova AI, Malakhova LV, Kladchenko ES. Accumulation, functional and antioxidant responses to acute exposure to Di(2-ethylhexyl)phthalate (DEHP) in Mytilus galloprovincialis. MARINE POLLUTION BULLETIN 2023; 191:114923. [PMID: 37058832 DOI: 10.1016/j.marpolbul.2023.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Mussels were exposed to di-(2-ethylhexyl) phthalate (DEHP) (0.4 mg L-1 and 4.0 mg L-1) for 24 h and 48 h and its effect on hemocyte cellular composition and spontaneous reactive oxygen production (ROS) levels in hemocytes were evaluated. Exposure to DEHP induced a loss in spontaneous ROS production levels in hemocytes and decreased agranulocyte number in hemolymph. DEHP was found to accumulate in hepatopancreas of mussels and this process was associated with an increase of catalase (CAT) activity after 24 h incubation. At the end of the experimental period (48 h) CAT activity recovered up to control levels. Superoxide dismutase (SOD) activity in hepatopancreas increased following 48 h exposure to DEHP. The results indicated that DEHP could affect hemocyte immune properties, and also cause non-specific general stress-response of the antioxidant complex, which, in turn, was not associated with pronounced oxidative stress.
Collapse
Affiliation(s)
- A Yu Andreyeva
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - V V Lobko
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia; Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - O L Gostyukhina
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - A A Tkachuk
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - A I Murashova
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia; Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - L V Malakhova
- Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - E S Kladchenko
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia.
| |
Collapse
|
4
|
Park J, Lee H, Park K. Gastrointestinal tract and skin permeability of chemicals in consumer products using parallel artificial membrane permeability assay (PAMPA). Environ Anal Health Toxicol 2021; 36:e2021021-0. [PMID: 34583463 PMCID: PMC8598401 DOI: 10.5620/eaht.2021021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Some chemicals commonly used in personal care products, household items, food vessels, cosmetics, and other consumer products are potentially harmful, and several reviews of epidemiological studies have suggested the associations between the chemical exposure from consumer products, and respiratory diseases, skin sensitization, and reproductive problems. Therefore, risk assessment is essential for management of consumer products safety. Necessarily, the estimation of human exposure is an essential step in risk assessment, and the absorption rate of those chemicals via the gastrointestinal tract, respiratory tract, and skin are very critical in determining the internal dose of the exposed chemicals. In this study, parallel artificial membrane permeability assays (PAMPA) for the gastrointestinal tract and skin were performed to evaluate the permeability of parabens (4-hydroxybenzoic acid, methyl-, propyl-, and butyl paraben), bisphenols (bisphenol A, bisphenol F, and bisphenol S), isothiazolinones (methyl-, chloromethyl-, benz-, octyl-, and dichlorooctyl isothiazolinone), and phthalates [diethyl-, dibutyl-, Di-isononyl-, and bis(2-ethylhexyl) phthalate]. Lipid solubility of test chemicals indicated by log P values was shown as the most critical factor and showed a positive association with the permeability of parabens, bisphenols, and isothiazolinones in PAMPA assay. However, phthalate showed a reverse-association between lipophilicity and permeability. The permeability of all the tested chemicals was higher in the gastrointestinal tract membrane than in the skin membrane. The pH in donor solution did not show significant effects on the permeability in all the chemicals, except the chemicals with a free hydrophilic moiety in their chemical structures.
Collapse
Affiliation(s)
- Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| |
Collapse
|
5
|
Bailey-Hytholt CM, Sayeed S, Shukla A, Tripathi A. Enrichment of Placental Trophoblast Cells from Clinical Cervical Samples Using Differences in Surface Adhesion on an Inclined Plane. Ann Biomed Eng 2021; 49:2214-2227. [PMID: 33686620 DOI: 10.1007/s10439-021-02742-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Placental trophoblast cells present in cervical samples have great potential towards non-invasive prenatal testing. However, cervical samples are highly heterogeneous, largely comprised of maternal cervical cells with only a small quantity of trophoblast cells. In order to use these rare cells for diagnostic applications, there is a need to enrich and isolate them from the heterogeneous maternal sample. Our goal was to investigate the use of gravitational flow on an inclined surface and optimize parameters including angle of incline, surface material, incubation time on the surface, solution volume, and device channel width in order to identify a design allowing label-free enrichment of trophoblast cells. In this work we detail the development of a new method and device for controlling cell adhesion to a surface vs. rolling into a collection area. The enrichment device design was developed for ease of use by non-specialized personal and on a slide surface for the ability to be directly integrated onto an automatic cell picker instrument, which can be used for downstream single cell isolation. JEG-3 trophoblast cells were used with clinical cervical samples to present the effect of the different optimization parameters on enrichment. We further provide an assessment of the impact shear stress and thickness of the liquid layer has on cell enrichment. We found that this method provides a maximum JEG-3 enrichment using polystyrene surfaces at a 50° incline with a 5 min incubation period prior to inclined flow. This resulted in a 396 ± 52% increase in purity of the trophoblast cells from the clinical cervical samples as confirmed using human leukocyte antigen G (HLA-G) antibody staining with fluorescence imaging to identify JEG-3 cells. Ultimately, this method is inexpensive, quick, and has the potential for direct integration into fetal cell isolation platforms.
Collapse
Affiliation(s)
| | - Sumaiya Sayeed
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
6
|
Bailey-Hytholt CM, Shen TL, Nie B, Tripathi A, Shukla A. Placental Trophoblast-Inspired Lipid Bilayers for Cell-Free Investigation of Molecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31099-31111. [PMID: 32558532 DOI: 10.1021/acsami.0c06197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The placenta plays a key role in regulating the maternal-fetal transport but it is a difficult organ to study due to a lack of existing in vitro models. Lipid bilayers inspired by the placenta can provide a facile new in vitro tool with promise for screening molecular transport across this important organ. Here we developed lipid bilayers that mimic the composition of human placental trophoblast cells at different times during the course of pregnancy. Mass spectrometry identified five major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin) present at varying concentrations in trophoblasts representative of the first and third trimesters and full-term placenta. We successfully developed supported and suspended lipid bilayers mimicking these trophoblast lipid compositions and then demonstrated the utility of these synthetic placenta models for investigating molecular interactions. Specifically, we investigated the interactions with di(2-ethylhexyl) phthalate (DEHP), a common plasticizer and environmental toxicant, and amphotericin B, a common yet toxic, antifungal therapeutic. Overall, we observed that DEHP adsorbs and potentially embeds itself within all placental lipid bilayers, with varying levels of interaction. For both amphotericin B and a liposomal formulation of amphotericin B, AmBisome, we noted lower levels of permeation in transport studies with bilayers and trophoblast cells compared with DEHP, likely driven by differences in size. AmBisome interacted less with both the supported and suspended placental lipid bilayers in comparison to amphotericin B, suggesting that drug delivery carriers can vary the impact of a pharmaceutical agent on these lipid structures. We found that the apparent permeability observed in suspended bilayers was approximately an order of magnitude less than those observed for trophoblast monolayers, which is typical of lipid bilayers. Ultimately, these placenta mimetic lipid bilayers can serve as a platform for the rapid initial screening of molecular interactions with the maternal-fetal interface to better inform future testing.
Collapse
Affiliation(s)
- Christina M Bailey-Hytholt
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Tun-Li Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Bonnee Nie
- Department of Biochemistry and Molecular Biology, Brown University, Providence, Rhode Island 02912, United States
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|