1
|
Sharma B, Sethi B, Raj S, Poddar R, Prasad A, Sharma SR. Exploration of molecular interactions between scoparone and associated compounds with Constitutive androstane receptor (CAR) leading to gallstone prevention: an in silico investigation. J Biomol Struct Dyn 2024; 42:960-976. [PMID: 37096767 DOI: 10.1080/07391102.2023.2198010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/25/2023] [Indexed: 04/26/2023]
Abstract
Scoparone (6, 7 dimethylesculetin) is a biologically active compound derived from the herb Artemisia capillaris having anti-inflammatory, anti-lipemic, and anti-allergic roles. Activation of the constitutive androstane receptor (CAR) in primary hepatocytes of both wild-type and humanized CAR mice by scoparone, accelerates bilirubin and cholesterol clearance in vivo. This can prevent gallstones which is a dreaded gastrointestinal disease. To date, surgery is regarded as the gold standard for treating gallstones. The molecular interactions between scoparone and CAR leading to gallstone prevention are not yet explored. In this study, we have analyzed these interactions through an insilico approach. After extracting the CAR structures (mice and human) from the protein databank and 6, 7-dimethylesuletin from PubChem, energy minimization of both the receptors was done to make them stable followed by docking. Next, a simulation was performed to stabilize the docked complexes. Through docking, H-bonds and pi-pi interactions were found in the complexes, which imply a stable interaction, thus activating the CAR. A similarity search for scoparone was performed and the selected compounds were docked with the CAR receptors. Esculentin acetate and scopoletin acetate interacted with human CAR through pi-alkyl and H-bond respectively. While Fraxidin methyl ether, fraxinol methyl ether, and 6, 7 diethoxycoumarin interacted with mice CAR through H-bond and Pi-Pi T-shaped bonds. The selected complexes were simulated further. Our results are in accordance with the hypothesis in the literature. We have also analyzed the drug likeliness, absorption, non-carcinogenicity, and other properties of scoparone which can support further in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhavna Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Bhavya Sethi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shashank Raj
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Raju Poddar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Shubha Rani Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
2
|
Gökçe Çalişkan Ş. DFT, Molecular Docking, Bioactivity and ADME Analyses of Vic-dioxim Ligand Containing Hydrazone Group and its Zn(II) Complex. Curr Comput Aided Drug Des 2024; 20:264-273. [PMID: 37828772 DOI: 10.2174/1573409919666230503094400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Cancer is one of the diseases affecting a large population worldwide and resulting in death. Finding new anti-cancer drugs that are target-focused and have low toxicity is of great importance. OBJECTIVE This study aimed to investigate the effects of vic-dioxime derivatives carrying hydrazone group and its Zn(II) complex on cancer using molecular docking, bioactivity and quantum chemical calculations. METHODS Molecular docking studies were performed on epidermal growth factor receptor and vascular endothelial growth factor receptor 2 target proteins. Furthermore, molecular geometry was performed, and the frontier molecular orbitals, Mulliken charges and molecular electron density distribution were evaluated using density functional theory. Also, the bioactivity parameters of the compounds were evaluated, and ADME analysis was performed using web-based tools. RESULTS Higher binding affinity was observed for Zn(II) complex with target proteins vascular endothelial growth factor receptor 2 and against epidermal growth factor receptor when compared with LH2. Only the Zn(II) complex against the epidermal growth factor receptor had ligand efficiency and fit quality in the valid range. Furthermore, LH2 has the most potent electrophilic ability (acceptor) among other compounds. Moreover, both LH2 and Zn(II) complexes strongly satisfy Lipinski's rule of five. CONCLUSION In conclusion, these novel compounds, especially Zn(II) complex, can be new candidates for anticancer drug development studies which are target-focused and have low toxicity.
Collapse
Affiliation(s)
- Şerife Gökçe Çalişkan
- Department of Physics, Faculty of Sciences, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
3
|
Kwain S, Dominy BN, Whitehead KJ, Miller BA, Whitehead DC. Exploring the interactive mechanism of acarbose with the amylase SusG in the starch utilization system of the human gut symbiont Bacteroides thetaiotaomicron through molecular modeling. Chem Biol Drug Des 2023; 102:486-499. [PMID: 37062591 DOI: 10.1111/cbdd.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The α-amylase, SusG, is a principal component of the Bacteroides thetaiotaomicron (Bt) starch utilization system (Sus) used to metabolize complex starch molecules in the human gastrointestinal (GI) tract. We previously reported the non-microbicidal growth inhibition of Bt by the acarbose-mediated arrest of the Sus as a potential therapeutic strategy. Herein, we report a computational approach using density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation to explore the interactive mechanism between acarbose and SusG at the atomic level in an effort to understand how acarbose shuts down the Bt Sus. The docking analysis reveals that acarbose binds orthosterically to SusG with a binding affinity of -8.3 kcal/mol. The MD simulation provides evidence of conformational variability of acarbose at the active site of SusG and also suggests that acarbose interacts with the main catalytic residues via a general acid-base double-displacement catalytic mechanism. These results suggest that small molecule competitive inhibition against the SusG protein could impact the entire Bt Sus and eliminate or reduce the system's ability to metabolize starch. This computational strategy could serve as a potential avenue for structure-based drug design to discover other small molecules capable of inhibiting the Sus of Bt with high potency, thus providing a holistic approach for selective modulation of the GI microbiota.
Collapse
Affiliation(s)
- Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Brian N Dominy
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Kristi J Whitehead
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Brock A Miller
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
El-Saghier AM, Abdou A, Mohamed MAA, Abd El-Lateef HM, Kadry AM. Novel 2-Acetamido-2-ylidene-4-imidazole Derivatives (El-Saghier Reaction): Green Synthesis, Biological Assessment, and Molecular Docking. ACS OMEGA 2023; 8:30519-30531. [PMID: 37636903 PMCID: PMC10448697 DOI: 10.1021/acsomega.3c03767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
El-Saghier reaction is the novel, general, and green reaction of various amines with ethyl cyanoacetate and ethyl glycinate hydrochloride. A new series of imidazolidin-4-ones and bis-N-(alkyl/aryl) imidazolidin-4-ones was synthesized in a sequential, one-pot procedure under neat conditions for 2 h at 70 °C. Excellent high yields (90-98%) were achieved in a short period of time while avoiding issues related to the hazardous solvents utilized (cost, safety, and pollution). The spectrum analyses and elemental data of the newly synthesized compounds helped us to clarify their structures. The obtained compounds were tested for antibacterial activity in vitro and compared to the standard antibiotic chloramphenicol as the standard, measuring the inhibition zone (nm) and activity index (%). With an antibacterial percentage value of 80.0 against Escherichia coli, N,N'-(propane-1,3-diyl) bis(2-(4-oxo-4,5-dihydro-1H-imidazole-2-yl) acetamide) proved to be the most effective. Antimicrobial activity was confirmed by a molecular docking investigation to investigate how chemicals bind to the bacterial FabH-CoA complex in E. coli (PDB ID: 1HNJ).
