1
|
Vasluianu RI, Dima AM, Bobu L, Murariu A, Stamatin O, Baciu ER, Luca EO. Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials. J Funct Biomater 2025; 16:110. [PMID: 40137389 PMCID: PMC11942805 DOI: 10.3390/jfb16030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
We are committed to writing this narrative review given that carbon-based nanomaterials are revolutionizing dental medicine. Since the groundbreaking discovery of carbon nanotubes in 1991, their dental applications have skyrocketed. The numbers speak for themselves: in 2024, the global carbon nanotubes market hit USD 1.3 billion and is set to double to USD 2.6 billion by 2029. Over the past few decades, various forms of carbon nanomaterials have been integrated into dental practices, elevating the quality and effectiveness of dental treatments. They represent a transformative advancement in dentistry, offering numerous benefits such as augmented mechanical properties, antimicrobial activity, and potential for regenerative applications. Both carbon nanotubes (CNTs) and carbon dots (CDs) are derived from carbon and integral to nanotechnology, showcasing the versatility of carbon nanostructures and delivering cutting-edge solutions across diverse domains, such as electronics, materials science, and biomedicine. CNTs are ambitiously examined for their capability to reinforce dental materials, develop biosensors for detecting oral diseases, and even deliver therapeutic agents directly to affected tissues. This review synthesizes their current applications, underscores their interdisciplinary value in bridging nanotechnology and dentistry, identifies key barriers to clinical adoption, and discusses hybrid strategies warranting further research to advance implementation.
Collapse
Affiliation(s)
- Roxana-Ionela Vasluianu
- Department of Prosthodontics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.-I.V.); (O.S.)
| | | | - Livia Bobu
- Department of Surgicals, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Alice Murariu
- Department of Surgicals, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Stamatin
- Department of Prosthodontics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.-I.V.); (O.S.)
| | - Elena-Raluca Baciu
- Department of Dental Materials, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Elena-Odette Luca
- Department of Dental Prosthesis Technology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Koul K, Jawanda IK, Soni T, Madaan K, Bhatt S, Singh P, Sharma D, Bhardwaj SB, Kumari S. Antibacterial and antibiofilm potential of Thuja orientalis L. extract targeting cariogenic Enterococcus faecalis ATCC 29212: A combined in-vitro, in-silico study, and cytotoxicity screening. Arch Oral Biol 2025; 171:106107. [PMID: 39647458 DOI: 10.1016/j.archoralbio.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES In this study, we explored the efficacy of methanolic extract of Thuja orientalis (TOME) as a novel antibacterial and antibiofilm agent against a cariogenic bacterium, Enterococcus faecalis ATCC 29212. DESIGN Antibacterial susceptibility studies were conducted and surface morphology analysis was performed using field emission scanning electron microscopy (FESEM). Antibiofilm activity was evaluated through both qualitative and quantitative biofilm inhibition assays and validated by microscopic analysis. In-silico molecular docking studies were conducted using the EDock server. The effectiveness of TOME was substantiated by biofilm model on dentin discs and cytotoxicity towards the HaCaT cell line was assessed using the MTT assay. RESULTS TOME exhibited significant bactericidal activity with minimum inhibitory concentration of 12.5 mg/mL and additionally, it effectively compromised bacterial cell wall integrity. Qualitative, quantitative and microscopic studies depicted the inhibition of biofilm formation. TOME significantly impacted the production of extracellular polymeric substance and extracellular DNA. Molecular docking studies identified beta-caryophyllene as a potent inhibitor of the Enterococcal surface protein (Esp). Biofilm model depicted the reduction of bacterial load on dentin discs. Additionally, TOME showed reduced cytotoxicity on HaCaT cells, indicating its potential as a safe therapeutic agent. CONCLUSION These findings highlight TOME's promise for developing novel treatments for dental infections and biofilm-associated diseases. Further research should focus on isolating and characterizing the active compounds within TOME, particularly beta-caryophyllene, to elucidate their precise mechanisms of action.
