1
|
Zhou H, Wu J, Yu Y, Dai Y, Jin X, Sun Q, Che F, Zhang Y, Cheng J. Establishment and Evaluation of Recombinant Expression of HCV Transmembrane Protein (p7) and Detection of Anti-p7 Antibody in Serum of HCV-Infected Patients by Chemiluminescence. Lab Med 2022; 54:299-307. [PMID: 36300840 DOI: 10.1093/labmed/lmac113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
Objective
Our aim was to establish a chemiluminescence method for detecting anti-transmembrane protein (p7) antibody in the serum of patients with hepatitis C virus (HCV) infection.
Methods
The p7 gene was amplified by polymerase chain reaction using the plasmid PUC-p7 containing the p7 nucleic acid sequence of the HCV 1b genotype as the template, and recombinant plasmid pGEX-KG-p7 was constructed. After p7 fusion, the protein was induced and expressed in the prokaryote, extracted, and purified; the anti-p7 antibody detection kit was prepared, and its efficacy was evaluated.
Results
The plasmid pGEX-KG-p7 was constructed correctly, and p7 fusion protein was obtained. The methodological indexes of the kit, the precision test, blank limit and detection limit, etc, met the requirements. The positive rate of serum anti-p7 antibody in 45 patients with HCV infection was 20%.
Conclusions
The kit can be used in screening diagnosis, condition monitoring, prognosis, and disease mechanism and epidemiological study of HCV infection. The p7 protein has immune response in HCV-infected patients.
Collapse
Affiliation(s)
- Huajun Zhou
- Department of Clinical Research, The 903rd Hospital of the PLA , Hangzhou , China
| | - Jie Wu
- School of Laboratory Medicine, Bengbu Medical College , Bengbu , China
| | - Yu Yu
- School of Laboratory Medicine, Bengbu Medical College , Bengbu , China
| | - Yuzhu Dai
- Department of Clinical Research, The 903rd Hospital of the PLA , Hangzhou , China
- School of Laboratory Medicine, Bengbu Medical College , Bengbu , China
| | - Xiaojuan Jin
- Department of Clinical Research, The 903rd Hospital of the PLA , Hangzhou , China
| | - Qingyang Sun
- Department of Clinical Research, The 903rd Hospital of the PLA , Hangzhou , China
| | - Feihu Che
- Department of Clinical Research, The 903rd Hospital of the PLA , Hangzhou , China
| | - Yingjie Zhang
- School of Laboratory Medicine, Bengbu Medical College , Bengbu , China
| | - Jun Cheng
- Department of Clinical Research, The 903rd Hospital of the PLA , Hangzhou , China
- School of Laboratory Medicine, Bengbu Medical College , Bengbu , China
| |
Collapse
|
2
|
Parodi A, Righetti G, Pesce E, Salis A, Tomati V, Pastorino C, Tasso B, Benvenuti M, Damonte G, Pedemonte N, Cichero E, Millo E. Journey on VX-809-Based Hybrid Derivatives towards Drug-like F508del-CFTR Correctors: From Molecular Modeling to Chemical Synthesis and Biological Assays. Pharmaceuticals (Basel) 2022; 15:ph15030274. [PMID: 35337072 PMCID: PMC8955485 DOI: 10.3390/ph15030274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride’s mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure–activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.
Collapse
Affiliation(s)
- Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Giada Righetti
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Mirko Benvenuti
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
- Correspondence: (E.C.); (E.M.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
- Correspondence: (E.C.); (E.M.)