Collapse
Affiliation(s)
- Ahmed M. El-Saghier
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Aly Abdou
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | | | - Hany M. Abd El-Lateef
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Asmaa M. Kadry
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Jain P, Satija J, Sudandiradoss C. Discovery of andrographolide hit analog as a potent cyclooxygenase-2 inhibitor through consensus MD-simulation, electrostatic potential energy simulation and ligand efficiency metrics. Sci Rep 2023; 13:8147. [PMID: 37208387 PMCID: PMC10199084 DOI: 10.1038/s41598-023-35192-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is the key enzyme responsible for the conversion of arachidonic acid to prostaglandins that display pro-inflammatory properties and thus, it is a potential target protein to develop anti-inflammatory drugs. In this study, chemical and bio-informatics approaches have been employed to find a novel potent andrographolide (AGP) analog as a COX-2 inhibitor having better pharmacological properties than aspirin and rofecoxib (controls). The full amino acid sequenced human Alpha fold (AF) COX-2 protein (604AA) was selected and validated for its accuracy against the reported COX-2 protein structures (PDB ID: 5F19, 5KIR, 5F1A, 5IKQ and 1V0X) followed by multiple sequence alignment analysis to establish the sequence conservation. The systematic virtual screening of 237 AGP analogs against AF-COX-2 protein yielded 22 lead compounds based on the binding energy score (< - 8.0 kcal/mol). These were further screened out to 7 analogs by molecular docking analysis and investigated further for ADMET prediction, ligand efficiency metrics calculations, quantum mechanical analysis, MD simulation, electrostatic potential energy (EPE) docking simulation, and MM/GBSA. In-depth analysis revealed that AGP analog A3 (3-[2-[(1R,4aR,5R,6R,8aR)-6-hydroxy-5,6,8a-trimethyl-2-methylidene-3,4,4a,5,7,8-hexahydro-1H-naphthalen-1-yl]ethylidene]-4-hydroxyoxolan-2-one) forms the most stable complex with the AF-COX-2 showing the least RMSD value (0.37 ± 0.03 nm), a good number of hydrogen bonds (protein-ligand H-bond = 11, and protein H-bond = 525), minimum EPE score (- 53.81 kcal/mol), and lowest MM-GBSA before and after simulation (- 55.37 and - 56.25 kcal/mol, respectively) value compared to other analogs and controls. Thus, we suggest that the identified A3 AGP analog could be developed as a promising plant-based anti-inflammatory drug by inhibiting COX-2.
Collapse
Affiliation(s)
- Priyanka Jain
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C Sudandiradoss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Nhat Phuong D, Flower DR, Chattopadhyay S, Chattopadhyay AK. Towards Effective Consensus Scoring in Structure-Based Virtual Screening. Interdiscip Sci 2023; 15:131-145. [PMID: 36550341 PMCID: PMC9941253 DOI: 10.1007/s12539-022-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Virtual screening (VS) is a computational strategy that uses in silico automated protein docking inter alia to rank potential ligands, or by extension rank protein-ligand pairs, identifying potential drug candidates. Most docking methods use preferred sets of physicochemical descriptors (PCDs) to model the interactions between host and guest molecules. Thus, conventional VS is often data-specific, method-dependent and with demonstrably differing utility in identifying candidate drugs. This study proposes four universality classes of novel consensus scoring (CS) algorithms that combine docking scores, derived from ten docking programs (ADFR, DOCK, Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina and VinaXB), using decoys from the DUD-E repository ( http://dude.docking.org/ ) against 29 MRSA-oriented targets to create a general VS formulation that can identify active ligands for any suitable protein target. Our results demonstrate that CS provides improved ligand-protein docking fidelity when compared to individual docking platforms. This approach requires only a small number of docking combinations and can serve as a viable and parsimonious alternative to more computationally expensive docking approaches. Predictions from our CS algorithm are compared against independent machine learning evaluations using the same docking data, complementing the CS outcomes. Our method is a reliable approach for identifying protein targets and high-affinity ligands that can be tested as high-probability candidates for drug repositioning.
Collapse
Affiliation(s)
- Do Nhat Phuong
- grid.7273.10000 0004 0376 4727Department of Mathematics, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET UK
| | - Darren R. Flower
- grid.7273.10000 0004 0376 4727Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | | | - Amit K. Chattopadhyay
- grid.7273.10000 0004 0376 4727Department of Mathematics, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
7
|
Mohan Kumar R, Anantapur R, Peter A, H V C. Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study. J Biomol Struct Dyn 2022; 40:12165-12183. [PMID: 34463218 DOI: 10.1080/07391102.2021.1968500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Replication Associated Proteins (RAP-1 and RAP-2) encoded by CMV ORF 1a and ORF 2a are required for the different stages of the viral replication cycle; being multi-functional, they are good inhibitory targets for anti-CMV compounds. As a new perspective for sustainable crop improvement, we investigated the natural plant-based antimicrobial phytoalexins for their anti-CMV potential. Here, we modeled and predicted the functional domains of RAP-1 and RAP-2, docked with a ligand library comprising 128 phytoalexins reported with broad-spectrum activity, determined their binding energies (BEs), molecular interactions, and inhibition constant (Ki), and compared with the reference plant antiviral compounds ribavirin, ningnanmycin, and benzothiadiazole (BTH). Further, the change in Gibb's free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules was assessed by the prime MM-GBSA approach. Our results revealed RAP-1 as a discontinuous two-domain and RAP-2 as a multi-domain protein. The compounds glyceollidin (9.8 kcal/mol) and moracin D (7.8 kcal/mol) topped the list for RAP-1 and RAP-2 protein targets respectively and also, the lead molecules had energetically more favorable and comparative ΔG values than the top-scored plant antiviral agent ningnanmycin. The evaluation of in vitro toxicity and agrochemical-like properties showed the least toxicity of these anti-CMV compounds. Taken together, our results provide new insights in understanding the inhibitory effects of phytoalexins towards the RAP proteins and could be employed as new promising anti-CMV candidate compounds for their application in agriculture as biopesticides to combat the CMV disease incidence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshni Mohan Kumar
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Ramachandra Anantapur
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Anitha Peter
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Chaitra H V
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
8
|
