1
|
Lainioti GC, Druvari D. Designing Antibacterial-Based Quaternary Ammonium Coatings (Surfaces) or Films for Biomedical Applications: Recent Advances. Int J Mol Sci 2024; 25:12264. [PMID: 39596329 PMCID: PMC11595235 DOI: 10.3390/ijms252212264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Antibacterial coatings based on quaternary ammonium compounds (QACs) have been widely investigated in controlled release applications. Quaternary ammonium compounds are low-cost and easily accessible disinfectants that have been extensively used, especially after the COVID-19 outbreak. There has been a growing interest in developing a clearer understanding of various aspects that need to be taken into account for the design of quaternary ammonium compounds to be used in the biomedical field. In this contribution, we outline the mechanism of action of those materials as well as the key design parameters associated with their structure and antibacterial activity. Moreover, emphasis has been placed on the type of antibacterial coatings based on QACs and their applications in the biomedical field. A brief outlook on future research guidelines for the development of dual-function antibacterial coatings is also discussed.
Collapse
Affiliation(s)
- Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece;
| |
Collapse
|
2
|
Damonte G, Zaborniak I, Klamut M, Di Lisa D, Pastorino L, Awsiuk K, Wolski K, Chmielarz P, Monticelli O. Development of functionalized poly(lactide) films with chitosan via SI-SARA ATRP as scaffolds for neuronal cell growth. Int J Biol Macromol 2024; 273:132768. [PMID: 38823733 DOI: 10.1016/j.ijbiomac.2024.132768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Polylactic acid (PLA), a polymer derived from renewable resources, is gaining increasing attention in the development of biomedical devices due to its cost-effectiveness, low immunogenicity, and biodegradability. However, its inherent hydrophobicity remains a problem, leading to poor cell adhesion features. On this basis, the aim of this work was to develop a method for functionalizing the surface of PLA films with a biopolymer, chitosan (CH), which was proved to be a material with intrinsic cell adhesive properties, but whose mechanical properties are insufficient to be used alone. The combination of the two polymers, PLA as a bulk scaffold and CH as a coating, could be a promising combination to develop a scaffold for cell growth. The modification of PLA films involved several steps: aminolysis followed by bromination to graft amino and then bromide groups, poly(glycidyl methacrylate) (PGMA) grafting by surface-initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA ATRP) and finally the CH grafting. To prove the effective adhesive properties, conjugated and non-conjugated films were tested in vitro as substrates for neuronal cell growth using differentiated neurons from human induced pluripotent stem cells. The results demonstrated enhanced cell growth in the presence of CH.
Collapse
Affiliation(s)
- Giacomo Damonte
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Małgorzata Klamut
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland; Doctoral School of the Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
| | - Donatella Di Lisa
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Via All'Opera Pia 13, 16145 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Laura Pastorino
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Via All'Opera Pia 13, 16145 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Kamil Awsiuk
- Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Orietta Monticelli
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| |
Collapse
|
3
|
Wei F, Zheng H, Gao C, Tian J, Gou J, Hamouda HI, Xue C. In Situ Preparation of Star-Shaped Protein-"Smart" Polymer Conjugates with pH and Thermo-Dual Responsibility for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38817042 DOI: 10.1021/acs.jafc.3c09129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
To achieve effective separation and enrichment of bacteria, a novel synthetic scheme was developed to synthesize star-style boronate-functionalized copolymers with excellent hydrophilicity and temperature and pH responsiveness. A hydrophilic copolymer brush was synthesized by combining surface-initiated atom-transfer radical polymerization with amide reaction using bovine serum albumin as the core. The copolymer brush was further modified by introducing and immobilizing fluorophenylboronic acids through an amide reaction, resulting in the formation of boronate affinity material BSA@poly(NIPAm-co-AGE)@DFFPBA. The morphology and organic content of BSA@poly(NIPAm-co-AGE)@DFFPBA were systematically characterized. The BSA-derived composites demonstrated a strong binding capacity to both Gram-positive and Gram-negative bacteria. The binding capabilities of the affinity composite to Staphylococcus aureus and Salmonella spp. were 195.8 × 1010 CFU/g and 79.2 × 1010 CFU/g, respectively, which indicates that the novel composite exhibits a high binding capability to bacteria and shows a particularly more significant binding capacity toward Gram-positive bacteria. The bacterial binding of BSA@poly(NIPAm-co-AGE)@DFFPBA can be effectively altered by adjusting the pH and temperature. This study demonstrated that the star-shaped affinity composite had the potential to serve as an affinity material for the rapid separation and enrichment of bacteria in complex samples.
