1
|
Sarkar T, Chen Y, Wang Y, Chen Y, Chen F, Reaux CR, Moore LE, Raghavan V, Xu W. Introducing mirror-image discrimination capability to the TSR-based method for capturing stereo geometry and understanding hierarchical structure relationships of protein receptor family. Comput Biol Chem 2023; 103:107824. [PMID: 36753783 PMCID: PMC9992349 DOI: 10.1016/j.compbiolchem.2023.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
We have developed a Triangular Spatial Relationship (TSR)-based computational method for protein structure comparison and motif discovery that is both sequence and structure alignment-free. A protein 3D structure is modeled by all possible triangles that are constructed with every three Cα atoms of amino acids as vertices. Every triangle is represented using an integer (a key). The keys are calculated by a rule-based formula which is a function of a representative length, a representative angle, and the vertex labels associated with amino acids. A 3D structure is thereby represented by a vector of integers (TSR keys). Global or local structure comparisons are achieved by computing all keys or a set of keys, respectively. Many enzymatic reactions and notable marketed drugs are highly stereospecific. Thus, in this paper, we propose a modified key calculation formula by including a mechanism for discriminating mirror-image keys to capture stereo geometry. We assign a positive or a negative sign to the integers representing mirror-image keys. Applying the new key calculation function provides the ability to further discriminate mirror-image keys that were previously considered identical. As the result, applying the mirror-image discrimination capability (i) significantly increases the number of distinct keys; (ii) decreases the number of common keys; (iii) decreases structural similarity; (iv) increases the opportunity to identify specific keys for each type of the receptors. The specific keys identified in this study for the cases of without (not applying) and with (applying) mirror-image discrimination can be considered as the structure signatures that exclusively belong to a certain type of receptors. Applying mirror-image discrimination introduces stereospecificity to keys for allowing more precise modeling of ligand - target interactions. The development of mirror-image TSR keys of Cα atom, in conjunction with the integration of Cα TSR keys with all-atom TSR keys for amino acids and drugs, will lead to a new and promising computational method for aiding drug design and discovery.
Collapse
Affiliation(s)
- Titli Sarkar
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yuwu Chen
- San Diego Supercomputer Center, University of California San Diego, Gilman Drive, La Jolla, CA 92093, USA
| | - Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Yixin Chen
- Department of Computer and Information Science, The University of Mississippi, MS 38677, USA
| | - Feng Chen
- High Performance Computing, Frey Computing Services Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Camille R Reaux
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Laura E Moore
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Vijay Raghavan
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| |
Collapse
|
2
|
Jones M, Grosche P, Floersheimer A, André J, Gattlen R, Oser D, Tinchant J, Wille R, Chie-Leon B, Gerspacher M, Ertl P, Ostermann N, Altmann E, Manchado E, Vorherr T, Chène P. Design and Biochemical Characterization of Peptidic Inhibitors of the Myb/p300 Interaction. Biochemistry 2023; 62:1321-1329. [PMID: 36883372 DOI: 10.1021/acs.biochem.2c00690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.
Collapse
Affiliation(s)
- Matthew Jones
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Philipp Grosche
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Andreas Floersheimer
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Jérome André
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Raphael Gattlen
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Dieter Oser
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Juliette Tinchant
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Roman Wille
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Barbara Chie-Leon
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Marc Gerspacher
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Nils Ostermann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Eusebio Manchado
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Thomas Vorherr
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
3
|
Joy ST, Henley MJ, De Salle SN, Beyersdorf MS, Vock IW, Huldin AJL, Mapp AK. A Dual-Site Inhibitor of CBP/p300 KIX is a Selective and Effective Modulator of Myb. J Am Chem Soc 2021; 143:15056-15062. [PMID: 34491719 DOI: 10.1021/jacs.1c04432] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high-value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small-molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 5600-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome, leading to inhibition of key Myb·KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces.