| |
Collapse
|
3
|
Cichero E, Calautti A, Francesconi V, Tonelli M, Schenone S, Fossa P. Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents. Pharmaceuticals (Basel) 2021; 14:ph14121307. [PMID: 34959708 PMCID: PMC8707824 DOI: 10.3390/ph14121307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Targeting the fusion (F) protein has been recognized as a fruitful strategy for the development of anti-RSV agents. Despite the considerable efforts so far put into the development of RSV F protein inhibitors, the discovery of adequate therapeutics for the treatment of RSV infections is still awaiting a positive breakthrough. Several benzimidazole-containing derivatives have been discovered and evaluated in clinical trials, with only some of them being endowed with a promising pharmacokinetic profile. In this context, we applied a computational study based on a careful analysis of a number of X-ray crystallographic data of the RSV F protein, in the presence of different clinical candidates. A deepen comparison of the related electrostatic features and H-bonding motifs allowed us to pave the way for the following molecular dynamic simulation of JNJ-53718678 and then to perform docking studies of the in-house library of potent benzimidazole-containing anti-RSV agents. The results revealed not only the deep flexibility of the biological target but also the most relevant and recurring key contacts supporting the benzimidazole F protein inhibitor ability. Among them, several hydrophobic interactions and π-π stacking involving F140 and F488 proved to be mandatory, as well as H-bonding to D486. Specific requirements turning in RSV F protein binding ability were also explored thanks to structure-based pharmacophore analysis. Along with this, in silico prediction of absorption, distribution, metabolism, excretion (ADME) properties, and also of possible off-target events was performed. The results highlighted once more that the benzimidazole ring represents a privileged scaffold whose properties deserve to be further investigated for the rational design of novel and orally bioavailable anti-RSV agents.
Collapse
Affiliation(s)
- Elena Cichero
- Correspondence: (E.C.); (M.T.); Tel.: +39-010-353-8350 (E.C.); +39-010-353-8378 (M.T.)
| | | | | | - Michele Tonelli
- Correspondence: (E.C.); (M.T.); Tel.: +39-010-353-8350 (E.C.); +39-010-353-8378 (M.T.)
| | | | | |
Collapse
|
4
|
Stanciu C, Muzica CM, Girleanu I, Cojocariu C, Sfarti C, Singeap AM, Huiban L, Chiriac S, Cuciureanu T, Trifan A. An update on direct antiviral agents for the treatment of hepatitis C. Expert Opin Pharmacother 2021; 22:1729-1741. [PMID: 33896315 DOI: 10.1080/14656566.2021.1921737] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Introduction: The development of direct-acting antiviral (DAA) agents for the treatment of hepatitis C virus (HCV) infection has completely transformed the management of this disease. The advantages of using DAA therapies include high efficacy (sustained virological response (SVR) rate >95%) with minimal side effects, good tolerability, easy drug administration (once daily oral dosing), and short duration of treatment (8-12 weeks). This transformative nature of DAA therapy underpins the goal of the World Health Organization to eliminate HCV infection as a public health threat by 2030.Areas covered: This review seeks to address the current status of DAA therapies, including recent developments, current limitations, and future challenges.Expert opinion: The current DAA regimens, with their high effectiveness and safety profiles, have changed patient perception of HCV infection from a disease that requires complex evaluation and long-term monitoring to a disease that can be cured after one visit to the general practitioner. Despite the remarkably high success rate of DAAs, few patients (4-5%) fail to obtain SVR even after treatment. Five years ahead, the landscape of HCV treatment will undoubtedly continue to evolve, and more pan-genotypic treatment options will be available to all patients.
Collapse
Affiliation(s)
- Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Cristina Maria Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Camelia Cojocariu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Catalin Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Tudor Cuciureanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, ST. SpiridonEmergency Hospital, Iasi, Romania
| |
Collapse
|
5
|
Righetti G, Casale M, Tonelli M, Liessi N, Fossa P, Pedemonte N, Millo E, Cichero E. New Insights into the Binding Features of F508del CFTR Potentiators: A Molecular Docking, Pharmacophore Mapping and QSAR Analysis Approach. Pharmaceuticals (Basel) 2020; 13:ph13120445. [PMID: 33291847 PMCID: PMC7762081 DOI: 10.3390/ph13120445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. To combat this disease, many life-prolonging therapies are required and deeply investigated, including the development of the so-called cystic fibrosis transmembrane conductance regulator (CFTR) modulators, such as correctors and potentiators. Combination therapy with the two series of drugs led to the approval of several multi-drug effective treatments, such as Orkambi, and to the recent promising evaluation of the triple-combination Elexacaftor-Tezacaftor-Ivacaftor. This scenario enlightened the effectiveness of the multi-drug approach to pave the way for the discovery of novel therapeutic agents to contrast CF. The recent X-crystallographic data about the human CFTR in complex with the well-known potentiator Ivacaftor (VX-770) opened the possibility to apply a computational study aimed to explore the key features involved in the potentiator binding. Herein, we discussed molecular docking studies performed onto the chemotypes so far discussed in the literature as CFTR potentiator, reporting the most relevant interactions responsible for their mechanism of action, involving Van der Waals interactions and π–π stacking with F236, Y304, F305 and F312, as well as H-bonding F931, Y304, S308 and R933. This kind of positioning will stabilize the effective potentiator at the CFTR channel. These data have been accompanied by pharmacophore analyses, which promoted the design of novel derivatives endowed with a main (hetero)aromatic core connected to proper substituents, featuring H-bonding moieties. A highly predictive quantitative-structure activity relationship (QSAR) model has been developed, giving a cross-validated r2 (r2cv) = 0.74, a non-cross validated r2 (r2ncv) = 0.90, root mean square error (RMSE) = 0.347, and a test set r2 (r2pred) = 0.86. On the whole, the results are expected to gain useful information to guide the further development and optimization of new CFTR potentiators.
