1
|
Jäntti J, Viitaja T, Sevón J, Moilanen J, Lajunen T, Pajula K, Ekholm FS, Ruponen M. In vitro biophysical and biological profiling of commercial lipid-based dry eye products. Eur J Pharm Sci 2025; 209:107104. [PMID: 40250735 DOI: 10.1016/j.ejps.2025.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
There is an increasing number of products available for treatment of dry eye disease (DED), thereby creating a challenge in selecting a suitable product. Commercial products have rarely been studied in the same experimental setup, and in the case of lipid-based products, their baseline capabilities to target central defects of DED requires a more thorough investigation. This study aims to discern potential differences in their abilities to stabilize the tear film, reduce the evaporation of water, and impact on corneal epithelial cell viability and recovery utilizing various biophysical and biological in vitro techniques. Seven commercial lipid-based eye drops (Cationorm®, Desodrop®, Evotears®, Oxyal® Triple Action, Puro™ Suoja, Systane® Complete, Thealipid®) were selected for the in vitro biophysical and biological profiling studies. Biophysical properties critical for tear film stability and evaporation reduction were evaluated using Langmuir trough techniques, while cell viability and recovery were assessed by an MTT assay after exposing either healthy or damaged human corneal epithelial cells to the products. The majority of the products spread reasonably well at the aqueous-air interface, suggesting that they bear intrinsic properties which may be beneficial to improving the coverage of the tear film lipid layer. However, only subtle evaporation reduction capabilities were observed, indicating that the products are not optimal at targeting this defect. Clear differences in cell viability and recovery were observed, with three of the products being able to promote the recovery of damaged cells. The significance of our findings with regards to DED treatment outcomes will require additional studies in the future.
Collapse
Affiliation(s)
- Janika Jäntti
- School of Pharmacy, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Tuomo Viitaja
- Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland; Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Julia Sevón
- Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland
| | - Jukka Moilanen
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Tatu Lajunen
- School of Pharmacy, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland; Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00790, Helsinki, Finland
| | - Katja Pajula
- School of Pharmacy, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland.
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
2
|
Stubb H, Sevón J, Schlegel C, Viljanen M, Moilanen J, Viitaja T, Ekholm FS. Decipher 'Em All: A Profiling Study on the Effects of Acyl Groups in O-Acyl-ω-hydroxy Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21559-21572. [PMID: 39361351 PMCID: PMC11483765 DOI: 10.1021/acs.langmuir.4c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/16/2024]
Abstract
The O-acyl-ω-hydroxy fatty acids (OAHFAs) are an intriguing class of surface-active lipids which can be found in the human tear film lipid layer (TFLL). Recent studies have suggested that OAHFAs exist in the polar lipid layer and play a central role in TFLL function. Surprisingly, biophysical profiling studies have only shed light on the properties of OAHFAs bearing an oleate acyl group and insights on species with other acyl groups are scarce. Herein, we seek to address this issue through (1) focusing on the synthesis and characterization of a representative library of OAHFA analogues bearing a palmitate, palmitoleate, stearate, and linoleate acyl group, and (2) performing an in-depth mapping of their biophysical properties. Our results indicate that NMR-spectroscopic techniques can be utilized for rough estimation of the amounts of distinct acyl groups in a sample and more importantly, how the subtle variations in both parent chains and acyl groups influence the core properties of the OAHFAs. We reach the conclusion that the correlation between melting points and film properties is not as clear-cut as previously thought. Nevertheless, grouping of OAHFA species into three separate categories which display distinct behavior seems to be possible utilizing the melting points as a guiding parameter. Altogether, our study suggests that the properties of OAHFAs need to be assessed from a viewpoint which combines both the parent chain and acyl group instead of independent analysis based on either fragment alone.
Collapse
Affiliation(s)
- Henrik Stubb
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Julia Sevón
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Cordula Schlegel
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mira Viljanen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Jukka Moilanen
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Tuomo Viitaja
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Filip S. Ekholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
3
|
Stubb H, Viitaja T, Trevorah RM, Raitanen JE, Moilanen J, Svedström KJ, Ekholm FS. Another Brick in the Wall of Tear Film Insights Added Through the Total Synthesis and Biophysical Profiling of anteiso-Branched Wax and Cholesteryl Esters. JOURNAL OF NATURAL PRODUCTS 2024; 87:954-965. [PMID: 38547477 PMCID: PMC11389978 DOI: 10.1021/acs.jnatprod.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The tear film lipid layer (TFLL) plays a vital part in maintenance of ocular health and represents a unique biological barrier comprising unusual and specialized lipid classes and species. The wax and cholesteryl esters (WEs and CEs) constitute roughly 80-90% of the TFLL. The majority of species in these lipid classes are branched and it is therefore surprising that the synthesis and properties of the second largest category of species, i.e., the anteiso-branched species, remain poorly characterized. In this study, we have developed a total synthesis route and completed a detailed NMR spectroscopic characterization of two common anteiso-branched species, namely: (22S)-22-methyltetracosanyl oleate and cholesteryl (22'S)-22'-methyltetracosanoate. In addition, we have studied their structural properties in the bulk state by wide-angle and small-angle X-ray scattering and their behavior at the aqueous interface using Langmuir monolayer techniques. A comparison to the properties displayed by iso-branched and straight-chain analogues indicate that branching patterns lead to distinct properties in the CE and WE lipid classes. Overall, this study complements the previous work in the field and adds another important brick in the tear film insights wall.
