1
|
Wang M, Xu Y, Cao L, Xiong L, Shang D, Cong Y, Zhao D, Wei X, Li J, Fu D, Lian H, Zhao Z. Mechanical and biological properties of 3D printed bone tissue engineering scaffolds. Front Bioeng Biotechnol 2025; 13:1545693. [PMID: 40260017 PMCID: PMC12010109 DOI: 10.3389/fbioe.2025.1545693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Bone defects have historically represented a significant challenge in clinical practice, with traditional surgical intervention remaining the gold standard for their management. However, due to the problem of the origin of autologous and allogeneic bone and the complex and diverse bone defects, traditional surgical methods sometimes cannot meet the treatment needs and expectations of patients. The development of bone tissue engineering and 3D printing technology provides new ideas for bone defect repair. Ideal bioscaffold materials must have good mechanical properties, biocompatibility, osteoinduction and bone conduction capabilities. Additionally, factors such as degradation rate, appropriate porosity and a sustained antibacterial effect must be taken into account. The combination of 3D printing technology and synthetic composite biomaterial scaffolds has become a well-established approach in the treatment of complex bone defects, offering innovative solutions for bone defect repair. The combined application of seed cells, signalling factors and biological scaffolds is also beneficial to improve the therapeutic effect of complex bone defects. This article will therefore examine some of the most commonly used 3D printing technologies for biological scaffolds and the most prevalent bioscaffold materials suitable for 3D printing. An analysis will be conducted on the mechanical and biological properties of these materials to elucidate their respective advantages and limitations.
Collapse
Affiliation(s)
- Mingxuan Wang
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yunpeng Xu
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Luoxi Cao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Le Xiong
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Depeng Shang
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yang Cong
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dan Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaowei Wei
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Junlei Li
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Dapeng Fu
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haoyi Lian
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Zhenhua Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Liu Z, Zhao MC, Yin D, Zhao YC, Atrens A. Bio-functional niobium-based metallic biomaterials: Exploring their physicomechanical properties, biological significance, and implant applications. Acta Biomater 2025; 192:1-27. [PMID: 39681153 DOI: 10.1016/j.actbio.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The significance of biomedical applications of bio-functional niobium (Nb)-based metallic biomaterials is underscored by their potential utilization in implant application. Nb-based metallic materials present reliable physicomechanical and biological properties, thus represent materials highly suitable for implant application. This review provides an overview on the advances of pure niobium and Nb-based metallic materials as implant materials over the past 20 years, and highlights the advantages of Nb-based metallic biomaterials for implant application in terms of their physicomechanical properties, corrosion resistance in biological media, magnetic resonance imaging (MRI) compatibility, cell compatibility, blood compatibility, osteogenesis, and bioactivity. An introduction is provided for the production and processing techniques for Nb-based metallic biomaterials, including traditional melting processes like vacuum arc remelting, additive manufacturing like selective laser melting (SLM), electron beam melting (EBM), spark plasma sintering (SPS), and severe plastic deformation like equal channel angular pressing (ECAP), multi-axial forging (MAF), high pressure torsion (HPT), as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based metallic biomaterials for implant applications. STATEMENT OF SIGNIFICANCE: Nb-based biomaterials have gained significant interest for bioimplantable scaffolds because of their appropriate mechanical characteristics and biocompatibility. No prior work has been published specifically reviewing bio-functional Nb-based biomaterials for exploring their physicomechanical properties, biological significance, and implant applications. This review provides an overview on the advances of niobium and Nb-based materials as implant materials over the past 20 years, and highlights the advantages of Nb-based biomaterials for implant application. An introduction is provided for the production and processing techniques for Nb-based biomaterials, as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based biomaterials for implant applications.
Collapse
Affiliation(s)
- Ziyuan Liu
- College of Mechanical Engineering, University of South China, Hengyang 421001, PR China; School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Ming-Chun Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Dengfeng Yin
- School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Ying-Chao Zhao
- College of Mechanical Engineering, University of South China, Hengyang 421001, PR China.