Collapse
Affiliation(s)
- Giada Righetti
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
| | - Monica Casale
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
| | - Nara Liessi
- Center of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; (N.L.); (E.M.)
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
- Correspondence: (P.F.); (E.C.); Tel.: +39-010-353-8238 (P.F.); +39-010-353-8370 (E.C.); Fax: +39-010-353-8399 (P.F.); +39-010-353-8399 (E.C.)
| | | | - Enrico Millo
- Center of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; (N.L.); (E.M.)
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
- Correspondence: (P.F.); (E.C.); Tel.: +39-010-353-8238 (P.F.); +39-010-353-8370 (E.C.); Fax: +39-010-353-8399 (P.F.); +39-010-353-8399 (E.C.)
| |
Collapse
|
6
|
Synthesis and Biological Evaluation of Novel (thio)semicarbazone-Based Benzimidazoles as Antiviral Agents against Human Respiratory Viruses. Molecules 2020; 25:molecules25071487. [PMID: 32218301 PMCID: PMC7180491 DOI: 10.3390/molecules25071487] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory RNA viruses are responsible for recurrent acute respiratory illnesses that still represent a major medical need. Previously we developed a large variety of benzimidazole derivatives able to inhibit these viruses. Herein, two series of (thio)semicarbazone- and hydrazone-based benzimidazoles have been explored, by derivatizing 5-acetyl benzimidazoles previously reported by us, thereby evaluating the influence of the modification on the antiviral activity. Compounds 6, 8, 16 and 17, bearing the 5-(thio)semicarbazone and 5-hydrazone functionalities in combination with the 2-benzyl ring on the benzimidazole core structure, acted as dual inhibitors of influenza A virus and human coronavirus. For respiratory syncytial virus (RSV), activity is limited to the 5-thiosemicarbazone (25) and 5-hydrazone (22) compounds carrying the 2-[(benzotriazol-1/2-yl)methyl]benzimidazole scaffold. These molecules proved to be the most effective antiviral agents, able to reach the potency profile of the licensed drug ribavirin. The molecular docking analysis explained the SAR of these compounds around their binding mode to the target RSV F protein, revealing the key contacts for further assessment. The herein-investigated benzimidazole-based derivatives may represent valuable hit compounds, deserving subsequent structural improvements towards more efficient antiviral agents for the treatment of pathologies caused by these human respiratory viruses.
