1
|
Tavares-Valente D, Moreira H, Sousa P, Amorim M, Conde A, Pintado M, Fernandes J, Azevedo-Silva J. Breaking the virus: Yeast glucans as an effective alternative to acyclovir in HSVI treatment. Eur J Pharm Biopharm 2025; 210:114684. [PMID: 40037469 DOI: 10.1016/j.ejpb.2025.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Glucans, structural polysaccharides in the yeast cell wall, are known for their biological and immunomodulatory capacities, helping in prevention and management of infections. Herpes simplex virus type 1 (HSVI) is a prevalent infection that causes great comorbidity and is challenging to treat due to the adverse effects of standard antiviral drugs like acyclovir. This study assessed the potential of yeast glucans extracted from two different origins - a steviol-glycoside producing strain and a wild-type strain- to circumvent HSVI infection, either in vitro and ex vivo. Treatment with glucans in keratinocytes and macrophages in vitro reduced cell infection similarly to acyclovir. However, unlike acyclovir, glucans demonstrated an immunostimulatory effect, increasing the production of IL-1β, TNF-α and IL-6. Additionally, both glucans were formulated with squalane for skin application. This formulation improved glucans penetration in the skin, restored skin structure and reduced the cytopathic effect of HSVI infection. In summary, this study highlights yeast glucans as a natural therapeutic alternative for HSVI treatment, offering an option with an excellent safety profile. Moreover, using glucans from industrial side-streams promotes a sustainable approach, contributing to the circular economy.
Collapse
Affiliation(s)
- Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Helena Moreira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - António Conde
- Hospital Lusíadas, Av. da Boavista 171, 4050-115 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
2
|
Wolosik K, Chalecka M, Gasiewska G, Palka J, Surazynski A. Squalane as a Promising Agent Protecting UV-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Dermal Fibroblast. Molecules 2025; 30:1964. [PMID: 40363772 PMCID: PMC12073650 DOI: 10.3390/molecules30091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Squalane, a highly stable derivative of squalene, has received attention for its potential application in dermatology and cosmetics due to its biocompatibility, moisturizing properties, and antioxidant activity. This study investigates the effects of squalane on UVA-induced oxidative stress, inflammation, deregulation of collagen metabolism, and some growth signaling pathways in human dermal fibroblasts (HDFs). It has been found that squalane at concentrations of 0.005-0.015% counteracted the UVA-induced inhibition of oxidative stress, collagen biosynthesis, prolidase activity, expression of the β1-integrin receptor, insulin-like growth factor-I receptor (IGFR), transforming growth factor-β (TGF-β), phosphorylated kinases ERK1/2, and increase in the expression of p38 kinase in HDFs. Moreover, squalane at the studied concentrations counteracted UVA-induced increase in the expression of NF-κB and COX-2 in HDFs, suggesting its anti-inflammatory activity. Interestingly, squalane augmented the UVA-induced expression of nuclear factor erythroid 2-related factor 2 (Nrf2). The functional significance of squalane activities was found in a model of wound healing in HDFs. Squalane at the studied concentrations stimulated fibroblast migration, facilitating the repair process following exposure of the cells to UVA radiation. These results demonstrate the ability of squalane to counteract UVA-induced cell damage and suggest its potential to support skin regeneration, highlighting its application in anti-aging, post-sun repair, and regenerative care formulations.
Collapse
Affiliation(s)
- Katarzyna Wolosik
- Independent Cosmetology Laboratory, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Magda Chalecka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (G.G.); (J.P.)
| | - Gabriela Gasiewska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (G.G.); (J.P.)
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (G.G.); (J.P.)
