1
|
Abbas MN, Broneske D, Saake G. A multi-objective evolutionary algorithm for detecting protein complexes in PPI networks using gene ontology. Sci Rep 2025; 15:16855. [PMID: 40374682 DOI: 10.1038/s41598-025-01667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025] Open
Abstract
Detecting protein complexes is crucial in computational biology for understanding cellular mechanisms and facilitating drug discovery. Evolutionary algorithms (EAs) have proven effective in uncovering protein complexes within networks of protein-protein interactions (PPIs). However, their integration with functional insights from gene ontology (GO) annotations remains underexplored. This paper presents two primary contributions: First, it proposes a novel multi-objective optimization model for detecting protein complexes, conceptualizing the task as a problem with inherently conflicting objectives based on biological data. Second, it introduces an innovative gene ontology-based mutation operator, termed the Functional Similarity-Based Protein Translocation Operator ([Formula: see text]). This operator enhances collaboration between the canonical model and the GO-informed mutation strategy, thereby improving the algorithm's performance. As far as we know, this is the initial effort to incorporate the biological characteristics of PPIs into both the problem formulation and the development of intricate perturbation strategies. We assess the effectiveness of the proposed multi-objective evolutionary algorithm through experiments conducted on two widely recognized PPI networks and two standard complex datasets provided by the Munich Information Center for Protein Sequences (MIPS). To further assess the robustness of our algorithm, we create artificial networks by introducing different noise levels into the original Saccharomyces cerevisiae (yeast) PPI networks. This allows us to evaluate how perturbations in protein interactions affect the algorithm's performance compared to other approaches. The experimental results highlight that our algorithm outperforms several state-of-the-art methods in accurately identifying protein complexes. Moreover, the findings emphasize the substantial advantages of incorporating our heuristic perturbation operator, which significantly improves the quality of the detected complexes over other evolutionary algorithm-based methods.
Collapse
Affiliation(s)
- Mustafa N Abbas
- Databases and Software Engineering, Otto-von-Guericke-University, Magdeburg, Germany.
| | - David Broneske
- German Centre for Higher Education Research and Science Studies, Hannover, Germany
| | - Gunter Saake
- Databases and Software Engineering, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
2
|
Sahoo TR, Patra S, Vipsita S. Decision tree classifier based on topological characteristics of subgraph for the mining of protein complexes from large scale PPI networks. Comput Biol Chem 2023; 106:107935. [PMID: 37536230 DOI: 10.1016/j.compbiolchem.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/11/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
The growing accessibility of large-scale protein interaction data demands extensive research to understand cell organization and its functioning at the network level. Bioinformatics and data mining researchers have extensively studied network clustering to examine the structural and operational features of protein protein interaction (PPI) networks. Clustering PPI networks has proven useful in numerous research over the past two decades for identifying functional modules, understanding the roles of previously unknown proteins, and other purposes. Protein complexes represent one of the essential cellular components for creating biological activities. Inferring protein complexes has been made more accessible by experimental approaches. We offer a novel method that integrates the classification model with local topological data, making it more reliable and efficient. This article describes a decision tree classifier based on topological characteristics of the subgraph for mining protein complexes. The proposed graph-based algorithm is an effective and efficient way to identify protein complexes from large-scale PPI networks. The performance of the proposed algorithm is observed in protein-protein interaction networks of yeast and human in the Database of Interacting Proteins (DIP) and the Biological General Repository for Interaction Datasets (BioGRID) using widely accepted benchmark protein complexes from the comprehensive resource of mammalian protein complexes (CORUM) and the comprehensive catalogue of yeast protein complexes (CYC2008). The outcomes demonstrate that our method can outperform the best-performing supervised, semi-supervised, and unsupervised approaches to detecting protein complexes.