Arafath MA, Adam F, Ahamed MBK, Karim MR, Uddin MN, Yamin BM, Abdou A. Ni(II), Pd(II) and Pt(II) complexes with SNO-group thiosemicarbazone and DMSO: Synthesis, Characterization, DFT, Molecular Docking and cytotoxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Nagasundaram N, Padmasree K, Santhosh S, Vinoth N, Sedhu N, Lalitha A. Ultrasound promoted synthesis of new azo fused dihydropyrano[2,3-c]pyrazole derivatives: In vitro antimicrobial, anticancer, DFT, in silico ADMET and Molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Singh VK, Mishra R, Kumari P, Som A, Yadav AK, Ram NK, Kumar P, Schols D, Singh RK. In Silico Design, Synthesis and Anti-HIV Activity of Quinoline Derivatives as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)r. Comput Biol Chem 2022; 98:107675. [DOI: 10.1016/j.compbiolchem.2022.107675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022]
|
11
|
Synthesis & characterization of heterocyclic disazo - azomethine dyes and investigating their molecular docking & dynamics properties on acetylcholine esterase (AChE), heat shock protein (HSP90α), nicotinamide N-methyl transferase (NNMT) and SARS-CoV-2 (2019-nCoV, COVID-19) main protease (Mpro). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
El-Hawary SS, Mohammed R, Lithy NM, AbouZid SF, Mansour MA, Almahmoud SA, Huwaimel B, Amin E. Digalloyl Glycoside: A Potential Inhibitor of Trypanosomal PFK from Euphorbia abyssinica J.F. Gmel. PLANTS (BASEL, SWITZERLAND) 2022; 11:173. [PMID: 35050063 PMCID: PMC8779944 DOI: 10.3390/plants11020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Human African trypanosomiasis is an endemic infectious disease caused by Trypanosoma brucei via the bite of tsetse-fly. Most of the drugs used for the treatment, e.g., Suramin, have shown several problems, including the high level of toxicity. Accordingly, the discovery of anti-trypanosomal drugs from natural sources has become an urgent requirement. In our previous study on the anti-trypanosomal potential of Euphorbia species, Euphorbia abyssinica displayed significant anti-trypanosomal activity. Therefore, a phytochemical investigation of the methanolic extract of E. abyssinica was carried out. Twelve compounds, including two triterpenes (1, 2); one sterol-glucoside (4); three ellagic acid derivatives (3, 9, 11); three gallic acid derivatives (5, 6, 10); and three flavonoids (7, 8, 12), were isolated. The structures of isolated compounds were determined through different spectroscopic techniques. Compound (10) was obtained for the first time from genus Euphorbia while all other compounds except compound (4), were firstly reported in E. abyssinica. Consequently, an in silico study was used to estimate the anti-trypanosomal activity of the isolated compounds. Several compounds displayed interesting activity where 1,6-di-O-galloyl-d-glucose (10) appeared as the most potent inhibitor of trypanosomal phosphofructokinase (PFK). Moreover, molecular dynamics (MD) simulations and ADMET calculations were performed for 1,6-di-O-galloyl-d-glucose. In conclusion, 1,6-di-O-galloyl-d-glucose revealed high binding free energy as well as desirable molecular dynamics and pharmacokinetic properties; therefore, it could be suggested for further in vitro and in vivo studies for trypanosomiasis.
Collapse
Affiliation(s)
- Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt;
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
| | - Nadia M. Lithy
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef, Beni-Suef 62521, Egypt;
| | - Sameh Fekry AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mostafa A. Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University Beni-Suef, Beni-Suef 62521, Egypt;
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 34464, Saudi Arabia;
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
13
|
Nagasundaram N, Govindhan C, Sumitha S, Sedhu N, Raguvaran K, Santhosh S, Lalitha A. Synthesis, characterization and biological evaluation of novel azo fused 2,3-dihydro-1H-perimidine derivatives: In vitro antibacterial, antibiofilm, anti-quorum sensing, DFT, in silico ADME and Molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
In silico screening, SAR and kinetic studies of naturally occurring flavonoids against SARS CoV-2 main protease. ARAB J CHEM 2022; 15:103473. [PMID: 34909065 PMCID: PMC8502681 DOI: 10.1016/j.arabjc.2021.103473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) pandemic has become a global challenge based on its replication within the host cells that relies on non-structural proteins, protease (Mpro). Flavonoids, an important class of naturally occurring compounds with medicinal importance, are frequently available within fruits and vegetables. Herein, we report the in silico studies on naturally occurring flavonoids consisting of molecular docking studies and evaluation of theoretical kinetics. In this study, we prepared a library of nine different classes of naturally occurring flavonoids and screened them on Autodock and Autodockvina. The pharmacokinetic properties of most promising compounds have been predicted through ADMET SAR, inhibition constants, ligand efficiency and ligand fit quality have been worked out theoretically. The results revealed that naturally occurring flavonoids could fit well in the receptor's catalytic pocket, interact with essential amino acid residues and could be useful for future drug candidates through in vitro and in vivo studies. Moreover, MD simulation studies were conducted for two most promising flavonoids and the protein-ligand complexes were found quite stable. The selected natural flavonoids are free from any toxic effects and can be consumed as a preventive measure against SARS CoV-2.
Collapse
|
15
|
Biswas AD, Catte A, Mancini G, Barone V. Analysis of L-DOPA and droxidopa binding to human β 2-adrenergic receptor. Biophys J 2021; 120:5631-5643. [PMID: 34767786 PMCID: PMC8715240 DOI: 10.1016/j.bpj.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, an increasing number of studies has been devoted to a deeper understanding of the molecular process involved in the binding of various agonists and antagonists to active and inactive conformations of β2-adrenergic receptor (β2AR). The 3.2 Å x-ray crystal structure of human β2AR active state in combination with the endogenous low affinity agonist adrenaline offers an ideal starting structure for studying the binding of various catecholamines to adrenergic receptors. We show that molecular docking of levodopa (L-DOPA) and droxidopa into rigid and flexible β2AR models leads for both ligands to binding anchor sites comparable to those experimentally reported for adrenaline, namely D113/N312 and S203/S204/S207 side chains. Both ligands have a hydrogen bond network that is extremely similar to those of noradrenaline and dopamine. Interestingly, redocking neutral and protonated versions of adrenaline to rigid and flexible β2AR models results in binding poses that are more energetically stable and distinct from the x-ray crystal structure. Similarly, lowest energy conformations of noradrenaline and dopamine generated by docking into flexible β2AR models had binding free energies lower than those of best poses in rigid receptor models. Furthermore, our findings show that L-DOPA and droxidopa molecules have binding affinities comparable to those predicted for adrenaline, noradrenaline, and dopamine, which are consistent with previous experimental and computational findings and supported by the molecular dynamics simulations of β2AR-ligand complexes performed here.