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (G.G.); (J.P.)
| |
Collapse
|
3
|
Mishra A, Halder J, Saha I, Rai VK, Mahanty R, Pradhan D, Dash P, Das C, Rajwar TK, Satpathy B, Manoharadas S, Tata M, Al-Tamimi J, Kar B, Ghosh G, Rath G. Quercetin loaded biogenic squalene nano-lipid carriers for the treatment of dry eye syndrome. Int J Pharm 2025; 674:125457. [PMID: 40074160 DOI: 10.1016/j.ijpharm.2025.125457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
In this study, quercetin-incorporated squalene nanostructured lipid carriers (QS-NLCs) were developed to mitigate the pathological conditions of dry eye disease (DED). The melt emulsification method was used to prepare QS-NLCs. The resulting NLCs have 93.74 ± 9.32 nm particle size, 43.8 ± 5.42 % drug loading and showed good stability for 90 days at different storage conditions. The structural characterization of NLCs was carried out through DSC, FTIR, and XRD, and the morphological study was conducted using TEM analysis. The morphological study emphasised no agglomeration was present in the formulation, and further -31.47 ± 2.18 mV zeta potential supported the TEM analysis. Also, the QS-NLCs showed a release pattern in which more than 70 % of the drug was released in the medium in 1 h. After that, a sustained release pattern was observed for 6 h. However, QS-NLCs also showed higher ex-vivo corneal permeation, i.e., ∼2.5-fold, as compared to free quercetin. Also, no significant difference was observed in the moisture retention capacity of NLCs when compared with control glycerin. Further, the QS-NLCs showed good anti-inflammatory and cytotoxicity activities against RAW 264.7 and HCECs cell lines, respectively. Furthermore, 18.22 ± 1.23 mm of Schirmer score in a 5-day tear production study and a 2.79-fold increased half-life (T1/2), 3.02-fold enhanced area under the curve (AUC0-∞), and 2.88-fold higher mean retention time (MRT0-∞) were obtained which signified the higher bioavailability of QS-NLCs with higher ocular tolerance ensured by modified Draize test. Most importantly, the proposed QS-NLCs improved the pharmacological activities of quercetin against DED.
Collapse
Affiliation(s)
- Ajit Mishra
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ivy Saha
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ritu Mahanty
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bibhanwita Satpathy
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451 Riyadh, Saudi Arabia
| | - Muralidhar Tata
- Department of Biotech and Biomolecular Science, University of New South Wales, Sydney NSW 2033, Australia
| | - Jameel Al-Tamimi
- Zoology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh, Saudi Arabia
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Bu P, Luo J, Wen C, Xu J, Pan G. Evaluating the Effectiveness and Safety of Home Facial Antiaging Beauty Devices Based on Meridian and Acupoint Theory. J Cosmet Dermatol 2025; 24:e70096. [PMID: 40099405 PMCID: PMC11915080 DOI: 10.1111/jocd.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND The increasing use of home beauty devices for antiaging raises questions about their efficacy and safety. Traditional Chinese medicine suggests that stimulating certain meridians and acupoints can aid in antiaging. This study evaluates the effects of two popular home facial devices on facial and body aging, integrating meridian and acupoint theory. METHODS A randomized controlled trial with 90 volunteers (25-65 years) over 4 weeks assessed the devices' impact on skin aging and physical health. Participants were divided into three groups: Group Y, Group J, and a control group. Outcomes were measured using VISIA imaging, standardized photographs, and the Quality of Life Scale, with safety assessments included. RESULTS Of the 90 participants, 80 completed the study. Both Group J and Group Y showed significant improvements in skin wrinkles, texture, radiance, and laxity compared to the control group (p < 0.05). No significant differences were found in physical health improvements (p > 0.05). CONCLUSION The devices showed effectiveness in improving facial skin aging but require further safety verification. The potential of meridian theory integration should be explored further, with a focus on device design and user-friendliness for future research.