Collapse
Affiliation(s)
- Tushar Ranjan Sahoo
- Bioinformatics Lab, Department of Computer Science, IIIT, Bhubaneswar, India.
| | - Sabyasachi Patra
- Bioinformatics Lab, Department of Computer Science, IIIT, Bhubaneswar, India.
| | - Swati Vipsita
- Bioinformatics Lab, Department of Computer Science, IIIT, Bhubaneswar, India.
| |
Collapse
|
3
|
Sahoo TR, Vipsita S, Patra S. Complex Prediction in Large PPI Networks Using Expansion and Stripe of Core Cliques. Interdiscip Sci 2022:10.1007/s12539-022-00541-z. [PMID: 36306022 DOI: 10.1007/s12539-022-00541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The widespread availability and importance of large-scale protein-protein interaction (PPI) data demand a flurry of research efforts to understand the organisation of a cell and its functionality by analysing these data at the network level. In the bioinformatics and data mining fields, network clustering acquired a lot of attraction to examine a PPI network's topological and functional aspects. The clustering of PPI networks has been proven to be an excellent method for discovering functional modules, disclosing functions of unknown proteins, and other tasks in numerous research over the last decade. This research proposes a unique graph mining approach to detect protein complexes using dense neighbourhoods (highly connected regions) in an interaction graph. Our technique first finds size-3 cliques associated with each edge (protein interaction), and then these core cliques are expanded to form high-density subgraphs. Loosely connected proteins are stripped out from these subgraphs to produce a potential protein complex. Finally, the redundancy is removed based on the Jaccard coefficient. Computational results are presented on the yeast and human protein interaction dataset to highlight our proposed technique's efficiency. Predicted protein complexes of the proposed approach have a significantly higher score of similarity to those used as gold standards in the CYC-2008 and CORUM benchmark databases than other existing approaches.
Collapse
Affiliation(s)
| | - Swati Vipsita
- CSE, IIIT Bhubaneswar, Gothapatna, Bhubaneswar, Odisha, 751003, India
| | - Sabyasachi Patra
- CSE, IIIT Bhubaneswar, Gothapatna, Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
4
|
Pan X, Hu L, Hu P, You ZH. Identifying Protein Complexes From Protein-Protein Interaction Networks Based on Fuzzy Clustering and GO Semantic Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2882-2893. [PMID: 34242171 DOI: 10.1109/tcbb.2021.3095947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein complexes are of great significance to provide valuable insights into the mechanisms of biological processes of proteins. A variety of computational algorithms have thus been proposed to identify protein complexes in a protein-protein interaction network. However, few of them can perform their tasks by taking into account both network topology and protein attribute information in a unified fuzzy-based clustering framework. Since proteins in the same complex are similar in terms of their attribute information and the consideration of fuzzy clustering can also make it possible for us to identify overlapping complexes, we target to propose such a novel fuzzy-based clustering framework, namely FCAN-PCI, for an improved identification accuracy. To do so, the semantic similarity between the attribute information of proteins is calculated and we then integrate it into a well-established fuzzy clustering model together with the network topology. After that, a momentum method is adopted to accelerate the clustering procedure. FCAN-PCI finally applies a heuristical search strategy to identify overlapping protein complexes. A series of extensive experiments have been conducted to evaluate the performance of FCAN-PCI by comparing it with state-of-the-art identification algorithms and the results demonstrate the promising performance of FCAN-PCI.
Collapse
|
5
|
Cao B, Deng S, Qin H, Luo J, Li G, Liang C. Inferring MicroRNA-Disease Associations Based on the Identification of a Functional Module. J Comput Biol 2021; 28:33-42. [DOI: 10.1089/cmb.2019.0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Buwen Cao
- College of Information and Electronic Engineering, Hunan City University, Yiyang, China
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shuguang Deng
- College of Information and Electronic Engineering, Hunan City University, Yiyang, China
| | - Hua Qin
- College of Information and Electronic Engineering, Hunan City University, Yiyang, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- College of Information Science and Engineering, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Patra S, Mohapatra A. Protein complex prediction in interaction network based on network motif. Comput Biol Chem 2020; 89:107399. [PMID: 33152665 DOI: 10.1016/j.compbiolchem.2020.107399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/07/2020] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
The enormous size of Protein-Protein Interaction (PPI) networks demands efficient computational methods to extract biologically significant protein complexes. A wide variety of algorithms have been proposed to predict protein complexes from PPI networks. However, it is still a challenging task to detect protein complexes with high accuracy and manageable sensitivity. In this manuscript, a novel complex prediction algorithm based on Network Motif (CPNM) is proposed. This algorithm addresses the role of proteins in the embeddings of network motif. These roles are used to define feature vectors and feature weights of proteins. Based on these features, a neighborhood search technique predict the protein complexes that consider both the inherent organization of proteins as well as the dense regions in PPI networks. The performance of the proposed algorithm is evaluated using various evaluation metrics like Precision, Recall, F-measure, Sensitivity, PPV, and Accuracy. The research finding indicates that the proposed algorithm outperforms most of the competing algorithms like MCODE, DPClus, RNSC, COACH, ClusterONE, CMC and PROCODE over the PPI network of Saccharomyces cerevisiae and Homo sapiens.