Collapse
Affiliation(s)
- Henrik Stubb
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Tuomo Viitaja
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Ryan M Trevorah
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Jan-Erik Raitanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Jukka Moilanen
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Kirsi J Svedström
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
4
|
Trevorah RM, Viljanen M, Viitaja T, Stubb H, Sevón J, Konovalov O, Jankowski M, Fontaine P, Hemmerle A, Raitanen JE, Ekholm FS, Svedström KJ. New Insights into the Molecular Structure of Tear Film Lipids Revealed by Surface X-ray Scattering. J Phys Chem Lett 2024; 15:316-322. [PMID: 38170161 PMCID: PMC10788950 DOI: 10.1021/acs.jpclett.3c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
The tear film lipid layer (TFLL) is a unique biological membrane that serves a pivotal role in the maintenance of ocular surface health. Reaching an overarching understanding of the functional principle of the TFLL has been hampered by a lack of insights into the structural and functional roles played by individual lipid classes. To bridge this knowledge gap, we herein focus on studying films formed by principal lipid classes by surface scattering methods. Through grazing incidence X-ray diffraction and X-ray reflectivity studies, we reveal quantitative data about the lattice distances, molecular tilt angles, and mono/multilayer thickness and density profiles for central TFLL lipid classes under close to simulated physiological conditions. In addition, we discuss the correlation of the results to those obtained previously with the natural lipid composition of meibum.
Collapse
Affiliation(s)
- Ryan M. Trevorah
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Mira Viljanen
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tuomo Viitaja
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Henrik Stubb
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Julia Sevón
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Oleg Konovalov
- The
European Synchrotron Radiation Facility - ESRF, 71 Avenue des Martyrs, CS 40220, Grenoble Cedex 9 38043, France
| | - Maciej Jankowski
- The
European Synchrotron Radiation Facility - ESRF, 71 Avenue des Martyrs, CS 40220, Grenoble Cedex 9 38043, France
| | - Philippe Fontaine
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Arnaud Hemmerle
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Jan-Erik Raitanen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Filip S. Ekholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Kirsi J. Svedström
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
5
|
Jäntti J, Viitaja T, Sevón J, Lajunen T, Raitanen JE, Schlegel C, Viljanen M, Paananen RO, Moilanen J, Ruponen M, Ekholm FS. Early-Stage Development of an Anti-Evaporative Liposomal Formulation for the Potential Treatment of Dry Eyes. ACS Pharmacol Transl Sci 2023; 6:1518-1530. [PMID: 37854619 PMCID: PMC10580384 DOI: 10.1021/acsptsci.3c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 10/20/2023]
Abstract
Dry eye disease (DED), the most common ocular disorder, reduces the quality of life for hundreds of millions of people annually. In healthy eyes, the tear film lipid layer (TFLL) stabilizes the tear film and moderates the evaporation rate of tear fluid. In >80% of DED cases, these central features are compromised leading to tear film instability and excessive evaporation of tear fluid. Herein we assess the potential of liposomal formulations featuring phosphatidylcholines and tailored lipid species from the wax ester and O-acyl-ω-hydroxy fatty acid categories in targeting this defect. The developed lead formulation displays good evaporation-resistant properties and respreadability over compression-expansion cycles in our Langmuir model system and a promising safety and efficacy profile in vitro. Preclinical in vivo studies will in the future be required to further assess and validate the potential of this concept in the treatment of DED.
Collapse
Affiliation(s)
- Janika Jäntti
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tuomo Viitaja
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Julia Sevón
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Tatu Lajunen
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Faculty
of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - Jan-Erik Raitanen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Cordula Schlegel
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mira Viljanen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Riku O. Paananen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Jukka Moilanen
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Marika Ruponen
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Filip. S. Ekholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
6
|
Viitaja T, Raitanen JE, Moilanen J, Paananen RO, Ekholm FS. Biophysical profiling of synthetic ultra-long tear film lipids. Colloids Surf B Biointerfaces 2023; 223:113145. [PMID: 36701899 DOI: 10.1016/j.colsurfb.2023.113145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The tear film lipid layer (TFLL) is a unique biological membrane of importance to the maintenance of ocular surface health. The underlying factors at play, e.g. the ability to retard evaporation and offer protection from the environment, are all closely connected to the properties of individual lipid components and their interplay. The TFLL contains unique ultra-long polar lipid species such as O-acyl-ω-hydroxy fatty acids, type I-St diesters and type II diesters, which are considered important for its proper function. Herein, we have synthesized model compounds from these categories and studied their biophysical and surface rheological properties at the aqueous interface. Altogether, we provide insights on the distinct biophysical profiles of these lipid classes and discuss how their interplay may affect the structure and function of the TFLL.
Collapse
Affiliation(s)
- Tuomo Viitaja
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland; Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Jan-Erik Raitanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Jukka Moilanen
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Riku O Paananen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland; Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland.
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
| |
Collapse
|