Collapse
|
16
|
Abdul-Hammed M, Adedotun IO, Falade VA, Adepoju AJ, Olasupo SB, Akinboade MW. Target-based drug discovery, ADMET profiling and bioactivity studies of antibiotics as potential inhibitors of SARS-CoV-2 main protease (M pro). Virusdisease 2021; 32:642-656. [PMID: 34226871 PMCID: PMC8246438 DOI: 10.1007/s13337-021-00717-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
A recent outbreak of a new strain of Coronavirus (SARS-CoV-2) has become a global health burden, which has resulted in deaths. No proven drug has been found to effectively cure this fast-spreading infection, hence the need to explore old drugs with the known profile in tackling this pandemic. A computer-aided drug design approach involving virtual screening was used to obtain the binding scores and inhibiting efficiencies of previously known antibiotics against SARS-CoV-2 main protease (Mpro). The drug-likeness analysis of the repurposed drugs were done using the Molinspiration chemoinformatics tool, while the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis was carried out using ADMET SAR-2 webserver. Other analyses performed include bioactivities of the repurposed drug as a probable anti-SARS-CoV-2 agent and oral bioavailability analyses among others. The results were compared with those of drugs currently involved in clinical trials in the ongoing pandemic. Although antibiotics have been speculated to be of no use in the treatment of viral infections, literature has emerged lately to reveal the antiviral potential and immune-boosting ability of antibiotics. This study identified Tarivid and Ciprofloxacin with binding affinities of - 8.3 kcal/mol and - 8.1 kcal/mol, respectively as significant inhibitors of SARS-CoV-2 (Mpro) with better pharmacokinetics, drug-likeness and oral bioavailability, bioactivity properties, ADMET properties and inhibitory strength compared to Remdesivir (- 7.6 kcal/mol) and Azithromycin (- 6.3 kcal/mol). These observations will provide insight for further research (clinical trial) in the cure and management of COVID-19.
Collapse
Affiliation(s)
- Misbaudeen Abdul-Hammed
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | - Ibrahim Olaide Adedotun
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | - Victoria Adeola Falade
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | - Adewusi John Adepoju
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | | | - Modinat Wuraola Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| |
Collapse
|
17
|
Type 2 Diabetes Mellitus Mediation by the Disruptive Activity of Environmental Toxicants on Sex Hormone Receptors: In Silico Evaluation. TOXICS 2021; 9:toxics9100255. [PMID: 34678951 PMCID: PMC8538912 DOI: 10.3390/toxics9100255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
This study investigates the disruptive activity of environmental toxicants on sex hormone receptors mediating type 2 diabetes mellitus (T2DM). Toxicokinetics, gene target prediction, molecular docking, molecular dynamics, and gene network analysis were applied in silico techniques. From the results, permethrin, perfluorooctanoic acid, dichlorodiphenyltrichloroethane, O-phenylphenol, bisphenol A, and diethylstilbestrol were the active toxic compounds that could modulate androgen (AR) and estrogen-α and -β receptors (ER) to induce T2DM. Early growth response 1 (EGR1), estrogen receptor 1 (ESR1), and tumour protein 63 (TP63) were the major transcription factors, while mitogen-activated protein kinases (MAPK) and cyclin-dependent kinases (CDK) were the major kinases upregulated by these toxicants via interactions with intermediary proteins such as PTEN, AKT1, NfKβ1, SMAD3 and others in the gene network analysis to mediate T2DM. These toxicants pose a major challenge to public health; hence, monitoring their manufacture, use, and disposal should be enforced. This would ensure reduced interaction between people and these toxic chemicals, thereby reducing the incidence and prevalence of T2DM.
Collapse
|
18
|
Kiriwan D, Choowongkomon K. In silico structural elucidation of the rabies RNA-dependent RNA polymerase (RdRp) toward the identification of potential rabies virus inhibitors. J Mol Model 2021; 27:183. [PMID: 34031746 PMCID: PMC8143072 DOI: 10.1007/s00894-021-04798-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
The rabies virus (RABV) is a non-segmented, negative single-stranded RNA virus which causes acute infection of the central nervous system in humans. Once symptoms appear, the result is nearly always death, and to date, post-exposure prophylaxis (PEP) is the only treatment applicable only immediately after an exposure. Previous studies have identified viral RNA-dependent RNA polymerase (RdRp) as a potential drug target due to its significant role in viral replication and transcription. Herein we generated an energy-minimized homology model of RABIES-RdRp and used it for virtual screening against 2045 NCI Diversity Set III library. The best five ligand-RdRp complexes were picked for further energy minimization via molecular dynamics (MDs) where the complex with ligand Z01690699 shows a minimum score characterized with stable hydrogen bonds and hydrophobic interactions with the catalytic site residues. Our study identified an important ligand for development of remedial approach for treatment of rabies infection.
Collapse
Affiliation(s)
- Duangnapa Kiriwan
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand. .,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
19
|
Singh A, Dhar R. A large-scale computational screen identifies strong potential inhibitors for disrupting SARS-CoV-2 S-protein and human ACE2 interaction. J Biomol Struct Dyn 2021; 40:9004-9017. [PMID: 33998954 PMCID: PMC8146306 DOI: 10.1080/07391102.2021.1921034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 has infected millions of individuals across the globe and has killed over 2.7 million people. Even though vaccines against this virus have recently been introduced, the antibody generated in the process has been reported to decline quickly. This can reduce the efficacy of vaccines over time and can result in re-infections. Thus, drugs that are effective against COVID-19 can provide a second line of defence and can prevent occurrence of the severe form of the disease. The interaction between SARS-CoV2 S-protein and human ACE2 (hACE2) is essential for the infection of the virus. Thus, drugs that block this interaction could potentially inhibit SARS-CoV-2 infection into the host cells. To identify such drugs, we first analyzed the recently published crystal structure of S-protein-hACE2 complex and identified essential residues of both S-protein and hACE2 for this interaction. We used this knowledge to virtually dock a drug library containing 4115 drug molecules against S-protein for repurposing drugs that could inhibit binding of S-protein to hACE2. We identified several potential inhibitors based on their docking scores, pharmacological effects and ability to block residues of S protein required for interaction with hACE2. The top inhibitors included drugs used for the treatment of hepatitis C (velpatasvir, pibrentasvir) as well as several vitamin D derivatives. Several molecules obtained from our screen already have good experimental support in published literature. Thus, we believe that our results will facilitate the discovery of an effective drug against COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adarsh Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
20
|
Onawole A, Hussein IA, Saad MA, Ahmed ME, Nimir H. Computational Screening of Potential Inhibitors of Desulfobacter postgatei for Pyrite Scale Prevention in Oil and Gas Wells. ACS OMEGA 2021; 6:10607-10617. [PMID: 34056214 PMCID: PMC8153761 DOI: 10.1021/acsomega.0c06078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfate-reducing bacteria (SRB), such as Desulfobacter postgatei are found in oil wells. However, they lead to the release of hydrogen sulfide. This in turn leads to the iron sulfide scale formation (pyrite). ATP sulfurylase is an enzyme present in SRB, which catalyzes the formation of adenylyl sulfate (APS) and inorganic pyrophosphatase (PPi) from ATP and sulfate. This reaction is the first among many in hydrogen sulfide production by D. postgatei . Consensus scoring using molecular docking and machine learning was used to identify three potential inhibitors of ATP sulfurylase from a database of about 40 million compounds. These selected hits ((S,E)-1-(4-methoxyphenyl)-3-(9-((m-tolylimino)methyl)-9,10-dihydroanthracen-9-yl)pyrrolidine-2,5-dione; methyl 2-[[(1S)-5-cyano-2-imino-1-(4-phenylthiazol-2-yl)-3-azaspiro[5.5]undec-4-en-4-yl]sulfanyl]acetate; and (4S)-4-(3-chloro-4-hydroxy-phenyl)-1-(6-hydroxypyridazin-3-yl)-3-methyl-4,5-dihydropyrazolo[3,4-b]pyridin-6-ol), known as A, B, and C, respectively) all had good binding affinities with ATP sulfurylase and were further analyzed for their toxicological properties. Compound A had the highest docking score. However, based on the physicochemical and toxicological properties, only compound C was predicted to be both safe and effective as a potential inhibitor of ATP sulfurylase, hence the preferred choice. The molecular interactions of compound C revealed favorable interactions with the following residues: LEU213, ASP308, ARG307, TRP347, LEU224, GLN212, MET211, and HIS309.