Collapse
Affiliation(s)
- Sabyasachi Patra
- Bioinformatics Lab, Department of Computer Science, IIIT, Bhubaneswar, India.
| | - Anjali Mohapatra
- Bioinformatics Lab, Department of Computer Science, IIIT, Bhubaneswar, India.
| |
Collapse
|
7
|
Protein complex detection algorithm based on multiple topological characteristics in PPI networks. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Zhang W, Xu J, Li Y, Zou X. Integrating network topology, gene expression data and GO annotation information for protein complex prediction. J Bioinform Comput Biol 2018; 17:1950001. [PMID: 30803297 DOI: 10.1142/s021972001950001x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The prediction of protein complexes based on the protein interaction network is a fundamental task for the understanding of cellular life as well as the mechanisms underlying complex disease. A great number of methods have been developed to predict protein complexes based on protein-protein interaction (PPI) networks in recent years. However, because the high throughput data obtained from experimental biotechnology are incomplete, and usually contain a large number of spurious interactions, most of the network-based protein complex identification methods are sensitive to the reliability of the PPI network. In this paper, we propose a new method, Identification of Protein Complex based on Refined Protein Interaction Network (IPC-RPIN), which integrates the topology, gene expression profiles and GO functional annotation information to predict protein complexes from the reconstructed networks. To demonstrate the performance of the IPC-RPIN method, we evaluated the IPC-RPIN on three PPI networks of Saccharomycescerevisiae and compared it with four state-of-the-art methods. The simulation results show that the IPC-RPIN achieved a better result than the other methods on most of the measurements and is able to discover small protein complexes which have traditionally been neglected.
Collapse
Affiliation(s)
- Wei Zhang
- * School of Science, East China Jiaotong University, Nanchang 330013, P. R. China
| | - Jia Xu
- † School of Mechatronic Engineering, East China Jiaotong University, Nanchang 330013, P. R. China
| | - Yuanyuan Li
- ‡ School of Mathematics and Statistics, Wuhan Institute of Technology in Wuhan, Wuhan 430072, P. R. China
| | - Xiufen Zou
- § School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
9
|
Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network. Molecules 2018; 23:molecules23061460. [PMID: 29914123 PMCID: PMC6100434 DOI: 10.3390/molecules23061460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/20/2023] Open
Abstract
High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein–protein interaction (PPI) networks. In this study, based on penalized matrix decomposition (PMD), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMDpc) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMDpc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).
Collapse
|
10
|
Cao B, Deng S, Luo J, Ding P, Wang S. Identification of overlapping protein complexes by fuzzy K-medoids clustering algorithm in yeast protein-protein interaction networks. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-17026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Buwen Cao
- School of Information Science and Engineering, Hunan City University, Yiyang, China
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shuguang Deng
- College of Communication and Electronic Engineering, Hunan City University, Yiyang, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Pingjian Ding
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shulin Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
11
|
CPredictor3.0: detecting protein complexes from PPI networks with expression data and functional annotations. BMC SYSTEMS BIOLOGY 2017; 11:135. [PMID: 29322927 PMCID: PMC5763309 DOI: 10.1186/s12918-017-0504-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Effectively predicting protein complexes not only helps to understand the structures and functions of proteins and their complexes, but also is useful for diagnosing disease and developing new drugs. Up to now, many methods have been developed to detect complexes by mining dense subgraphs from static protein-protein interaction (PPI) networks, while ignoring the value of other biological information and the dynamic properties of cellular systems. RESULTS In this paper, based on our previous works CPredictor and CPredictor2.0, we present a new method for predicting complexes from PPI networks with both gene expression data and protein functional annotations, which is called CPredictor3.0. This new method follows the viewpoint that proteins in the same complex should roughly have similar functions and are active at the same time and place in cellular systems. We first detect active proteins by using gene express data of different time points and cluster proteins by using gene ontology (GO) functional annotations, respectively. Then, for each time point, we do set intersections with one set corresponding to active proteins generated from expression data and the other set corresponding to a protein cluster generated from functional annotations. Each resulting unique set indicates a cluster of proteins that have similar function(s) and are active at that time point. Following that, we map each cluster of active proteins of similar function onto a static PPI network, and get a series of induced connected subgraphs. We treat these subgraphs as candidate complexes. Finally, by expanding and merging these candidate complexes, the predicted complexes are obtained. We evaluate CPredictor3.0 and compare it with a number of existing methods on several PPI networks and benchmarking complex datasets. The experimental results show that CPredictor3.0 achieves the highest F1-measure, which indicates that CPredictor3.0 outperforms these existing method in overall. CONCLUSION CPredictor3.0 can serve as a promising tool of protein complex prediction.