Collapse
Affiliation(s)
- Pengzhi Bu
- Institute of Intelligent Medicine, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Ji Luo
- Institute of Intelligent Medicine, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Chuanbiao Wen
- Institute of Intelligent Medicine, Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jing Xu
- College of Acupuncture and MassageChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Guangtao Pan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese MedicineYanchengJiangsu ProvinceChina
| |
Collapse
|
5
|
Montoro-Alonso S, Duque-Soto C, Rueda-Robles A, Reina-Manuel J, Quirantes-Piné R, Borrás-Linares I, Lozano-Sánchez J. Functional Olive Oil Production via Emulsions: Evaluation of Phenolic Encapsulation Efficiency, Storage Stability, and Bioavailability. Nutrients 2024; 16:3909. [PMID: 39599696 PMCID: PMC11597669 DOI: 10.3390/nu16223909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Olive oil is valued for its health benefits, largely due to its bioactive compounds, including hydroxytyrosol (HTyr) and oleuropein (OLE), which have antioxidant, anti-inflammatory, and cardioprotective properties. However, many of these compounds are lost during the production process. This study developed a functional olive oil-derived product using water-in-oil emulsions (W/O) to incorporate commercial extracts rich in HTyr and OLE. METHODS HTyr and OLE were encapsulated in a W/O emulsion to preserve their bioactivity. The encapsulation efficiency (EE) was evaluated, and the performance of the emulsion was tested using an in vitro gastrointestinal digestion model. Bioaccessibility was measured by calculating the recovery percentage of HTyr and OLE during the digestion stages. RESULTS The results showed that OLE exhibited higher EE (88%) than HTyr (65%). During digestion, HTyr exhibited a gradual and controlled release, with bioaccessibility exceeding 80% in the gastric phase and a maintained stability throughout the intestinal phase. In contrast, OLE displayed high bioaccessibility in the gastric phase but experienced a notable decrease during the intestinal phase. Overall, the W/O emulsion provided superior protection and stability for both compounds, particularly for the secoiridoids, compared to the non-emulsified oil. CONCLUSIONS The W/O emulsion improved the encapsulation and bioaccessibility of HTyr and OLE, constituting a promising method for enriching olive oil with bioactive phenolic compounds. Therefore, this method could enhance olive oil's health benefits by increasing the availability of these bioactive compounds during digestion, offering the potential for the development of fortified foods.
Collapse
Affiliation(s)
- Sandra Montoro-Alonso
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - José Reina-Manuel
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (R.Q.-P.); (I.B.-L.)
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (R.Q.-P.); (I.B.-L.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| |
Collapse
|
6
|
Ersoydan S, Rustemeyer T. Investigating the Anti-Inflammatory Activity of Various Brown Algae Species. Mar Drugs 2024; 22:457. [PMID: 39452865 PMCID: PMC11509244 DOI: 10.3390/md22100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
This literature review investigated the anti-inflammatory properties of brown algae, emphasizing their potential for dermatological applications. Due to the limitations and side effects associated with corticosteroids and immunomodulators, interest has been growing in harnessing therapeutic qualities from natural products as alternatives to traditional treatments for skin inflammation. This review explored the bioactive compounds in brown algae, specifically looking into two bioactive compounds, namely, fucoidans and phlorotannins, which are widely known to exhibit anti-inflammatory properties. This review synthesized the findings from various studies, highlighting how these compounds can mitigate inflammation by mechanisms such as reducing oxidative stress, inhibiting protein denaturation, modulating immune responses, and targeting inflammatory pathways, particularly in conditions like atopic dermatitis. The findings revealed species-specific variations influenced by the molecular weight and sulphate content. Challenges related to skin permeability were addressed, highlighting the potential of nanoformulations and penetration enhancers to improve delivery. While the in vivo results using animal models provided positive results, further clinical trials are necessary to confirm these outcomes in humans. This review concludes that brown algae hold substantial promise for developing new dermatological treatments and encourages further research to optimize extraction methods, understand the molecular mechanisms, and address practical challenges such as sustainability and regulatory compliance. This review contributes to the growing body of evidence supporting the integration of marine-derived compounds into therapeutic applications for inflammatory skin diseases.