Collapse
Affiliation(s)
- Fayi Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hongwei Zheng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Chao Gao
- Technology Center of Qingdao Customs, Qingdao 266003, China
| | - Jiaojiao Tian
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Jinpeng Gou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Zhu W, Li B, Liu J, Sun S, Zhang Y, Zhang D, Li C, Sun T, Qin H, Shi J, Shi Z. A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization. Molecules 2024; 29:913. [PMID: 38398663 PMCID: PMC10891501 DOI: 10.3390/molecules29040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
A simple strategy was adopted for the preparation of an antimicrobial natural rubber/graphene oxide (NR/GO) composite film modified through the use of zwitterionic polymer brushes. An NR/GO composite film with antibacterial properties was prepared using a water-based solution-casting method. The composited GO was dispersed uniformly in the NR matrix and compensated for mechanical loss in the process of modification. Based on the high bromination activity of α-H in the structure of cis-polyisoprene, the composite films were brominated on the surface through the use of N-bromosuccinimide (NBS) under the irradiation of a 40 W tungsten lamp. Polymerization was carried out on the brominated films using sulfobetaine methacrylate (SBMA) as a monomer via surface-initiated atom transfer radical polymerization (SI-ATRP). The NR/GO composite films modified using polymer brushes (PSBMAs) exhibited 99.99% antimicrobial activity for resistance to Escherichia coli and Staphylococcus aureus. A novel polymer modification strategy for NR composite materials was established effectively, and the enhanced antimicrobial properties expand the application prospects in the medical field.
Collapse
Affiliation(s)
- Wenya Zhu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Bangsen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Jinrui Liu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Shishu Sun
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Yan Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Dashuai Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Chen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Tianyi Sun
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Huaide Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Jianjun Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Zaifeng Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| |
Collapse
|
5
|
Su N. Spherical Polyelectrolyte Brushes as Flocculants and Retention Aids in Wet-End Papermaking. Molecules 2023; 28:7984. [PMID: 38138474 PMCID: PMC10745445 DOI: 10.3390/molecules28247984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
As the criteria of energy conservation, emission reduction, and environmental protection become more important, and with the development of wet-end papermaking, developing excellent retention aids is of great significance. Spherical polyelectrolyte brushes (SPBs) bearing polyelectrolyte chains grafted densely to the surface of core particle have the potential to be novel retention aids in wet-end papermaking not only because of their spherical structure, but also due to controllable grafting density and molecular weight. Such characteristics are crucial in order to design multi-functional retention aids in sophisticated papermaking systems. This review presents some important recent advances with respect to retention aids, including single-component system and dual-component systems. Then, basic theory in papermaking is also briefly reviewed. Based on these advances, it emphatically describes spherical polyelectrolyte brushes, focused on their preparation methods, characterization, conformation, and applications in papermaking. This work is expected to contribute to improve a comprehensive understanding on the composition, properties, and function mechanisms of retention aids, which helps in the further investigation on the design of novel retention aids with excellent performance.
Collapse
Affiliation(s)
- Na Su
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China
| |
Collapse
|
6
|
Yao H, Wang J, Deng Y, Li Z, Wei J. Osteogenic and antibacterial PLLA membrane for bone tissue engineering. Int J Biol Macromol 2023; 247:125671. [PMID: 37406896 DOI: 10.1016/j.ijbiomac.2023.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Insufficient bone regeneration and bacterial infection are two major concerns of bone repair materials. Poly-L-lactic acid (PLLA) have been widely used in bone tissue engineering (BTE), however, lack of osteogenic and antibacterial properties have greatly limit its clinical application. Herein, PLLA membrane was firstly treated with polydopamine (PDA), and then modified with ε-polylysine (ε-PL) and alginate (ALG) via layer-by-layer method. The (ε-PL/ALG)n composite layer coated PLLA (PLLA@(ε-PL/ALG)n) could facilitates the adhesion and osteoblast differentiation of MC3T3-E1 cells. Furthermore, PLLA@(ε-PL/ALG)n presents an effective antibacterial efficacy against S. aureus and E. coli, and the bacterial survival rates of S. aureus and E. coli on PLLA@(ε-PL/ALG)10 were 21.5 ± 3.5 % and 13 ± 2.1 %, respectively. This work provides a promising method to design PLLA materials with osteogenic and antibacterial activity simultaneously. Furthermore, the method is also an optional choice to construct multifunctional coatings on the other substrate.
Collapse
Affiliation(s)
- Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China.
| |
Collapse
|
7
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
8
|
Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules 2022; 27:molecules27134135. [PMID: 35807380 PMCID: PMC9268542 DOI: 10.3390/molecules27134135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and has less impact resistance than petroleum-based plastics. To improve the mechanical properties of PLA, PLA-based blends are very often used, but the outcome does not meet expectations because of the non-compatibility of the polymer blends. From a chemical point of view, the use of graft copolymers as a compatibilizer with a PLA backbone bearing side chains is an interesting option for improving the compatibility of these blends, which remains challenging. This review article reports on the various graft copolymers based on a PLA backbone and their syntheses following two chemical strategies: the synthesis and polymerization of modified lactide or direct chemical post-polymerization modification of PLA. The main applications of these PLA graft copolymers in the environmental and biomedical fields are presented.
Collapse
|