Collapse
Affiliation(s)
| | | | - Mohammed A. Saad
- Gas
Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
- Chemical
Engineering Department, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Musa E.M. Ahmed
- Gas
Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Hassan Nimir
- Chemistry
Department, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
21
|
Natesh J, Mondal P, Kaur B, Abdul Salam AA, Kasilingam S, Meeran SM. Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Comput Biol Med 2021; 133:104383. [PMID: 33915361 PMCID: PMC8056879 DOI: 10.1016/j.compbiomed.2021.104383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Identification and repurposing of therapeutic and preventive strategies against COVID-19 are rapidly undergoing. Several medicinal plants from the Himalayan region have been traditionally used to treat various human disorders. Thus, in our current study, we intended to explore the potential ability of Himalayan medicinal plant (HMP) bioactives against COVID-19 using computational investigations. METHODS Molecular docking was performed against six crucial targets involved in the replication and transmission of SARS-CoV-2. About forty-two HMP bioactives were analyzed against these targets for their binding energy, molecular interactions, inhibition constant, and biological pathway enrichment analysis. Pharmacological properties and potential biological functions of HMP bioactives were predicted using the ADMETlab and PASS webserver respectively. RESULTS Our current investigation has demonstrated that the bioactives of HMPs potentially act against COVID-19. Docking results showed that several HMP bioactives had a superior binding affinity with SARS-CoV-2 essential targets like 3CLpro, PLpro, RdRp, helicase, spike protein, and human ACE2. Based on the binding energies, several bioactives were selected and analyzed for pathway enrichment studies. We have found that selected HMP bioactives may have a role in regulating immune and apoptotic pathways. Furthermore, these selected HMP bioactives have shown lower toxicity with pleiotropic biological activities, including anti-viral activities in predicting activity spectra for substances. CONCLUSIONS Current study results can explore the possibility of HMPs as therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Bhavjot Kaur
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Srikaa Kasilingam
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
22
|
Ghoula M, Le Marec A, Magnan C, Le Stunff H, Taboureau O. Identification of the Interactions Interference Between the PH and START Domain of CERT by Limonoid and HPA Inhibitors. Front Mol Biosci 2020; 7:603983. [PMID: 33330630 PMCID: PMC7729066 DOI: 10.3389/fmolb.2020.603983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
The multi domain ceramide transfer protein (CERT) which contains the domains START and PH, is a protein that allows the transport of ceramide from the endoplasmic reticulum to the Golgi and so it plays a major role in sphingolipid metabolism. Recently, the crystal structure of the PH-START complex has been released, suggesting an inhibitory action of START to the binding of the PH domain to the Golgi apparatus and thus limiting the CERT activity. Our study presents a combination of docking and molecular dynamic simulations of N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamides (HPA) analogs and limonoids compounds known to inhibit CERT. Through our computational study, we compared the binding affinity of 14 ligands at both domains (START and PH) and also at the START-PH interface, including several mutations known to play a role in the CERT’s activity. At the difference of HPA compounds, limonoids have a stronger binding affinity for the START-PH interface. Furthermore, 2 inhibitors (HPA-12 and isogedunin) were investigated through molecular dynamic (MD) simulations. 50 ns of molecular dynamic simulations have displayed the stability of isogedunin as well as keys residues in the binding of this molecule at the interface of the PH-START complex. Therefore, this study suggests a novel inhibitory mechanism of CERT for limonoid compounds involving the stabilization of the START-PH interface. This could help to develop new and potentially more selective inhibitors of this transporter, which is a potent target in cancer therapy.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, INSERM U1133, CNRS UMR 8251, Paris, France
| | | | | | - Hervé Le Stunff
- Université Paris Saclay, Institut des Neurosciences Paris Saclay, CNRS UMR 9197, Orsay, France
| | | |
Collapse
|
23
|
Mondal P, Natesh J, Abdul Salam AA, Thiyagarajan S, Meeran SM. Traditional medicinal plants against replication, maturation and transmission targets of SARS-CoV-2: computational investigation. J Biomol Struct Dyn 2020; 40:2715-2732. [PMID: 33150860 PMCID: PMC7651333 DOI: 10.1080/07391102.2020.1842246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
COVID-19 is an infectious pandemic caused by the SARS-CoV-2 virus. The critical components of SARS-CoV-2 are the spike protein (S-protein) and the main protease (Mpro). Mpro is required for the maturation of the various polyproteins involved in replication and transcription. S-protein helps the SARS-CoV-2 to enter the host cells through the angiotensin-converting enzyme 2 (ACE2). Since ACE2 is required for the binding of SARS-CoV-2 on the host cells, ACE2 inhibitors and blockers have got wider attention, in addition to S-protein and Mpro modulators as potential therapeutics for COVID-19. So far, no specific drugs have shown promising therapeutic potential against COVID-19. The current study was undertaken to evaluate the therapeutic potential of traditional medicinal plants against COVID-19. The bioactives from the medicinal plants, along with standard drugs, were screened for their binding against S-protein, Mpro and ACE2 targets using molecular docking followed by molecular dynamics. Based on the higher binding affinity compared with standard drugs, bioactives were selected and further analyzed for their pharmacological properties such as drug-likeness, ADME/T-test, biological activities using in silico tools. The binding energies of several bioactives analyzed with target proteins were relatively comparable and even better than the standard drugs. Based on Lipinski factors and lower binding energies, seven bioactives were further analyzed for their pharmacological and biological characteristics. The selected bioactives were found to have lower toxicity with a higher GI absorption rate and potent anti-inflammatory and anti-viral activities against targets of COVID-19. Therefore, the bioactives from these medicinal plants can be further developed as phytopharmaceuticals for the effective treatment of COVID-19.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanamuthu Thiyagarajan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City Phase I, Electronic City, Bangalore, Karnataka, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
24
|
Onawole AT, Sulaiman KO, Kolapo TU, Akinde FO, Adegoke RO. COVID-19: CADD to the rescue. Virus Res 2020; 285:198022. [PMID: 32417181 PMCID: PMC7228740 DOI: 10.1016/j.virusres.2020.198022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
The recent outbreak of the deadly COVID-19 disease, being caused by the novel coronavirus (SARS-CoV-2), has put the world on red alert as it keeps spreading and recording more fatalities. Research efforts are being carried out to curtail the disease from spreading as it has been declared as of global health emergency. Hence, there is an exigent need to identify and design drugs that are capable of curing the infection and hinder its continual spread across the globe. Herein, a computer-aided drug design tool known as the virtual screening method was used to screen a database of 44 million compounds to find compounds that have the potential to inhibit the surface glycoprotein responsible for virus entry and binding. The consensus scoring approach selected three compounds with promising physicochemical properties and favorable molecular interactions with the target protein. These selected compounds can undergo lead optimization to be further developed as drugs that can be used in treating the COVID-19 disease.