Collapse
Affiliation(s)
- Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isaac W Vock
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdisciplinary Research Experiences for Undergraduates Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allison J L Huldin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Kondra S, Sarkar T, Raghavan V, Xu W. Development of a TSR-Based Method for Protein 3-D Structural Comparison With Its Applications to Protein Classification and Motif Discovery. Front Chem 2021; 8:602291. [PMID: 33520934 PMCID: PMC7838567 DOI: 10.3389/fchem.2020.602291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Development of protein 3-D structural comparison methods is important in understanding protein functions. At the same time, developing such a method is very challenging. In the last 40 years, ever since the development of the first automated structural method, ~200 papers were published using different representations of structures. The existing methods can be divided into five categories: sequence-, distance-, secondary structure-, geometry-based, and network-based structural comparisons. Each has its uniqueness, but also limitations. We have developed a novel method where the 3-D structure of a protein is modeled using the concept of Triangular Spatial Relationship (TSR), where triangles are constructed with the Cα atoms of a protein as vertices. Every triangle is represented using an integer, which we denote as “key,” A key is computed using the length, angle, and vertex labels based on a rule-based formula, which ensures assignment of the same key to identical TSRs across proteins. A structure is thereby represented by a vector of integers. Our method is able to accurately quantify similarity of structure or substructure by matching numbers of identical keys between two proteins. The uniqueness of our method includes: (i) a unique way to represent structures to avoid performing structural superimposition; (ii) use of triangles to represent substructures as it is the simplest primitive to capture shape; (iii) complex structure comparison is achieved by matching integers corresponding to multiple TSRs. Every substructure of one protein is compared to every other substructure in a different protein. The method is used in the studies of proteases and kinases because they play essential roles in cell signaling, and a majority of these constitute drug targets. The new motifs or substructures we identified specifically for proteases and kinases provide a deeper insight into their structural relations. Furthermore, the method provides a unique way to study protein conformational changes. In addition, the results from CATH and SCOP data sets clearly demonstrate that our method can distinguish alpha helices from beta pleated sheets and vice versa. Our method has the potential to be developed into a powerful tool for efficient structure-BLAST search and comparison, just as BLAST is for sequence search and alignment.
Collapse
Affiliation(s)
- Sarika Kondra
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Titli Sarkar
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Vijay Raghavan
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| |
Collapse
|
5
|
Xu W, Xie XJ, Faust AK, Liu M, Li X, Chen F, Naquin AA, Walton AC, Kishbaugh PW, Ji JY. All-Atomic Molecular Dynamic Studies of Human and Drosophila CDK8: Insights into Their Kinase Domains, the LXXLL Motifs, and Drug Binding Site. Int J Mol Sci 2020; 21:E7511. [PMID: 33053834 PMCID: PMC7590003 DOI: 10.3390/ijms21207511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using molecular dynamics simulations, combined with functional analyses in Drosophila. Specifically, we evaluated the structural differences between hCDK8 and dCDK8 to predict the effects of the LXXLL motif mutation (AQKAA), the P154L mutations, and drug binding on local structures of the CDK8 proteins. First, we have observed that both the LXXLL motif and the kinase activity of CDK8 are required for the normal larval-to-pupal transition in Drosophila. Second, our molecular dynamic analyses have revealed that hCDK8 has higher hydrogen bond occupation of His149-Asp151 and Asp151-Asn156 than dCDK8. Third, the substructure of Asp282, Phe283, Arg285, Thr287 and Cys291 can distinguish human and Drosophila CDK8 structures. In addition, there are two hydrogen bonds in the LXXLL motif: a lower occupation between L312 and L315, and a relatively higher occupation between L312 and L316. Human CDK8 has higher hydrogen bond occupation between L312 and L316 than dCDK8. Moreover, L312, L315 and L316 in the LXXLL motif of CDK8 have the specific pattern of hydrogen bonds and geometries, which could be crucial for the binding to nuclear receptors. Furthermore, the P154L mutation dramatically decreases the hydrogen bond between L312 and L315 in hCDK8, but not in dCDK8. The mutations of P154L and AQKAA modestly alter the local structures around residues 154. Finally, we identified the inhibitor-induced conformational changes of hCDK8, and our results suggest a structural difference in the drug-binding site between hCDK8 and dCDK8. Taken together, these results provide the structural insights into the roles of the LXXLL motif and the kinase activity of CDK8 in vivo.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| | - Ali K. Faust
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| | - Feng Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Ashlin A. Naquin
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Avery C. Walton
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Peter W. Kishbaugh
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; (A.K.F.); (A.A.N.); (A.C.W.); (P.W.K.)