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane QLD4072, Australia
| |
Collapse
|
3
|
García-Robledo H, García-Fernández L, Parra J, Martín-López R, Vázquez-Lasa B, de la Torre B. Ti/Ta-based composite polysaccharide scaffolds for guided bone regeneration in total hip arthroplasty. Int J Biol Macromol 2024; 271:132573. [PMID: 38782315 DOI: 10.1016/j.ijbiomac.2024.132573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Guided bone regeneration can play an important role in orthopedic applications. This work presents the synthesis and characterization of composite scaffolds based on polysaccharides loaded with microparticles of titanium or tantalum as novel materials proposed for composite systems with promising characteristics for guided bone regeneration. Ti/Ta composite scaffolds were synthesized using chitosan and gellan gum as organic substrates and crosslinked with oxidized dextran resulting in stable inorganic-organic composites. Physico-chemical characterization revealed a uniform distribution of metal nanoparticles within the scaffolds that showed a release of metals lower than 5 %. In vitro biological assays demonstrated that Ta composites exhibit a 2 times higher ALP activity than Ti and a higher capacity to support the full differentiation of human mesenchymal stem cells into osteoblasts. These results highlight their potential for bone regeneration applications.
Collapse
Affiliation(s)
- Hector García-Robledo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; Service of Traumatology, University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Luis García-Fernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Spain; Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Juan Parra
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Complejo Asistencial de Ávila, SACYL, Ávila, Spain
| | | | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Spain; Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Basilio de la Torre
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; Service of Traumatology, University Hospital Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
4
|
Cai A, Yin H, Wang C, Chen Q, Yin R, Yuan X, Kang H, Guo H. Preparation, biological activity and antibacterial properties of tantalum surface-doped Ca 2+/Zn 2+nanorods. NANOTECHNOLOGY 2024; 35:305102. [PMID: 38663375 DOI: 10.1088/1361-6528/ad4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
In this research, we utilize porous tantalum, known for its outstanding elastic modulus and biological properties, as a base material in biomedical applications. The human skeletal system is rich in elements like Ca and Zn. The role of Zn is crucial for achieving a spectrum of sterilizing effects, while Ca is known to effectively enhance cell differentiation and boost cellular activity. The focus of this study is the modification of porous tantalum using a hydrothermal method to synthesize Ca2+/Zn2+-doped Ta2O5nanorods. These nanorods are subjected to extensive characterization techniques to confirm their structure and composition. Additionally, their biological performance is evaluated through a range of tests, including antibacterial assessments, MTT assays, and bacteria/cell scanning electron microscopy (SEM) analyses. The objective is to determine the most effective method of surface modification for porous tantalum, thereby laying a foundational theoretical framework for its surface enhancement.
Collapse
Affiliation(s)
- Anqi Cai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Hairong Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Cuicui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Qian Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Ruixue Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xin Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Haoran Kang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Hongwei Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
5
|
Ren H, Zhang L, Zhang X, Yi C, Wu L. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair. BMC Musculoskelet Disord 2024; 25:253. [PMID: 38561728 PMCID: PMC10983655 DOI: 10.1186/s12891-024-07381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.
Collapse
Affiliation(s)
- Hanru Ren
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Lele Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Xu Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| | - Lianghao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| |
Collapse
|
6
|
Samadi A, Moammeri A, Azimi S, Bustillo-Perez BM, Mohammadi MR. Biomaterial engineering for cell transplantation. BIOMATERIALS ADVANCES 2024; 158:213775. [PMID: 38252986 DOI: 10.1016/j.bioadv.2024.213775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The current paradigm of medicine is mostly designed to block or prevent pathological events. Once the disease-led tissue damage occurs, the limited endogenous regeneration may lead to depletion or loss of function for cells in the tissues. Cell therapy is rapidly evolving and influencing the field of medicine, where in some instances attempts to address cell loss in the body. Due to their biological function, engineerability, and their responsiveness to stimuli, cells are ideal candidates for therapeutic applications in many cases. Such promise is yet to be fully obtained as delivery of cells that functionally integrate with the desired tissues upon transplantation is still a topic of scientific research and development. Main known impediments for cell therapy include mechanical insults, cell viability, host's immune response, and lack of required nutrients for the transplanted cells. These challenges could be divided into three different steps: 1) Prior to, 2) during the and 3) after the transplantation procedure. In this review, we attempt to briefly summarize published approaches employing biomaterials to mitigate the above technical challenges. Biomaterials are offering an engineerable platform that could be tuned for different classes of cell transplantation to potentially enhance and lengthen the pharmacodynamics of cell therapies.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Ali Moammeri
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shamim Azimi
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bexi M Bustillo-Perez
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA 92866, USA.
