1
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Abellanas-Perez P, de Andrades D, Santiz-Gómez JA, Berenguer-Murcia Á, Fernandez-Lafuente R. A review on the immobilization of bromelain. Int J Biol Macromol 2024; 273:133089. [PMID: 38878936 DOI: 10.1016/j.ijbiomac.2024.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
This review shows the endeavors performed to prepare immobilized formulations of bromelain extract, usually from pineapple, and their use in diverse applications. This extract has a potent proteolytic component that is based on thiol proteases, which differ depending on the location on the fruit. Stem and fruit are the areas where higher activity is found. The edible origin of this enzyme is one of the features that determines the applications of the immobilized bromelain to a more significant degree. The enzyme has been immobilized on a wide diversity of supports via different strategies (covalent bonds, ion exchange), and also forming ex novo solids (nanoflowers, CLEAs, trapping in alginate beads, etc.). The use of preexisting nanoparticles as immobilization supports is relevant, as this facilitates one of the main applications of the immobilized enzyme, in therapeutic applications (as wound dressing and healing components, antibacterial or anticancer, mucus mobility control, etc.). A curiosity is the immobilization of this enzyme on spores of probiotic microorganisms via adsorption, in order to have a perfect in vivo compatibility. Other outstanding applications of the immobilized enzyme are in the stabilization of wine versus haze during storage, mainly when immobilized on chitosan. Curiously, the immobilized bromelain has been scarcely applied in the production of bioactive peptides.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
2
|
Ding W, Liu C, Huang C, Zhang X, Chi X, Wang T, Guo Q, Wang C. The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability. Int J Mol Sci 2024; 25:6361. [PMID: 38928068 PMCID: PMC11203923 DOI: 10.3390/ijms25126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.
Collapse
Affiliation(s)
- Wentao Ding
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chensa Liu
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Chi Huang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xin Zhang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xinyi Chi
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Tong Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Qingbin Guo
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changlu Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Zhang C, Ma X, Xue J, Liu S, Feng C, Han J, Wu J, Wang L, Wang Y. "Microflower-Templated" Janus Sheets: Synthesis and Application in Stabilizing Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8981-8991. [PMID: 38627903 DOI: 10.1021/acs.langmuir.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In this study, we proposed a method for fabricating Janus sheets using biological "microflowers" as a sacrificial template. The microflower-templated Janus sheets (MF-JNSs) were employed as a foam stabilizer in foam separation of the whey soybean protein (WSP). The MF-JNSs took inorganic hybrid microflowers (BSA@Cu3 (PO4)2-MF) as template, followed by the sequential attachment of protamine and silica to the surface of the BSA@Cu3(PO4)2-MF. Subsequently, the template was removed using ethylenediaminetetraacetic acid after the silicon dioxide was modified by 3-(methacryloyloxy) propyl trimethoxysilane. Upon template dissolution, the modified silica layer, lacking support from the core, fractured to form the MF-JNSs. This method omitted the step of treating the hollow ball by external force and obtained Janus sheets in one step, indicating that it was simple and feasible. The morphology, structure, and composition of the MF-JNSs were analyzed by SEM, TEM, AFM, XRD, and FT-IR. The MF-JNSs were found to delay the breakage time of the Pickering emulsion, demonstrating their emulsion stabilizing capability. Importantly, they significantly enhanced the foam half-life and foam height of soybean whey wastewater (SWW). Moreover, the recovery percentage and enrichment ratio of WSP, separated from SWW by foam separation, were improved to 81 ± 0.28 and 1.20 ± 0.05%, respectively.
Collapse
Affiliation(s)
- Cailiang Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinnan Ma
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingli Xue
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiyuan Liu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chengxiang Feng
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
A photo-enzyme coupling catalysis system with high enzyme loading for the efficient degradation of BPA in water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Ma X, Chen Z, Han J, Zhou Y, Mao Y, Li C, Wang L, Wang Y. Facile preparation of amorphous cobalt phosphate as inorganic carrier for direct separation and immobilization of his-tagged β-glucosidase from cell lysate. NEW J CHEM 2022. [DOI: 10.1039/d2nj01148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present work was aimed to develop a facile method to fabricate solid support for the separation and immobilization of his-tagged enzymes directly from cell lysate without pre-purification of the enzymes.
Collapse
Affiliation(s)
- Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhili Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212012, China
| | - Yanli Mao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|