Collapse
|
7
|
Pang S, Zhao R, Wang S, Wang J. Cyclopeptides design as blockers against HCV p7 channel in silico. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1641604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shichao Pang
- Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Rongcheng Zhao
- Cangzhou Central Hospital, Cardiovascular Ward I, Cangzhou, People’s Republic of China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jingfang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai, People’s Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Alazard-Dany N, Denolly S, Boson B, Cosset FL. Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses 2019; 11:v11010030. [PMID: 30621318 PMCID: PMC6356578 DOI: 10.3390/v11010030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C infection is the leading cause of liver diseases worldwide and a major health concern that affects an estimated 3% of the global population. Novel therapies available since 2014 and 2017 are very efficient and the WHO considers HCV eradication possible by the year 2030. These treatments are based on the so-called direct acting antivirals (DAAs) that have been developed through research efforts by academia and industry since the 1990s. After a brief overview of the HCV life cycle, we describe here the functions of the different targets of current DAAs, the mode of action of these DAAs and potential future inhibitors.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Solène Denolly
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
9
|
Tonelli M, Cichero E, Mahmoud AM, Rabbito A, Tasso B, Fossa P, Ligresti A. Exploring the effectiveness of novel benzimidazoles as CB2 ligands: synthesis, biological evaluation, molecular docking studies and ADMET prediction. MEDCHEMCOMM 2018; 9:2045-2054. [PMID: 30647880 DOI: 10.1039/c8md00461g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Herein we continued our previous work on the development of CB2 ligands, reporting the design and synthesis of a series of benzimidazole-containing derivatives that were explored as selective CB2 ligands with binding affinity towards both CB1 and CB2 receptors. Seven out of eighteen compounds exhibited preferential binding ability to CB2 over CB1 receptors with potencies in the sub-micromolar or low micromolar range. In particular, we identified two promising hit compounds, the agonist 1-[2-(N,N-diethylamino)ethyl]-2-(4-ethoxybenzyl)-5-trifluoromethylbenzimidazole (3) (CB2: K i = 0.42 μM) and the inverse agonist/antagonist 1-butyl-2-(3,4-dichlorobenzyl)-5-trifluoromethylbenzimidazole (11) (CB2: K i = 0.37 μM). Docking studies also performed on other benzimidazoles reported in the literature supported the structure-activity relationship observed in this series of compounds and allowed the key contacts involved in the agonist and/or inverse agonist behaviour displayed by these derivatives to be determined. The in silico evaluation of ADMET properties suggested a favorable pharmacokinetic and safety profile, promoting the drug-likeness of these compounds towards a further optimization process.
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Elena Cichero
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Alì Mokhtar Mahmoud
- National Research Council of Italy , Institute of Biomolecular Chemistry , Endocannabinoid Research Group , Via Campi Flegrei 34 , 80078 Pozzuoli , (Na) , Italy
| | - Alessandro Rabbito
- National Research Council of Italy , Institute of Biomolecular Chemistry , Endocannabinoid Research Group , Via Campi Flegrei 34 , 80078 Pozzuoli , (Na) , Italy
| | - Bruno Tasso
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Paola Fossa
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Alessia Ligresti
- National Research Council of Italy , Institute of Biomolecular Chemistry , Endocannabinoid Research Group , Via Campi Flegrei 34 , 80078 Pozzuoli , (Na) , Italy
| |
Collapse
|
10
|
Francesconi V, Giovannini L, Santucci M, Cichero E, Costi MP, Naesens L, Giordanetto F, Tonelli M. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Eur J Med Chem 2018; 155:229-243. [PMID: 29886325 PMCID: PMC7115377 DOI: 10.1016/j.ejmech.2018.05.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
Abstract
Recently we identified cycloguanil-like dihydrotriazine derivatives, which provided host-factor directed antiviral activity against influenza viruses and respiratory syncytial virus (RSV), by targeting the human dihydrofolate reductase (hDHFR) enzyme. In this context we deemed interesting to further investigate the structure activity relationship (SAR) of our first series of cycloguanil-like dihydrotriazines, designing two novel azaspiro dihydrotriazine scaffolds. The present study allowed the exploration of the potential chemical space, around these new scaffolds, that are well tolerated for maintaining the antiviral effect by means of interaction with the hDHFR enzyme. The new derivatives confirmed their inhibitory profile against influenza viruses, especially type B. In particular, the two best compounds shared potent antiviral activity (4: EC50 = 0.29 μM; 6: EC50 = 0.19 μM), which was comparable to that of zanamivir (EC50 = 0.14 μM), and better than that of ribavirin (EC50 = 3.2 μM). In addition, these two compounds proved to be also effective against RSV (4: EC50 = 0.40 μM, SI ≥ 250; 6: EC50 = 1.8 μM, SI ≥ 56), surpassing the potency and selectivity index (SI) of ribavirin (EC50 = 5.8 μM, SI > 43). By a perspective of these results, the above adequately substituted azaspiro dihydrotriazines may represent valuable hit compounds worthy of further structural optimization to develop improved host DHFR-directed antiviral agents.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Luca Giovannini
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Elena Cichero
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227, Dortmund, Germany
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.