Collapse
Affiliation(s)
- Selin Ersoydan
- Faculty of Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Thomas Rustemeyer
- Amsterdam University Medical Center, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
7
|
Liu C, Maran JJ, Rupenthal ID, Agarwal P. Mechanism of Ocular Penetration of Lipophilic Drugs from Lipophilic Vehicles. J Pharm Sci 2024; 113:2756-2763. [PMID: 38897564 DOI: 10.1016/j.xphs.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Since eyedrops have conventionally been formulated in aqueous vehicles, ocular pharmacokinetic studies are generally performed using aqueous buffers to identify physicochemical properties of the drug and the vehicles that influence drug absorption. In recent years, biocompatible lipophilic vehicles are increasingly finding application in ocular drug delivery; however, the mechanism of drug penetration from these non-aqueous vehicles is poorly understood. This study aims to compare ocular penetration of the model lipophilic drug curcumin when incorporated into lipophilic vehicles. To elucidate whether intrinsic solubility in the lipophilic vehicle influences ocular penetration, a curcumin solution and suspension were prepared in medium chain triglycerides (MCT) and squalane, respectively. Ocular penetration and distribution of curcumin from both vehicles was compared and evaluated qualitatively and quantitatively ex vivo. Significantly greater and faster penetration was observed from the squalane suspension than from the MCT solution in all ocular tissues. Our results suggest that the ability of lipophilic drugs to partition out of lipophilic vehicles and into cell membranes, rather than their intrinsic solubility in the lipophilic vehicle, determines the rate and extent of their ocular penetration.
Collapse
Affiliation(s)
- Carmen Liu
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Jack Jonathan Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| |
Collapse
|
8
|
Park JS, Seo JH, Jeong MY, Yang IG, Kim JS, Kim JH, Ho MJ, Jin SG, Choi MK, Choi YS, Kang MJ. Carboxymethyl cellulose-based rotigotine nanocrystals-loaded hydrogel for increased transdermal delivery with alleviated skin irritation. Carbohydr Polym 2024; 338:122197. [PMID: 38763711 DOI: 10.1016/j.carbpol.2024.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Transdermal rotigotine (RTG) therapy is prescribed to manage Parkinson's disease (Neupro® patch). However, its use is suffered from application site reactions. Herein, drug nanocrystalline suspension (NS)-loaded hydrogel (NS-HG) employing polysaccharides simultaneously as suspending agent and hydrogel matrix was constructed for transdermal delivery, with alleviated skin irritation. RTG-loaded NS-HG was prepared using a bead-milling technique, employing sodium carboxylmethyl cellulose (Na.CMC) as nano-suspending agent (molecular weight 90,000 g/mol) and hydrogel matrix (700,000 g/mol), respectively. NS-HG was embodied as follows: drug loading: ≤100 mg/mL; shape: rectangular crystalline; crystal size: <286.7 nm; zeta potential: -61 mV; viscosity: <2.16 Pa·s; and dissolution rate: >90 % within 15 min. Nuclear magnetic resonance analysis revealed that the anionic polymers bind to RTG nanocrystals via charge interaction, affording uniform dispersion in the matrix. Rodent transdermal absorption of RTG from NS-HG was comparable to that from microemulsions, and proportional to drug loading. Moreover, NS-HG was skin-friendly; erythema and epidermal swelling were absent after repeated application. Further, NS-HG was chemically stable; >95 % of the drug was preserved up to 4 weeks under long term (25 °C/RH60%), accelerated (40 °C/RH75%), and stress (50 °C) storage conditions. Therefore, this novel cellulose derivative-based nanoformulation presents a promising approach for effective transdermal RTG delivery with improved tolerability.
Collapse
Affiliation(s)
- Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jae Hee Seo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Ji Seong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jin Hwan Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Sung Giu Jin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Koo Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
9
|
Gomez-Molina M, Albaladejo-Marico L, Yepes-Molina L, Nicolas-Espinosa J, Navarro-León E, Garcia-Ibañez P, Carvajal M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int J Mol Sci 2024; 25:5884. [PMID: 38892070 PMCID: PMC11172794 DOI: 10.3390/ijms25115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method. These compounds have the ability to relieve symptoms and hinder the progression of different skin diseases. Because they come from natural sources and have minimal toxicity, phenolic compounds show potential in addressing the causes and effects of skin aging, skin diseases, and various types of skin damage, such as wounds and burns. Hence, this review provides extensive information on the particular crops from which by-product phenolic compounds can be sourced, also emphasizing the need to conduct research according to proper plant material storage practices and the choice of the best extracting method, along with an examination of their specific functions and the mechanisms by which they act to protect skin.
