1
|
Fatema KN, Li L, Ahmad K, Kim J, Lee DW. Development of multifunctional PAA-alginate-carboxymethyl cellulose hydrogel-loaded fiber-reinforced biomimetic scaffolds for controlled release of curcumin. Int J Biol Macromol 2025; 301:140449. [PMID: 39880231 DOI: 10.1016/j.ijbiomac.2025.140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin. The encapsulated curcumin is integrated into porous hydroxyapatite-based scaffolds, which are reinforced with ceramic, carbon, and glass fibers to enhance structural support. Our results demonstrate that the hydrogel-loaded scaffold system ensures sustained release of curcumin. Release rates at pH 7.4 are 13 % (2.6 μg/ml) for CRF, 11 % (2.2 μg/ml) for CF, and 3 % (0.6 μg/ml) for GLF. At pH 5.0, release rates increase to 53 % (10.6 μg/ml) for CRF, 38 % (7.6 μg/ml) for CF, and 25 % (5.1 μg/ml) for GLF. Additionally, the cumulative curcumin release for GLF increased from 5 % to 44 % over 24 h, reflecting physiological and acidic conditions, respectively. The pH sensitivity suggests potential utility for controlled and targeted curcumin delivery, as the release behavior corresponds to pH conditions associated with osteosarcoma microenvironments.
Collapse
Affiliation(s)
- Kamrun Nahar Fatema
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Longlong Li
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Khurshid Ahmad
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Jongyun Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Lagoa R, Rajan L, Violante C, Babiaka SB, Marques-da-Silva D, Kapoor B, Reis F, Atanasov AG. Application of curcuminoids in inflammatory, neurodegenerative and aging conditions - Pharmacological potential and bioengineering approaches to improve efficiency. Biotechnol Adv 2025; 82:108568. [PMID: 40157560 DOI: 10.1016/j.biotechadv.2025.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Curcumin, a natural compound found in turmeric, has shown promise in treating brain-related diseases and conditions associated with aging. Curcumin has shown multiple anti-inflammatory and brain-protective effects, but its clinical use is limited by challenges like poor absorption, specificity and delivery to the right tissues. A range of contemporary approaches at the intersection with bioengineering and systems biology are being explored to address these challenges. Data from preclinical and human studies highlight various neuroprotective actions of curcumin, including the inhibition of neuroinflammation, modulation of critical cellular signaling pathways, promotion of neurogenesis, and regulation of dopamine levels. However, curcumin's multifaceted effects - such as its impact on microRNAs and senescence markers - suggest novel therapeutic targets in neurodegeneration. Tetrahydrocurcumin, a primary metabolite of curcumin, also shows potential due to its presence in circulation and its anti-inflammatory properties, although further research is needed to elucidate its neuroprotective mechanisms. Recent advancements in delivery systems, particularly brain-targeting nanocarriers like polymersomes, micelles, and liposomes, have shown promise in enhancing curcumin's bioavailability and therapeutic efficacy in animal models. Furthermore, the exploration of drug-laden scaffolds and dermal delivery may extend the pharmacological applications of curcumin. Studies reviewed here indicate that engineered dermal formulations and devices could serve as viable alternatives for neuroprotective treatments and to manage skin or musculoskeletal inflammation. This work highlights the need for carefully designed, long-term studies to better understand how curcumin and its bioactive metabolites work, their safety, and their effectiveness.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Applied Molecular Biosciences Unit UCIBIO, Institute for Health and Bioeconomy i4HB, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Logesh Rajan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| | - Cristiana Violante
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research iCBR, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology CIBB, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531 Coimbra, Portugal.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland; Laboratory of Natural Products and Medicinal Chemistry LNPMC, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences SIMATS, Thandalam, Chennai, India; Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Liu X, Wang C, Wang H, Wang G, Zhang Y, Zhang Y. Calcium phosphate-based anti-infective bone cements: recent trends and future perspectives. Front Pharmacol 2025; 16:1522225. [PMID: 40078285 PMCID: PMC11897017 DOI: 10.3389/fphar.2025.1522225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Bone infection remains a challenging condition to fully eradicate due to its intricate nature. Traditional treatment strategies, involving long-term and high-dose systemic antibiotic administration, often encounter difficulties in achieving therapeutic drug concentrations locally and may lead to antibiotic resistance. Bone cement, serving as a local drug delivery matrix, has emerged as an effective anti-infective approach validated in clinical settings. Calcium phosphate cements (CPCs) have garnered widespread attention and application in the local management of bone infections due to their injectable properties, biocompatibility, and degradability. The interconnected porous structure of calcium phosphate particles, not only promotes osteoconductivity and osteoinductivity, but also serves as an ideal carrier for antibacterial agents. Various antimicrobial agents, including polymeric compounds, antibiotics, antimicrobial peptides, therapeutic inorganic ions (TIIs) (and their nanoparticles), graphene, and iodine, have been integrated into CPC matrices in numerous studies aimed at treating bone infections in diverse applications such as defect filling, preparation of metal implant surface coatings, and coating of implant surfaces. Additionally, for bone defects and nonunions resulting from chronic bone infections, the utilization of calcium phosphate-calcium sulfate composite multifunctional cement loaded with antibacterial agents serves to efficiently deal with infection, stimulate new bone formation, and attain an optimal degradation rate of the bone cement matrix. This review briefly delves into various antibacterial strategies based on calcium phosphate cement for the prevention and treatment of bone infections, while also discussing the application of calcium phosphate-calcium sulfate composites in the development of multifunctional bone cement against bone infections.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Chaoli Wang