Collapse
Affiliation(s)
- Khyati Koul
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | | | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Kashish Madaan
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Kangra 176206, India
| | - Pranjali Singh
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Divyani Sharma
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sonia Bhonchal Bhardwaj
- Department of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Science and Hospital, Panjab University, Chandigarh 160014, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Mohammed SJ, Sidiq MK, Najmuldeen HH, Kayani KF, Kader DA, Aziz SB. A comprehensive review on nitrogen-doped carbon dots for antibacterial applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:114444. [DOI: 10.1016/j.jece.2024.114444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Lin CJ, Hwang TL, Wang RYL, Nain A, Shih RH, Chang L, Lin HJ, Harroun SG, Chang HT, Huang CC. Augmenting Neutrophil Extracellular Traps with Carbonized Polymer Dots: A Potential Treatment for Bacterial Sepsis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307210. [PMID: 38279606 DOI: 10.1002/smll.202307210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Sepsis is a life-threatening condition that can progress to septic shock as the body's extreme response to pathogenesis damages its own vital organs. Staphylococcus aureus (S. aureus) accounts for 50% of nosocomial infections, which are clinically treated with antibiotics. However, methicillin-resistant strains (MRSA) have emerged and can withstand harsh antibiotic treatment. To address this problem, curcumin (CCM) is employed to prepare carbonized polymer dots (CPDs) through mild pyrolysis. Contrary to curcumin, the as-formed CCM-CPDs are highly biocompatible and soluble in aqueous solution. Most importantly, the CCM-CPDs induce the release of neutrophil extracellular traps (NETs) from the neutrophils, which entrap and eliminate microbes. In an MRSA-induced septic mouse model, it is observed that CCM-CPDs efficiently suppress bacterial colonization. Moreover, the intrinsic antioxidative, anti-inflammatory, and anticoagulation activities resulting from the preserved functional groups of the precursor molecule on the CCM-CPDs prevent progression to severe sepsis. As a result, infected mice treated with CCM-CPDs show a significant decrease in mortality even through oral administration. Histological staining indicates negligible organ damage in the MRSA-infected mice treated with CCM-CPDs. It is believed that the in vivo studies presented herein demonstrate that multifunctional therapeutic CPDs hold great potential against life-threatening infectious diseases.
Collapse
Affiliation(s)
- Chin-Jung Lin
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences, Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33302, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Robert Y L Wang
- Division of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 520012, India
| | - Ren-Hong Shih
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Lung Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay Junior College of Medicine, Nursing and Management, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20231, Taiwan
| | - Scott G Harroun
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Huan-Tsung Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20231, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
5
|
Mohammad NN. Carbon Dots from Tire Waste for the Photodegradation of Methyl Orange Dye, Antimicrobial Activity, and Molecular Docking Study. Chem Biodivers 2023; 20:e202301358. [PMID: 37867143 DOI: 10.1002/cbdv.202301358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
In this study, solvothermal pathway was employed for the synthesis of P, N codoped C-dot using tire waste as a sustainable source of carbon and nitrogen. Comprehensive analyses encompassing X-ray diffraction (XRD) analysis, Transmission Electron Microscopy (TEM), FT-IR, cyclic voltammetry, and UV-Vis spectra were used to assess the crystalline structure, purity, size, fluorescence up-conversion, and morphological attributes of the nanomaterial. Subsequently, the produced C-dots were evaluated for their efficacy in the photocatalytic degradation of methylene blue and methyl orange dyes, demonstrating notable success in degrading methyl orange dye within eight hours in the visible region. Furthermore, the same nanomaterial was applied for carrying out agar disk-diffusion assays against a spectrum of microorganisms. Results revealed substantial inhibition zones against Methicillin-Resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Elucidating the antimicrobial mechanism, molecular-docking simulations were excuted using on AutoDock Vina with designated ligands. The results indicated a strong binding affinity of the C-dots with certain proteins associated with antibacterial activity. This observation suggests that the synthesized C-dots effectively engage with the active sites of these proteins, indicating their potential as promising antibacterial agents. Importantly, this study implies that C-dots do not induce protein denaturation, thereby warranting further investigation of their utility as antibacterial agents.
Collapse
Affiliation(s)
- Nian N Mohammad
- University of Sulaimani, College of Science, Department of Chemistry
- Komar University of Science and Technology, Department of Medical Laboratory Science
| |
Collapse
|
6
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|