Collapse
Affiliation(s)
- Abdulmujeeb T Onawole
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Kazeem O Sulaiman
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - Temitope U Kolapo
- Department of Veterinary Parasitology and Entomology, University of Ilorin,P.M.B. 1515, Ilorin, Nigeria; Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Fatimo O Akinde
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Rukayat O Adegoke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| |
Collapse
|
25
|
Abstract
Background:
Molecular docking is probably the most popular and profitable approach in
computer-aided drug design, being the staple technique for predicting the binding mode of bioactive
compounds and for performing receptor-based virtual screening studies. The growing attention received
by docking, as well as the need for improving its reliability in pose prediction and virtual screening
performance, has led to the development of a wide plethora of new docking algorithms and scoring
functions. Nevertheless, it is unlikely to identify a single procedure outperforming the other ones in
terms of reliability and accuracy or demonstrating to be generally suitable for all kinds of protein targets.
Methods:
In this context, consensus docking approaches are taking hold in computer-aided drug design.
These computational protocols consist in docking ligands using multiple docking methods and then
comparing the binding poses predicted for the same ligand by the different methods. This analysis is
usually carried out calculating the root-mean-square deviation among the different docking results obtained
for each ligand, in order to identify the number of docking methods producing the same binding
pose.
Results:
The consensus docking approaches demonstrated to improve the quality of docking and virtual
screening results compared to the single docking methods. From a qualitative point of view, the improvement
in pose prediction accuracy was obtained by prioritizing ligand binding poses produced by a
high number of docking methods, whereas with regards to virtual screening studies, high hit rates were
obtained by prioritizing the compounds showing a high level of pose consensus.
Conclusion:
In this review, we provide an overview of the results obtained from the performance assessment
of various consensus docking protocols and we illustrate successful case studies where consensus
docking has been applied in virtual screening studies.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
26
|
Figueredo FG, Ramos ITL, Paz JA, Silva TMS, Câmara CA, de Morais Oliveira-Tintino CD, Tintino SR, de Farias PAM, Menezes IRAD, Coutinho HDM, Fonteles MMDF. Effect of hydroxyamines derived from lapachol and norlachol against Staphylococcus aureus strains carrying the NorA efflux pump. INFECTION GENETICS AND EVOLUTION 2020; 84:104370. [PMID: 32445918 DOI: 10.1016/j.meegid.2020.104370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Isolated substances and those organically synthesized have stood out over the years for their therapeutic properties, including their antibacterial activity. These compounds may be an alternative to the production of new antibiotics or may have the ability to potentiate the action of preexisting ones. In this context, the objective of this study was to evaluate the in vitro antibacterial and efflux pump inhibitory activity of hydroxyamines derived from lapachol and norlachol, more specifically the compounds 2-(2-Hydroxyethylamino)-3-(3-methyl-2-butenyl)-1,4 dihydro-1,4-naphthalenedione, 2-(2-Hydroxyethylamino)-3-(2-methyl-propenyl)[1,4]naphthoquinone and 2-(3-Hydroxypropylamino)-3-(3-methyl-2-butenyl)-[1,4]naphthoquinone, against Staphylococcus aureus strains carrying the NorA efflux pump mechanism. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol, obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. All three molecules underwent a virtual structure-based analysis (docking). The antibacterial activity of the substances was measured by determining their Minimum Inhibitory Concentration (MIC) and a microdilution assay was performed to verify efflux pump inhibition using the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis using an analysis of variance (ANOVA) followed by Bonferroni's post hoc test. The substances obtained MIC values ≥1024 μg/mL, however, a significant reduction of their MICs was observed when the substances were associated with norfloxacin and ethidium bromide, with this effect being attributed to efflux pump inhibition. Following a virtual analysis based on its structure (docking), information regarding the affinity of new ligands for the ABC efflux pump were observed, thus contributing to the understanding of their mechanism of molecular interactions and the discovery of functional ligands associated with a reduction in bacterial resistance.
Collapse
Affiliation(s)
- Fernando Gomes Figueredo
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Ceará, CEP 60.430-370, Fortaleza, CE, Brazil; Department of Microbiology, Faculdade de Medicina Estácio de Juazeiro do Norte- CEP 63048-080, Juazeiro do Norte, CE, Brazil
| | - Ingrid T L Ramos
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Josinete A Paz
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Tania M S Silva
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Celso A Câmara
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | | | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri, CEP, 63105-000 - Crato, CE, Brazil
| | - Pablo Antônio Maia de Farias
- Department of Microbiology, Faculdade de Medicina Estácio de Juazeiro do Norte- CEP 63048-080, Juazeiro do Norte, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Department of of Biological Chemistry, Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri, CEP, 63105-000 - Crato, CE, Brazil.
| | | | - Marta Maria de F Fonteles
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Ceará, CEP 60.430-370, Fortaleza, CE, Brazil
| |
Collapse
|
27
|
GC-MS Profile and Enhancement of Antibiotic Activity by the Essential Oil of Ocotea odorífera and Safrole: Inhibition of Staphylococcus aureus Efflux Pumps. Antibiotics (Basel) 2020; 9:antibiotics9050247. [PMID: 32408576 PMCID: PMC7277935 DOI: 10.3390/antibiotics9050247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 11/17/2022] Open
Abstract
Considering the evidence that essential oils, as well as safrole, could modulate bacterial growth in different resistant strains, this study aims to characterize the phytochemical profile and evaluate the antibacterial and antibiotic-modulating properties of the essential oil Ocotea odorífera (EOOO) and safrole against efflux pump (EP)-carrying strains. The EOOO was extracted by hydrodistillation, and the phytochemical analysis was performed by gas chromatography coupled to mass spectrometry (GC-MS). The antibacterial and antibiotic-modulating activities of the EOOO and safrole against resistant strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were analyzed through the broth microdilution method. The EP-inhibiting potential of safrole in association with ethidium bromide or antibiotics was evaluated using the S. aureus 1199B and K2068 strains, which carry genes encoding efflux proteins associated with antibiotic resistance to norfloxacin and ciprofloxacin, respectively. A reduction in the MIC of ethidium bromide or antibiotics was used as a parameter of EP inhibition. The phytochemical analysis identified 16 different compounds in the EOOO including safrole as the principal constituent. While the EOOO and safrole exerted clinically relevant antibacterial effects against S. aureus only, they potentiated the antibacterial activity of norfloxacin against all strains evaluated by our study. The ethidium bromide and antibiotic assays using the strains of S. aureus SA1119B and K2068, as well as molecular docking analysis, indicated that safrole inhibits the NorA and MepA efflux pumps in S. aureus. In conclusion, Ocotea odorifera and safrole presented promising antibacterial and antibiotic-enhancing properties, which should be explored in the development of drugs to combat antibacterial resistance, especially in strains bearing genes encoding efflux proteins.