Collapse
Affiliation(s)
- Maria Gomez-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lorena Albaladejo-Marico
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain;
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| |
Collapse
|
10
|
Biswasroy P, Pradhan D, Pradhan DK, Ghosh G, Rath G. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2024; 25:57. [PMID: 38472545 DOI: 10.1208/s12249-024-02774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.
Collapse
Affiliation(s)
- Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College, and Hospital, Baripada, Odisha, India
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Werneck Cerqueira AFL, de Mello Brandão H, Tavares GD, Rodarte MP. Ferulic Acid: A Review of Mechanisms of Action, Absorption, Toxicology, Application on Wound Healing. Antiinflamm Antiallergy Agents Med Chem 2024; 23:205-214. [PMID: 39108119 DOI: 10.2174/0118715230309592240723105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 11/21/2024]
Abstract
Ferulic acid is a widely distributed phenolic substance with diverse bioactive properties, which has been widely used in the pharmaceutical, food, and cosmetic industries. Wounds are complex skin lesions to treat and their treatment is long and costly. This encourages the search for alternative treatments, especially in the area of bioactive substances of natural origin. AIMS This work aims to make a bibliographic survey on studies of the use of ferulic acid in the treatment of wounds. RESULTS The studies found show that ferulic acid acts through different mechanisms of action such as antioxidant, anti-inflammatory, antimicrobial, collagen production, angiogenic, and reepithelialization effects. These properties act synergistically in different stages of healing, which differentiates it from conventional treatments. In addition, ferulic acid has dermal absorption, low skin metabolism, and low toxicity. CONCLUSION Studies in this area are recent and further research is needed to expand the possibilities and therapeutic efficiency of ferulic acid in wound healing.
Collapse
Affiliation(s)
| | | | - Guilherme Diniz Tavares
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Brasil
| | - Mirian Pereira Rodarte
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Brasil
| |
Collapse
|
12
|
Ramírez O, Pomareda F, Olivares B, Huang YL, Zavala G, Carrasco-Rojas J, Álvarez S, Leiva-Sabadini C, Hidalgo V, Romo P, Sánchez M, Vargas A, Martínez J, Aguayo S, Schuh CMAP. Aloe vera peel-derived nanovesicles display anti-inflammatory properties and prevent myofibroblast differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155108. [PMID: 37844380 DOI: 10.1016/j.phymed.2023.155108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Aloe vera (AV) is a medicinal plant, most known for its beneficial effects on a variety of skin conditions. Its known active compounds include carbohydrates and flavonoids such as quercetin and kaempferol, among others. In the past decade, plant nanovesicles (NVs) have gained considerable interest as interkingdom communicators, presenting an opportunity for clinical standardization of natural products. In this study, we aimed to assess the potential of AVpNVs for the treatment of burn wounds. METHODS AVpNVs were isolated and characterized regarding vesicle yield (nanoparticle tracking analysis) and structure (transmission electron microscopy and atomic force microscopy), as well as their protein content with proteomics. We assessed key characteristics for treating burn wounds in vitro, such as the anti-inflammatory potential in LPS-stimulated macrophages and keratinocytes, and the effect of AVpNVs on myofibroblast differentiation and contraction. KEY FINDINGS AVpNVs presented a homogenous NV population, vesicular shape, and NV-associated protein markers. AVpNVs significantly decreased the secretion of pro-inflammatory cytokines TNFα, IL-1β, and IL-6. Furthermore, AVpNVs inhibited myofibroblast differentiation and significantly decreased their contractile potential in collagen matrices. Observed effects were linked to proteins identified in the isolates through proteomics analysis. CONCLUSION AVpNVs displayed characteristics as an inflammatory modulator, while simultaneously diminishing myofibroblast differentiation and contraction. Novel strategies for burn wound treatment seek to decrease scarring on a cellular and molecular level in the early stages of wound healing, which makes AVpNVs a promising candidate for future plant-vesicle-based treatments.