- Department of Pharmacy, Air Force Medical University, Xi’an, China
| | - Han Wang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Guoliang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Yunfei Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Dahiya A, Chaudhari VS, Bose S. Bone Healing via Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405642. [PMID: 39463050 PMCID: PMC11636189 DOI: 10.1002/smll.202405642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Indexed: 10/29/2024]
Abstract
Carvacrol is a potent antimicrobial and anti-inflammatory agent, while curcumin possesses antioxidant, anti-inflammatory, and anticancer properties. These phytochemicals have poor solubility, bioavailability, and stability in their free form. Nanoencapsulation can reduce these limitations with enhanced translational capability. Integrating nanocarriers with 3D-printed calcium phosphate (CaP) scaffolds presents a novel strategy for bone regeneration. Carvacrol and curcumin-loaded nanoparticles (CC-NP) synthesized with melt emulsification produced negatively charged, monodispersed particles with a hydrodynamic diameter of ≈127 nm. Their release from the scaffold shows a biphasic release under physiological and acidic conditions. At pH 5.0, the CC-NP exhibits a 53% release of curcumin and nearly 100% release of carvacrol, compared to 19% and 36% from their respective drug solutions. At pH 7.4, ≈40% of curcumin and 76% of carvacrol releases, highlighting their pH-sensitive release mechanism. In vitro studies demonstrate a 1.4-fold increase in osteoblast cell viability with CC-NP treatment. CC-NP exhibit cytotoxic effects against osteosarcoma cells, reducing cell viability by ≈2.9-fold. The antibacterial efficacy of CC-NP evaluated against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) exhibiting 98% antibacterial efficacy. This approach enhances therapeutic outcomes and minimizes the potential side effects associated with conventional treatments, paving the way for innovative applications in regenerative medicine.
Collapse
Affiliation(s)
- Aditi Dahiya
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| |
Collapse
|
5
|
Kushram P, Bose S. Improving Biological Performance of 3D-Printed Scaffolds with Garlic-Extract Nanoemulsions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48955-48968. [PMID: 39196793 DOI: 10.1021/acsami.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Complex bone diseases such as osteomyelitis, osteosarcoma, and osteoporosis often cause critical-size bone defects that the body cannot self-repair and require an advanced bone graft material to repair. We have fabricated 3D-printed tricalcium phosphate bone scaffolds functionalized with garlic extract (GE). GE was encapsulated in a nanoemulsion (GE-NE) to enhance bioavailability and stability. GE-NE showed ∼73% drug encapsulation efficiency, with an average particle size of 158 nm and a zeta potential of -14.2 mV. Release of GE-NEs from the scaffold displayed a controlled and biphasic release profile at both acidic and physiological mediums. Results from the osteosarcoma study show that GE-NE demonstrated ∼88% reduction in cancer cell growth while exhibiting no cytotoxicity toward bone-forming cells. Interaction for the functionalized scaffold with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa showed a substantial reduction in bacteria growth by more than 90% compared to the unfunctionalized scaffold. These findings demonstrate the potential of GE-NEs-treated porous scaffolds to treat bone-related diseases, particularly for non-load bearing applications.
Collapse
Affiliation(s)
- Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
6
|
Bose S, Sarkar N, Jo Y. Natural medicine delivery from 3D printed bone substitutes. J Control Release 2024; 365:848-875. [PMID: 37734674 PMCID: PMC11147672 DOI: 10.1016/j.jconrel.2023.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Unmet medical needs in treating critical-size bone defects have led to the development of numerous innovative bone tissue engineering implants. Although additive manufacturing allows flexible patient-specific treatments by modifying topological properties with various materials, the development of ideal bone implants that aid new tissue regeneration and reduce post-implantation bone disorders has been limited. Natural biomolecules are gaining the attention of the health industry due to their excellent safety profiles, providing equivalent or superior performances when compared to more expensive growth factors and synthetic drugs. Supplementing additive manufacturing with natural biomolecules enables the design of novel multifunctional bone implants that provide controlled biochemical delivery for bone tissue engineering applications. Controlled release of naturally derived biomolecules from a three-dimensional (3D) printed implant may improve implant-host tissue integration, new bone formation, bone healing, and blood vessel growth. The present review introduces us to the current progress and limitations of 3D printed bone implants with drug delivery capabilities, followed by an in-depth discussion on cutting-edge technologies for incorporating natural medicinal compounds embedded within the 3D printed scaffolds or on implant surfaces, highlighting their applications in several pre- and post-implantation bone-related disorders.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|