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; (X.-J.X.); (M.L.); (X.L.)
| |
Collapse
|
6
|
Jeffery HM, Weinzierl ROJ. Multivalent and Bidirectional Binding of Transcriptional Transactivation Domains to the MED25 Coactivator. Biomolecules 2020; 10:biom10091205. [PMID: 32825095 PMCID: PMC7564715 DOI: 10.3390/biom10091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
The human mediator subunit MED25 acts as a coactivator that binds the transcriptional activation domains (TADs) present in various cellular and viral gene-specific transcription factors. Previous studies, including on NMR measurements and site-directed mutagenesis, have only yielded low-resolution models that are difficult to refine further by experimental means. Here, we apply computational molecular dynamics simulations to study the interactions of two different TADs from the human transcription factor ETV5 (ERM) and herpes virus VP16-H1 with MED25. Like other well-studied coactivator-TAD complexes, the interactions of these intrinsically disordered domains with the coactivator surface are temporary and highly dynamic (‘fuzzy’). Due to the fact that the MED25 TAD-binding region is organized as an elongated cleft, we specifically asked whether these TADs are capable of binding in either orientation and how this could be achieved structurally and energetically. The binding of both the ETV5 and VP16-TADs in either orientation appears to be possible but occurs in a conformationally distinct manner and utilizes different sets of hydrophobic residues present in the TADs to drive the interactions. We propose that MED25 and at least a subset of human TADs specifically evolved a redundant set of molecular interaction patterns to allow binding to particular coactivators without major prior spatial constraints.
Collapse
Affiliation(s)
- Heather M. Jeffery
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robert O. J. Weinzierl
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
- Correspondence:
| |
Collapse
|
7
|
Wang C, Greene D, Xiao L, Qi R, Luo R. Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci 2018; 4:87. [PMID: 29367919 PMCID: PMC5768160 DOI: 10.3389/fmolb.2017.00087] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method.
Collapse
Affiliation(s)
- Changhao Wang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - D'Artagnan Greene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Li Xiao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Dahal L, Kwan TOC, Shammas SL, Clarke J. pKID Binds to KIX via an Unstructured Transition State with Nonnative Interactions. Biophys J 2018; 113:2713-2722. [PMID: 29262364 PMCID: PMC5770965 DOI: 10.1016/j.bpj.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding the detailed mechanism of interaction of intrinsically disordered proteins with their partners is crucial to comprehend their functions in signaling and transcription. Through its interaction with KIX, the disordered pKID region of CREB protein is central in the transcription of cAMP responsive genes, including those involved in long-term memory. Numerous simulation studies have investigated these interactions. Combined with experimental results, these can provide valuable and comprehensive understanding of the mechanisms involved. Here, we probe the transition state of this interaction experimentally through analyzing the kinetic effect of mutating both interface and solvent exposed residues in pKID. We show that very few specific interactions between pKID and KIX are required in the initial binding process. Only a small number of weak interactions are formed at the transition state, including nonnative interactions, and most of the folding occurs after the initial binding event. These properties are consistent with computational results and also the majority of experimental studies of intrinsically disordered protein coupled folding and binding in other protein systems, suggesting that these may be common features.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tristan O C Kwan
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|