Collapse
|
12
|
Wang J, Zheng W, Qian Y, Liang J. A Seed Expansion Graph Clustering Method for Protein Complexes Detection in Protein Interaction Networks. Molecules 2017; 22:molecules22122179. [PMID: 29292776 PMCID: PMC6150027 DOI: 10.3390/molecules22122179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/03/2017] [Accepted: 12/03/2017] [Indexed: 02/02/2023] Open
Abstract
Most proteins perform their biological functions while interacting as complexes. The detection of protein complexes is an important task not only for understanding the relationship between functions and structures of biological network, but also for predicting the function of unknown proteins. We present a new nodal metric by integrating its local topological information. The metric reflects its representability in a larger local neighborhood to a cluster of a protein interaction (PPI) network. Based on the metric, we propose a seed-expansion graph clustering algorithm (SEGC) for protein complexes detection in PPI networks. A roulette wheel strategy is used in the selection of the seed to enhance the diversity of clustering. For a candidate node u, we define its closeness to a cluster C, denoted as NC(u, C), by combing the density of a cluster C and the connection between a node u and C. In SEGC, a cluster which initially consists of only a seed node, is extended by adding nodes recursively from its neighbors according to the closeness, until all neighbors fail the process of expansion. We compare the F-measure and accuracy of the proposed SEGC algorithm with other algorithms on Saccharomyces cerevisiae protein interaction networks. The experimental results show that SEGC outperforms other algorithms under full coverage.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Wenping Zheng
- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yuhua Qian
- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Jiye Liang
- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
13
|
Lei X, Liang J. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks. Molecules 2017; 22:molecules22071223. [PMID: 28737728 PMCID: PMC6151993 DOI: 10.3390/molecules22071223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Protein complexes play significant roles in cellular processes. Identifying protein complexes from protein-protein interaction (PPI) networks is an effective strategy to understand biological processes and cellular functions. A number of methods have recently been proposed to detect protein complexes. However, most of methods predict protein complexes from static PPI networks, and usually overlook the inherent dynamics and topological properties of protein complexes. In this paper, we proposed a novel method, called NABCAM (Neighbor Affinity-Based Core-Attachment Method), to identify protein complexes from dynamic PPI networks. Firstly, the centrality score of every protein is calculated. The proteins with the highest centrality scores are regarded as the seed proteins. Secondly, the seed proteins are expanded to complex cores by calculating the similarity values between the seed proteins and their neighboring proteins. Thirdly, the attachments are appended to their corresponding protein complex cores by comparing the affinity among neighbors inside the core, against that outside the core. Finally, filtering processes are carried out to obtain the final clustering result. The result in the DIP database shows that the NABCAM algorithm can predict protein complexes effectively in comparison with other state-of-the-art methods. Moreover, many protein complexes predicted by our method are biologically significant.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Jing Liang
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
A path-based measurement for human miRNA functional similarities using miRNA-disease associations. Sci Rep 2016; 6:32533. [PMID: 27585796 PMCID: PMC5009308 DOI: 10.1038/srep32533] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023] Open
Abstract
Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.
Collapse
|
15
|
Luo J, Lin D, Cao B. A cell-core-attachment approach for identifying protein complexes in yeast protein-protein interaction network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2016. [DOI: 10.3233/jifs-169026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|