Collapse
Affiliation(s)
- Orlando Ramírez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Florencia Pomareda
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Belén Olivares
- Centro de Química Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Gabriela Zavala
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Simón Álvarez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Camila Leiva-Sabadini
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria Hidalgo
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Pablo Romo
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Matías Sánchez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Ayleen Vargas
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Aguayo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
13
|
Carvalho MJ, Pedrosa SS, Mendes A, Azevedo-Silva J, Fernandes J, Pintado M, Oliveira ALS, Madureira AR. Anti-Aging Potential of a Novel Ingredient Derived from Sugarcane Straw Extract (SSE). Int J Mol Sci 2023; 25:21. [PMID: 38203191 PMCID: PMC10778757 DOI: 10.3390/ijms25010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.
Collapse
Affiliation(s)
- Maria João Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Sílvia Santos Pedrosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Adélia Mendes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| |
Collapse
|
14
|
New Ferulic Acid and Amino Acid Derivatives with Increased Cosmeceutical and Pharmaceutical Potential. Pharmaceutics 2022; 15:pharmaceutics15010117. [PMID: 36678746 PMCID: PMC9861623 DOI: 10.3390/pharmaceutics15010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Ferulic acid (FA) has been widely used in the pharmaceutical and cosmetics industry due to its, inter alia, antioxidant, antiaging and anti-inflammatory effects This compound added to cosmetic preparations can protect skin because of its photoprotective activity. However, the usefulness of FA as a therapeutic agent is limited due to its low solubility and bioavailability. The paper presents the synthesis, identification, and physicochemical properties of new FA derivatives with propyl esters of three amino acids, glycine (GPr[FA]), L-leucine (LPr[FA]), and L-proline (PPr[FA]). The NMR and FTIR spectroscopy, DSC, and TG analysis were used as analytical methods. Moreover, water solubility of the new conjugates was compared with the parent acid. Both ferulic acid and its conjugates were introduced into hydrogel and emulsion, and the resulting formulations were evaluated for stability. Additionally, in vitro penetration of all studied compounds from both formulations and for comparative purposes using Franz diffusion cells was evaluated from the solution in 70% (v/v) ethanol. Finally, cytotoxicity against murine fibroblasts L929 was tested. All of the analyzed compounds permeated pig skin and accumulated in it. LPr[FA] and PPr[FA] were characterized by much better permeability compared to the parent ferulic acid. Additionally, it was shown that all the analyzed derivatives are characterized by high antioxidant activity and lack of cytotoxicity. Therefore, they can be considered as an interesting alternative to be applied in dermatologic and cosmetic preparations.
Collapse
|
15
|
Exploiting Polyphenol-Mediated Redox Reorientation in Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15121540. [PMID: 36558995 PMCID: PMC9787032 DOI: 10.3390/ph15121540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Polyphenol, one of the major components that exert the therapeutic effect of Chinese herbal medicine (CHM), comprises several categories, including flavonoids, phenolic acids, lignans and stilbenes, and has long been studied in oncology due to its significant efficacy against cancers in vitro and in vivo. Recent evidence has linked this antitumor activity to the role of polyphenols in the modulation of redox homeostasis (e.g., pro/antioxidative effect) in cancer cells. Dysregulation of redox homeostasis could lead to the overproduction of reactive oxygen species (ROS), resulting in oxidative stress, which is essential for many aspects of tumors, such as tumorigenesis, progression, and drug resistance. Thus, investigating the ROS-mediated anticancer properties of polyphenols is beneficial for the discovery and development of novel pharmacologic agents. In this review, we summarized these extensively studied polyphenols and discussed the regulatory mechanisms related to the modulation of redox homeostasis that are involved in their antitumor property. In addition, we discussed novel technologies and strategies that could promote the development of CHM-derived polyphenols to improve their versatile anticancer properties, including the development of novel delivery systems, chemical modification, and combination with other agents.
Collapse
|