Collapse
|
28
|
Poli G, Granchi C, Rizzolio F, Tuccinardi T. Application of MM-PBSA Methods in Virtual Screening. Molecules 2020; 25:molecules25081971. [PMID: 32340232 PMCID: PMC7221544 DOI: 10.3390/molecules25081971] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Computer-aided drug design techniques are today largely applied in medicinal chemistry. In particular, receptor-based virtual screening (VS) studies, in which molecular docking represents the gold standard in silico approach, constitute a powerful strategy for identifying novel hit compounds active against the desired target receptor. Nevertheless, the need for improving the ability of docking in discriminating true active ligands from inactive compounds, thus boosting VS hit rates, is still pressing. In this context, the use of binding free energy evaluation approaches can represent a profitable tool for rescoring ligand-protein complexes predicted by docking based on more reliable estimations of ligand-protein binding affinities than those obtained with simple scoring functions. In the present review, we focused our attention on the Molecular Mechanics-Poisson Boltzman Surface Area (MM-PBSA) method for the calculation of binding free energies and its application in VS studies. We provided examples of successful applications of this method in VS campaigns and evaluation studies in which the reliability of this approach has been assessed, thus providing useful guidelines for employing this approach in VS.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.P.); (C.G.)
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.P.); (C.G.)
| | - Flavio Rizzolio
- Department of Molecular science and Nanosystems, University Ca’ Foscari of Venice, 30170 Venice, Italy;
- Pathology unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.P.); (C.G.)
- Correspondence: ; Tel.: +39-0502219595
| |
Collapse
|
29
|
Dos Santos Maia M, Soares Rodrigues GC, Silva Cavalcanti AB, Scotti L, Scotti MT. Consensus Analyses in Molecular Docking Studies Applied to Medicinal Chemistry. Mini Rev Med Chem 2020; 20:1322-1340. [PMID: 32013847 DOI: 10.2174/1389557520666200204121129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
The increasing number of computational studies in medicinal chemistry involving molecular docking has put the technique forward as promising in Computer-Aided Drug Design. Considering the main method in the virtual screening based on the structure, consensus analysis of docking has been applied in several studies to overcome limitations of algorithms of different programs and mainly to increase the reliability of the results and reduce the number of false positives. However, some consensus scoring strategies are difficult to apply and, in some cases, are not reliable due to the small number of datasets tested. Thus, for such a methodology to be successful, it is necessary to understand why, when and how to use consensus docking. Therefore, the present study aims to present different approaches to docking consensus, applications, and several scoring strategies that have been successful and can be applied in future studies.
Collapse
Affiliation(s)
- Mayara Dos Santos Maia
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Andreza Barbosa Silva Cavalcanti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| |
Collapse
|
30
|
Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key Topics in Molecular Docking for Drug Design. Int J Mol Sci 2019; 20:E4574. [PMID: 31540192 PMCID: PMC6769580 DOI: 10.3390/ijms20184574] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
Molecular docking has been widely employed as a fast and inexpensive technique in the past decades, both in academic and industrial settings. Although this discipline has now had enough time to consolidate, many aspects remain challenging and there is still not a straightforward and accurate route to readily pinpoint true ligands among a set of molecules, nor to identify with precision the correct ligand conformation within the binding pocket of a given target molecule. Nevertheless, new approaches continue to be developed and the volume of published works grows at a rapid pace. In this review, we present an overview of the method and attempt to summarise recent developments regarding four main aspects of molecular docking approaches: (i) the available benchmarking sets, highlighting their advantages and caveats, (ii) the advances in consensus methods, (iii) recent algorithms and applications using fragment-based approaches, and (iv) the use of machine learning algorithms in molecular docking. These recent developments incrementally contribute to an increase in accuracy and are expected, given time, and together with advances in computing power and hardware capability, to eventually accomplish the full potential of this area.
Collapse
Affiliation(s)
- Pedro H M Torres
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Ana C R Sodero
- Department of Drugs and Medicines; School of Pharmacy; Federal University of Rio de Janeiro, Rio de Janeiro 21949-900, RJ, Brazil.
| | - Paula Jofily
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, RJ, Brazil.
| | - Floriano P Silva-Jr
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21949-900, RJ, Brazil.
| |
Collapse
|
31
|
Aroche DP, Vargas JP, Nogara PA, da Silveira Santos F, da Rocha JBT, Lüdtke DS, Rodembusch FS. Glycoconjugates Based on Supramolecular Tröger's Base Scaffold: Synthesis, Photophysics, Docking, and BSA Association Study. ACS OMEGA 2019; 4:13509-13519. [PMID: 31460480 PMCID: PMC6705216 DOI: 10.1021/acsomega.9b01857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 05/03/2023]
Abstract
This study presents new Tröger's bases bearing glycosyl moieties obtained from a copper-catalyzed azide-alkyne cycloaddition reaction. The Tröger's bases present absorption maxima close to 275 nm related to fully spin and symmetry-allowed electronic transitions. The main fluorescence emission located at 350 nm was observed with no influence on the glycosyl moieties. Furthermore, protein detection studies have been performed using bovine serum albumin (BSA) as a model protein, and results have shown a strong interaction between some of the compounds through a static fluorescence suppression mechanism related to the formation of a glycoconjugate-BSA complex favored by the glycosyl subunit. Moreover, docking was also studied for better understanding the suppression mechanism and indicated that the glycosyl and triazole moieties increase the affinity with BSA.