| |
Collapse
|
11
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
12
|
Cichero E, Fresia C, Guida L, Booz V, Millo E, Scotti C, Iamele L, de Jonge H, Galante D, De Flora A, Sturla L, Vigliarolo T, Zocchi E, Fossa P. Identification of a high affinity binding site for abscisic acid on human lanthionine synthetase component C-like protein 2. Int J Biochem Cell Biol 2018; 97:52-61. [DOI: 10.1016/j.biocel.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
|
13
|
Understanding the inhibitory mechanism of BIT225 drug against p7 viroporin using computational study. Biophys Chem 2018; 233:47-54. [DOI: 10.1016/j.bpc.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
|
14
|
Dahl SL, Kalita MM, Fischer WB. Interaction of antivirals with a heptameric bundle model of the p7 protein of hepatitis C virus. Chem Biol Drug Des 2018; 91:942-950. [DOI: 10.1111/cbdd.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sophie L. Dahl
- Institute of Pharmacy and Molecular Biotechnology; Heidelberg University; Heidelberg Germany
| | - Monoj Mon Kalita
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC); School of Biomedical Science and Engineering; National Yang-Ming University; Taipei Taiwan
| | - Wolfgang B. Fischer
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC); School of Biomedical Science and Engineering; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
15
|
Murineddu G, Deligia F, Ragusa G, García-Toscano L, Gómez-Cañas M, Asproni B, Satta V, Cichero E, Pazos R, Fossa P, Loriga G, Fernández-Ruiz J, Pinna GA. Novel sulfenamides and sulfonamides based on pyridazinone and pyridazine scaffolds as CB 1 receptor ligand antagonists. Bioorg Med Chem 2018; 26:295-307. [DOI: 10.1016/j.bmc.2017.11.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
|
16
|
Asproni B, Manca I, Pinna G, Cichero E, Fossa P, Murineddu G, Lazzari P, Loriga G, Pinna GA. Novel pyrrolocycloalkylpyrazole analogues as CB 1 ligands. Chem Biol Drug Des 2017; 91:181-193. [PMID: 28675787 DOI: 10.1111/cbdd.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 06/24/2017] [Indexed: 12/16/2022]
Abstract
Novel 1,4-dihydropyrazolo[3,4-a]pyrrolizine-, 4,5-dihydro-1H-pyrazolo[4,3-g]indolizine- and 1,4,5,6-tetrahydropyrazolo[3,4-c]pyrrolo[1,2-a]azepine-3-carboxamide-based compounds were designed and synthesized for cannabinoid CB1 and CB2 receptor interactions. Any of the new synthesized compounds showed high affinity for CB2 receptor with Ki values superior to 314 nm, whereas some of them showed moderate affinity for CB1 receptor with Ki values inferior to 400 nm. 7-Chloro-1-(2,4-dichlorophenyl)-N-(homopiperidin-1-yl)-4,5-dihydro-1H-pyrazolo[4,3-g]indolizine-3-carboxamide (2j) exhibited good affinity for CB1 receptor (Ki CB1 = 81 nm) and the highest CB2 /CB1 selectively ratio (>12). Docking studies carried out on such compounds were performed using the hCB1 X-ray in complex with the close pyrazole analogue AM6538 and disclosed specific pattern of interactions related to the tricyclic pyrrolopyrazole scaffolds as CB1 ligands.