| |
Collapse
|
7
|
Erdogan YK, Uslu E, Aydınol MK, Saglam ASY, Odabas S, Ercan B. Morphology of Nanostructured Tantalum Oxide Controls Stem Cell Differentiation and Improves Corrosion Behavior. ACS Biomater Sci Eng 2024; 10:377-390. [PMID: 38078685 DOI: 10.1021/acsbiomaterials.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tantalum is receiving increasing attention in the biomedical field due to its biocompatible nature and superior mechanical properties. However, the bioinert nature of tantalum still poses a challenge and limits its integration into the bone tissue. To address these issues, we fabricated nanotubular (NT), nanocoral (NC), and nanodimple morphologies on tantalum surfaces via anodization. The size of these nanofeatures was engineered to be approximately 30 nm for all anodized samples. Thus, the influence of the anodized nanostructured morphology on the chemical and biological properties of tantalum was evaluated. The NT and NC samples exhibited higher surface roughness, surface energy, and hydrophilicity compared to the nonanodized samples. In addition, the NT samples exhibited the highest corrosion resistance among all of the investigated samples. Biological experiments indicated that NT and NC samples promoted human adipose tissue-derived mesenchymal stem cell (hADMSC) spreading and proliferation up to 5 days in vitro. ALP, COL1A1, and OSC gene expressions as well as calcium mineral synthesis were upregulated on the NT and NC samples in the second and third weeks in vitro. These findings highlight the significance of nanostructured feature morphology for anodized tantalum, where the NT morphology was shown to be a potential candidate for orthopedic applications.
Collapse
Affiliation(s)
- Yasar Kemal Erdogan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey
| | - Ece Uslu
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne 1015, Switzerland
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Mehmet Kadri Aydınol
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Sedat Odabas
- Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara 06560, Turkey
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (BteLAB), Ankara University, Ankara 06100, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| |
Collapse
|
8
|
Zhang Y, Du S, Aiyiti W, Teng Y, Jia R, Jiang H. Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages. Biomed Mater Eng 2024; 35:99-124. [PMID: 38217572 DOI: 10.3233/bme-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND Intervertebral cages used in clinical applications were often general products with standard specifications, which were challenging to match with the cervical vertebra and prone to cause stress shielding and subsidence. OBJECTIVE To design and fabricate customized tantalum (Ta) intervertebral fusion cages that meets the biomechanical requirements of the cervical segment. METHODS The lattice intervertebral cages were customized designed and fabricated by the selective laser melting. The joint and muscle forces of the cervical segment under different movements were analyzed using reverse dynamics method. The stress characteristics of cage, plate, screws and vertebral endplate were analyzed by finite element analysis. The fluid flow behaviors and permeability of three lattice structures were simulated by computational fluid dynamics. Compression tests were executed to investigate the biomechanical properties of the cages. RESULTS Compared with the solid cages, the lattice-filled structures significantly reduced the stress of cages and anterior fixation system. In comparison to the octahedroid and quaddiametral lattice-filled cages, the bitriangle lattice-filled cage had a lower stress shielding rate, higher permeability, and superior subsidence resistance ability. CONCLUSION The inverse dynamics simulation combined with finite element analysis is an effective method to investigate the biomechanical properties of the cervical vertebra during movements.
Collapse
Affiliation(s)
- Yutao Zhang
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Shu Du
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Wurikaixi Aiyiti
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Yong Teng
- Department of Orthopaedics, Hospital of Xinjiang Military Region PLA, Urumqi, China
| | - Ru Jia
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Houfeng Jiang
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
9
|
Fan L, Chen S, Yang M, Liu Y, Liu J. Metallic Materials for Bone Repair. Adv Healthc Mater 2024; 13:e2302132. [PMID: 37883735 DOI: 10.1002/adhm.202302132] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Repair of large bone defects caused by trauma or disease poses significant clinical challenges. Extensive research has focused on metallic materials for bone repair because of their favorable mechanical properties, biocompatibility, and manufacturing processes. Traditional metallic materials, such as stainless steel and titanium alloys, are widely used in clinics. Biodegradable metallic materials, such as iron, magnesium, and zinc alloys, are promising candidates for bone repair because of their ability to degrade over time. Emerging metallic materials, such as porous tantalum and bismuth alloys, have gained attention as bone implants owing to their bone affinity and multifunctionality. However, these metallic materials encounter many practical difficulties that require urgent improvement. This article systematically reviews and analyzes the metallic materials used for bone repair, providing a comprehensive overview of their morphology, mechanical properties, biocompatibility, and in vivo implantation. Furthermore, the strategies and efforts made to address the short-comings of metallic materials are summarized. Finally, the perspectives for the development of metallic materials to guide future research and advancements in clinical practice are identified.