Collapse
Affiliation(s)
- Débora
Muller Pimentel Aroche
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Jaqueline Pinto Vargas
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Pablo Andrei Nogara
- Departamento
de Bioquímica e Biologia Molecular, Centro de Ciências
Naturais e Exatas, Universidade Federal
de Santa Maria, UFSM, 97105-900 Santa Maria, RS, Brazil
| | - Fabiano da Silveira Santos
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - João Batista Teixeira da Rocha
- Departamento
de Bioquímica e Biologia Molecular, Centro de Ciências
Naturais e Exatas, Universidade Federal
de Santa Maria, UFSM, 97105-900 Santa Maria, RS, Brazil
| | - Diogo Seibert Lüdtke
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Fabiano Severo Rodembusch
- Grupo
de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, UFRGS,
Instituto de Química, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Iheagwam FN, Ogunlana OO, Ogunlana OE, Isewon I, Oyelade J. Potential Anti-Cancer Flavonoids Isolated From Caesalpinia bonduc Young Twigs and Leaves: Molecular Docking and In Silico Studies. Bioinform Biol Insights 2019; 13:1177932218821371. [PMID: 30670919 PMCID: PMC6327336 DOI: 10.1177/1177932218821371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Tyrosine kinase (TK), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are important cancer therapeutic target proteins. Based on reported anti-cancer and cytotoxic activities of Caesalpinia bonduc, this study isolated phytochemicals from young twigs and leaves of C bonduc and identified the interaction between them and cancer target proteins (TK, VEGF, and MMP) in silico. AutoDock Vina, iGEMDOCK, and analysis of pharmacokinetic and pharmacodynamic properties of the isolated bioactives as therapeutic molecules were performed. Seven phytochemicals (7-hydroxy-4′-methoxy-3,11-dehydrohomoisoflavanone, 4,4′-dihydroxy-2’-methoxy-chalcone, 7,4′-dihydroxy-3,11-dehydrohomoisoflavanone, luteolin, quercetin-3-methyl, kaempferol-3-O-β-d-xylopyranoside and kaempferol-3-O-α-l-rhamnopyranosyl-(1 → 2)-β-D-xylopyranoside) were isolated. Molecular docking analysis showed that the phytochemicals displayed strong interactions with the proteins compared with their respective drug inhibitors. Pharmacokinetic and pharmacodynamic properties of the compounds were promising suggesting that they can be developed as putative lead compounds for developing new anti-cancer drugs.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, Ota, Nigeria.,Covenant University Public Health & Wellness Research Cluster, Covenant University, Ota, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, Ota, Nigeria.,Bioinformatics Research Unit, Covenant University, Ota, Nigeria
| | | | - Itunuoluwa Isewon
- Covenant University Public Health & Wellness Research Cluster, Covenant University, Ota, Nigeria.,Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
| | - Jelili Oyelade
- Bioinformatics Research Unit, Covenant University, Ota, Nigeria.,Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
| |
Collapse
|
33
|
Sulaiman KO, Kolapo TU, Onawole AT, Islam MA, Adegoke RO, Badmus SO. Molecular dynamics and combined docking studies for the identification of Zaire ebola virus inhibitors. J Biomol Struct Dyn 2018; 37:3029-3040. [PMID: 30058446 DOI: 10.1080/07391102.2018.1506362] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebola virus (EBOV) is a lethal human pathogen with a risk of global spread of its zoonotic infections, and Ebolavirus Zaire specifically has the highest fatality rate amongst other species. There is a need for continuous effort towards having therapies, as a single licensed treatment to neutralize the EBOV is yet to come into reality. This present study virtually screened the MCULE database containing almost 36 million compounds against the structure of a Zaire Ebola viral protein (VP) 35 and a consensus scoring of both MCULE and CLCDDW docking programs remarked five compounds as potential hits. These compounds, with binding energies ranging from -7.9 to -8.9 kcal/mol, were assessed for predictions of their physicochemical and bioactivity properties, as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The results of the 50 ns molecular dynamics simulations showed the presence of dynamic stability between ligand and protein complexes, and the structures remained significantly unchanged at the ligand-binding site throughout the simulation period. Both docking analysis and molecular dynamics simulation studies suggested strong binding affinity towards the receptor cavity and these selected compounds as potential inhibitors against the Zaire Ebola VP 35. With respect to inhibition constant values, bioavailability radar and other physicochemical properties, compound A (MCULE-1018045960-0-1) appeared to be the most promising hit compound. However, the ligand efficiency and ligand efficiency scale need improvement during optimization, and also validation via in vitro and in vivo studies are necessary to finally make a lead compound in treating Ebola virus diseases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kazeem O Sulaiman
- a Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| | - Temitope U Kolapo
- b Department of Veterinary Parasitology and Entomology , University of Ilorin , Ilorin , Nigeria.,c Department of Veterinary Microbiology , University of Saskatchewan , Saskatchewan , Canada
| | | | - Md Ataul Islam
- e Department of Chemical Pathology Faculty of Health Sciences , University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria , South Africa.,f School of Health Sciences , University of Kwazulu-Natal Westville Campus , Durban , South Africa
| | - Rukayat O Adegoke
- g Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Suaibu O Badmus
- g Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| |
Collapse
|
34
|
Prediction Methods of Herbal Compounds in Chinese Medicinal Herbs. Molecules 2018; 23:molecules23092303. [PMID: 30201875 PMCID: PMC6225236 DOI: 10.3390/molecules23092303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Chinese herbal medicine has recently gained worldwide attention. The curative mechanism of Chinese herbal medicine is compared with that of western medicine at the molecular level. The treatment mechanism of most Chinese herbal medicines is still not clear. How do we integrate Chinese herbal medicine compounds with modern medicine? Chinese herbal medicine drug-like prediction method is particularly important. A growing number of Chinese herbal source compounds are now widely used as drug-like compound candidates. An important way for pharmaceutical companies to develop drugs is to discover potentially active compounds from related herbs in Chinese herbs. The methods for predicting the drug-like properties of Chinese herbal compounds include the virtual screening method, pharmacophore model method and machine learning method. In this paper, we focus on the prediction methods for the medicinal properties of Chinese herbal medicines. We analyze the advantages and disadvantages of the above three methods, and then introduce the specific steps of the virtual screening method. Finally, we present the prospect of the joint application of various methods.
Collapse
|
35
|
Onawole AT, Popoola SA, Saleh TA, Al-Saadi AA. Silver-loaded graphene as an effective SERS substrate for clotrimazole detection: DFT and spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:354-361. [PMID: 29763829 DOI: 10.1016/j.saa.2018.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/19/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
Vibrational infrared, Raman and surface-enhanced Raman scattering (SERS) spectra of clotrimazole (CTZ) were documented and evaluated. Density-functional theory, B3LYP/6-311++G(d,p), approach was implemented to identify the possible conformations, develop the electrostatic potential map, evaluate frontier molecular orbitals and calculate the vibrational spectra of the target compound. The silver-loaded graphene was shown to be an effective SERS substrate for CTZ trace detection. The SERS spectrum showed two enhanced bands at 670 cm-1 and 700 cm-1 which confirmed the absorption of the silver substrate through chlorine and nitrogen atoms. A detection limit as low as 5 nM could be reached with a determination coefficient of 0.9988 using the band at 670 cm-1. The protein-ligand interaction with Secreted Aspartic Proteinase 2 (SAP2) of C. albicans showed that the four stable forms of CTZ maintain a free energy of binding of 6-7 kcal/mol, which could give insights into the mode of action in treating Candidiasis.
Collapse
Affiliation(s)
- Abdulmujeeb T Onawole
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saheed A Popoola
- Department of Chemistry, Islamic University of Madinah, Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| |
Collapse
|