Collapse
Affiliation(s)
- Battistina Asproni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | | | - Giansalvo Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Paola Fossa
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Gabriele Murineddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | | | - Giovanni Loriga
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, UOS Cagliari, Pula, CA, Italy
| | - Gérard A Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
17
|
Tonelli M, Naesens L, Gazzarrini S, Santucci M, Cichero E, Tasso B, Moroni A, Costi MP, Loddo R. Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus. Eur J Med Chem 2017; 135:467-478. [PMID: 28477572 PMCID: PMC7115580 DOI: 10.1016/j.ejmech.2017.04.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 11/18/2022]
Abstract
We have identified a series of 1-aryl-4,6-diamino-1,2-dihydrotriazines, structurally related to the antimalarial drug cycloguanil, as new inhibitors of influenza A and B virus and respiratory syncytial virus (RSV) via targeting of the host dihydrofolate reductase (DHFR) enzyme. Most analogues proved active against influenza B virus in the low micromolar range, and the best compounds (11, 13, 14 and 16) even reached the sub-micromolar potency of zanamivir (EC50 = 0.060 μM), and markedly exceeded (up to 327 times) the antiviral efficacy of ribavirin. Activity was also observed for two influenza A strains, including a virus with the S31N mutant form of M2 proton channel, which is the most prevalent resistance mutation for amantadine. Importantly, the compounds displayed nanomolar activity against RSV and a superior selectivity index, since the ratio of cytotoxic to antiviral concentration was >10,000 for the three most active compounds 11, 14 and 16 (EC50 ∼0.008 μM), far surpassing the potency and safety profile of the licensed drug ribavirin (EC50 = 5.8 μM, SI > 43).
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy.
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Sabrina Gazzarrini
- Department of Biosciences and National Research Council (CNR), Biophysics Institute (IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100 Modena, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Bruno Tasso
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Anna Moroni
- Department of Biosciences and National Research Council (CNR), Biophysics Institute (IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100 Modena, Italy
| | - Roberta Loddo
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| |
Collapse
|
18
|
Laasch N, Kalita MM, Griffin S, Fischer WB. Small molecule ligand docking to genotype specific bundle structures of hepatitis C virus (HCV) p7 protein. Comput Biol Chem 2016; 64:56-63. [PMID: 27258799 DOI: 10.1016/j.compbiolchem.2016.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
The genome of hepatitis C virus encodes for an essential 63 amino acid polytopic protein p7 of most likely two transmembrane domains (TMDs). The protein is identified to self-assemble thereby rendering lipid membranes permeable to ions. A series of small molecules such as adamantanes, imino sugars and guanidinium compounds are known to interact with p7. A set of 9 of these small molecules is docked against hexameric bundles of genotypes 5a (bundle-5a) and 1b (bundle-1b) using LeadIT. Putative sites for bundle-5a are identified within the pore and at pockets on the outside of the bundle. For bundle-1b preferred sites are found at the site of the loops. Binding energies are in favour of the guanidinium compounds. Rescoring of the identified poses with HYDE reveals a dehydration penalty for the guanidinium compounds, leaving the adamantanes and imino sugar in a better position. Binding energies calculated by HYDE and those by LeadIT indicate that all compounds are moderate binders.
Collapse
Affiliation(s)
- Niklas Laasch
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Monoj Mon Kalita
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Stephen Griffin
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
19
|
Fischer WB, Kalita MM, Heermann D. Viral channel forming proteins--How to assemble and depolarize lipid membranes in silico. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1710-21. [PMID: 26806161 PMCID: PMC7094687 DOI: 10.1016/j.bbamem.2016.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 01/23/2023]
Abstract
Viral channel forming proteins (VCPs) have been discovered in the late 70s and are found in many viruses to date. Usually they are small and have to assemble to form channels which depolarize the lipid membrane of the host cells. Structural information is just about to emerge for just some of them. Thus, computational methods play a pivotal role in generating plausible structures which can be used in the drug development process. In this review the accumulation of structural data is introduced from a historical perspective. Computational performances and their predictive power are reported guided by biological questions such as the assembly, mechanism of function and drug–protein interaction of VCPs. An outlook of how coarse grained simulations can contribute to yet unexplored issues of these proteins is given. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. Early references about the discovery of viral channel forming proteins. Latest structural information about the class of proteins. Identification of structural motifs, assembly mechanism of function and drug action using computational methods. Outlook for the use of coarse grained techniques to address assembly and integration into cellular processes.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| | - Monoj Mon Kalita
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Dieter Heermann
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
20
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
21
|
Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 2015; 7:4461-81. [PMID: 26258788 PMCID: PMC4576187 DOI: 10.3390/v7082826] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of hepatitis C virus (HCV) infection in the human population has triggered intensive research efforts that have led to the development of curative antiviral therapy. Moreover, HCV has become a role model to study fundamental principles that govern the replication cycle of a positive strand RNA virus. In fact, for most HCV proteins high-resolution X-ray and NMR (Nuclear Magnetic Resonance)-based structures have been established and profound insights into their biochemical and biological properties have been gained. One example is p7, a small hydrophobic protein that is dispensable for RNA replication, but crucial for the production and release of infectious HCV particles from infected cells. Owing to its ability to insert into membranes and assemble into homo-oligomeric complexes that function as minimalistic ion channels, HCV p7 is a member of the viroporin family. This review compiles the most recent findings related to the structure and dual pore/ion channel activity of p7 of different HCV genotypes. The alternative conformations and topologies proposed for HCV p7 in its monomeric and oligomeric state are described and discussed in detail. We also summarize the different roles p7 might play in the HCV replication cycle and highlight both the ion channel/pore-like function and the additional roles of p7 unrelated to its channel activity. Finally, we discuss possibilities to utilize viroporin inhibitors for antagonizing p7 ion channel/pore-like activity.