Collapse
Affiliation(s)
- Linlin Fan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Sen Chen
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Minghui Yang
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yajun Liu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Chen J. Current advances in anisotropic structures for enhanced osteogenesis. Colloids Surf B Biointerfaces 2023; 231:113566. [PMID: 37797464 DOI: 10.1016/j.colsurfb.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Bone defects are a challenge to healthcare systems, as the aging population experiences an increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical properties and a distinctive microenvironment. However, the biofunctions, cell-tissue interactions, and molecular mechanisms of cortical bone anisotropic structure are not well understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been recognised as essential for better outcomes. Various approaches have been used to create anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the early stages of development. Most scaffolds lack features at the nanoscale, and there is no comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. This manuscript provides a review of the latest development of anisotropic designs for osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also emphasises the need for further research. Filling knowledge gaps will enable the fabrication of scaffolds for improved and more controllable bone regeneration.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Mechanical Engineering, University College London, WC1E 7JE, UK.
| |
Collapse
|
11
|
Cai A, Yin H, Wang C, Chen Q, Song Y, Yin R, Yuan X, Kang H, Guo H. Bioactivity and antibacterial properties of zinc-doped Ta 2O 5nanorods on porous tantalum surface. Biomed Mater 2023; 18:065011. [PMID: 37729922 DOI: 10.1088/1748-605x/acfbd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
This paper focuses on the preparation of Zn2+-doped Ta2O5nanorods on porous tantalum using the hydrothermal method. Porous tantalum is widely used in biomedical materials due to its excellent elastic modulus and biological activity. Porous tantalum has an elastic modulus close to that of human bone, and its large specific surface area is conducive to promoting cell adhesion. Zinc is an important component of human bone, which not only has spectral bactericidal properties, but also has no cytotoxicity. The purpose of this study is to provide a theoretical basis for the surface modification of porous tantalum and to determine the best surface modification method. The surface structure of the sample was characterized by x-ray diffractometer, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and the Zn-doped Ta2O5nanorods are characterized by antibacterial test, MTT test, ICP and other methods. The sample has good antibacterial properties and no cytotoxicity. The results of this study have potential implications for the development of new and improved biomedical materials.
Collapse
Affiliation(s)
- Anqi Cai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hairong Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Cuicui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Qian Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yingxuan Song
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Ruixue Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xin Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Haoran Kang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hongwei Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| |
Collapse
|
12
|
Liang D, Zhong C, Jiang F, Liao J, Ye H, Ren F. Fabrication of Porous Tantalum with Low Elastic Modulus and Tunable Pore Size for Bone Repair. ACS Biomater Sci Eng 2023; 9:1720-1728. [PMID: 36780252 DOI: 10.1021/acsbiomaterials.2c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Porous tantalum (Ta) is a potential bone substitute due to its excellent biocompatibility and desirable mechanical properties. In this work, a series of porous Ta materials with interconnected micropores and varying pore sizes from 23 to 210 μm were fabricated using spark plasma sintering. The porous structure was formed by thermal decomposition of ammonium bicarbonate powder premixed in the Ta powder. The pore size and porosity were controlled by the categorized particle size of ammonium bicarbonate. The porous Ta has elastic moduli in the range of 2.1-3.2 GPa and compressive yield strength in the range of 23-34 MPa, which are close to those of human bone. In vitro, as-fabricated porous Ta demonstrates excellent biocompatibility by supporting adhesion and proliferation of preosteoblasts. In vivo studies also validate its bone repair capability after implantation in a rat femur defect model. The study demonstrates a facile strategy to fabricate porous Ta with controllable pore size for bone repair.
Collapse
Affiliation(s)
- Dingshan Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chuanxin Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
| | - Feilong Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junchen Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haixia Ye
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Tantalum as Trabecular Metal for Endosseous Implantable Applications. Biomimetics (Basel) 2023; 8:biomimetics8010049. [PMID: 36810380 PMCID: PMC9944482 DOI: 10.3390/biomimetics8010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
During the last 20 years, tantalum has known ever wider applications for the production of endosseous implantable devices in the orthopedic and dental fields. Its excellent performances are due to its capacity to stimulate new bone formation, thus improving implant integration and stable fixation. Tantalum's mechanical features can be mainly adjusted by controlling its porosity thanks to a number of versatile fabrication techniques, which allow obtaining an elastic modulus similar to that of bone tissue, thus limiting the stress-shielding effect. The present paper aims at reviewing the characteristics of tantalum as a solid and porous (trabecular) metal, with specific regard to biocompatibility and bioactivity. Principal fabrication methods and major applications are described. Moreover, the osteogenic features of porous tantalum are presented to testify its regenerative potential. It can be concluded that tantalum, especially as a porous metal, clearly possesses many advantageous characteristics for endosseous applications but it presently lacks the consolidated clinical experience of other metals such as titanium.
Collapse
|
14
|
Xiong H, Zhao F, Peng Y, Li M, Qiu H, Chen K. Easily attainable and low immunogenic stem cells from exfoliated deciduous teeth enhanced the in vivo bone regeneration ability of gelatin/bioactive glass microsphere composite scaffolds. Front Bioeng Biotechnol 2022; 10:1049626. [PMID: 36568292 PMCID: PMC9780285 DOI: 10.3389/fbioe.2022.1049626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Repair of critical-size bone defects remains a considerable challenge in the clinic. The most critical cause for incomplete healing is that osteoprogenitors cannot migrate to the central portion of the defects. Herein, stem cells from exfoliated deciduous teeth (SHED) with the properties of easy attainability and low immunogenicity were loaded into gelatin/bioactive glass (GEL/BGM) scaffolds to construct GEL/BGM + SHED engineering scaffolds. An in vitro study showed that BGM could augment the osteogenic differentiation of SHED by activating the AMPK signaling cascade, as confirmed by the elevated expression of osteogenic-related genes, and enhanced ALP activity and mineralization formation in SHED. After implantation in the critical bone defect model, GEL/BGM + SHED scaffolds exhibited low immunogenicity and significantly enhanced new bone formation in the center of the defect. These results indicated that GEL/BGM + SHED scaffolds present a new promising strategy for critical-size bone healing.
Collapse
|
15
|
Sarrami P, Karbasi S, Farahbakhsh Z, Bigham A, Rafienia M. Fabrication and characterization of novel polyhydroxybutyrate-keratin/nanohydroxyapatite electrospun fibers for bone tissue engineering applications. Int J Biol Macromol 2022; 220:1368-1389. [PMID: 36116596 DOI: 10.1016/j.ijbiomac.2022.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
The role of scaffolds in bone regeneration is of great importance. Here, the electrospun scaffolds of poly (3-hydroxybutyrate)-keratin (PHB-K)/nanohydroxyapatite (nHA) with different morphologies (long nanorods (HAR) and very short nanorods (HAP)) and weight percentages (up to 10 w/w%) of nHA were fabricated and characterized. The fibers integrity, the porosity of above 80%, and increase in pore size up to 16 μm were observed by adding nHA. The nanofibers crystallinity increased by 13.5 and 22.8% after the addition of HAR and HAP, respectively. The scaffolds contact angle decreased by almost 20° and 40° after adding 2.5 w/w% HAR and HAP, respectively. The tensile strength of the scaffolds increased from 2.99 ± 0.3 MPa for PHB-K to 6.44 ± 0.16 and 9.27 ± 0.04 MPa for the scaffolds containing 2.5 w/w% HAR and HAP, respectively. After immersing the scaffolds into simulated body fluid (SBF), the Ca concentration decreased by 55% for HAR- and 73% for HAP-containing scaffolds, showing the bioactivity of nHA-containing scaffolds. The results of cell attachment, proliferation, and viability of MG-63 cells cultured on the nanocomposites showed the positive effects of nHA. The results indicate that the nanocomposite scaffolds, especially HAP-containing ones, can be suitable for bone tissue engineering applications.
Collapse
Affiliation(s)
- Pooriya Sarrami
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Farahbakhsh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|