Collapse
|
22
|
Mathew S, Fatima K, Fatmi MQ, Archunan G, Ilyas M, Begum N, Azhar E, Damanhouri G, Qadri I. Computational Docking Study of p7 Ion Channel from HCV Genotype 3 and Genotype 4 and Its Interaction with Natural Compounds. PLoS One 2015; 10:e0126510. [PMID: 26030803 PMCID: PMC4451521 DOI: 10.1371/journal.pone.0126510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/02/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The current standard care therapy for hepatitis C virus (HCV) infection consists of two regimes, namely interferon-based and interferon-free treatments. The treatment through the combination of ribavirin and pegylated interferon is expensive, only mildly effective, and is associated with severe side effects. In 2011, two direct-acting antiviral (DAA) drugs, boceprevir and telaprevir, were licensed that have shown enhanced sustained virologic response (SVR) in phase III clinical trial, however, these interferon-free treatments are more sensitive to HCV genotype 1 infection. The variable nature of HCV, and the limited number of inhibitors developed thus aim in expanding the repertoire of available drug targets, resulting in targeting the virus assembly therapeutically. AIM We conducted this study to predict the 3D structure of the p7 protein from the HCV genotypes 3 and 4. Approximately 63 amino acid residues encoded in HCV render this channel sensitive to inhibitors, making p7 a promising target for novel therapies. HCV p7 protein forms a small membrane known as viroporin, and is essential for effective self-assembly of large channels that conduct cation assembly and discharge infectious virion particles. METHOD In this study, we screened drugs and flavonoids known to disrupt translation and production of HCV proteins, targeted against the active site of p7 residues of HCV genotype 3 (GT3) (isolatek3a) and HCV genotype 4a (GT4) (isolateED43). Furthermore, we conducted a quantitative structure-activity relationship and docking interaction study. RESULTS The drug NB-DNJ formed the highest number of hydrogen bond interactions with both modeled p7 proteins with high interaction energy, followed by BIT225. A flavonoid screen demonstrated that Epigallocatechin gallate (EGCG), nobiletin, and quercetin, have more binding modes in GT3 than in GT4. Thus, the predicted p7 protein molecule of HCV from GT3 and GT4 provides a general avenue to target structure-based antiviral compounds. CONCLUSIONS We hypothesize that the inhibitors of viral p7 identified in this screen may be a new class of potent agents, but further confirmation in vitro and in vivo is essential. This structure-guided drug design for both GT3 and GT4 can lead to the identification of drug-like natural compounds, confirming p7 as a new target in the rapidly increasing era of HCV.
Collapse
Affiliation(s)
- Shilu Mathew
- Department of Biotechnology, Jamal Mohamed College, Tiruchirappalli, India
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan
| | | | - Muhammad Ilyas
- Department of Botany, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu, India
| | - Nargis Begum
- Department of Biotechnology, Jamal Mohamed College, Tiruchirappalli, India
| | - Esam Azhar
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|