1
|
Gu X, Zhang X, Zhang X, Wang X, Sun W, Zhang Y, Hu Z. Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:3. [PMID: 39753911 PMCID: PMC11699025 DOI: 10.1007/s13659-024-00486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro). Sydowiol B interacts with the nano-channel at the Mpro dimer interface and the PLpro active site. Molecular dynamics simulations suggest that sydowiol B inhibits Mpro by limiting active site expansion rather than inducing collapse. Furthermore, sydowiol B binding may amplify the fluctuation of two loops coordinating with the structural Zn2+ in PLpro, displacing Zn2+ from the zinc finger domain to the S2 helix. Sydowiol B and its analogue, violaceol I, exhibit broad-spectrum antiviral activity against homologous coronaviruses. Given the conservation of Mpro and PLpro, sydowiol B and violaceol I are promising leads for designing and developing anti-coronavirus therapies.
Collapse
Affiliation(s)
- Xiaoxia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaotian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xinyu Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Ritaparna P, Dhal AK, Mahapatra RK. An in-silico study of FIKK9.5 protein of Plasmodium falciparum for identification of therapeutics. J Biomol Struct Dyn 2024:1-14. [PMID: 39727019 DOI: 10.1080/07391102.2024.2446671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2024] [Indexed: 12/28/2024]
Abstract
The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in Plasmodium falciparum which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target. Among the FIKKs, FIKK9.5 plays a pivotal role in the parasite's development within red blood cells (RBCs). This investigation acquired the three-dimensional structure of FIKK9.5 and its ligands through extensive database searches and literature review. Computational screening of natural phytochemicals derived from plants traditionally used in antimalarial remedies was conducted by employing the Glide docking suite. AutoDock Vina was utilized to discern the inhibitor exhibiting optimal binding affinity. Subsequently, Molecular Dynamics (MD) simulations employing GROMACS validated Rufigallol as the most potent inhibitory compound against FIKK9.5. The robustness of the protein-ligand complex was scrutinized through a 200 nanosecond molecular dynamics (MD) trajectory. Trajectory analysis and determination of binding free energies were accomplished using MM-GBSA and MM-PBSA approaches. The ligand-binding exhibited sustained stability throughout the simulation, manifesting an approximate binding free energy of -25.5986 kcal/mol. This comprehensive computational study lays the groundwork for potential experimental validation in the laboratory, paving the way for the development of novel therapeutics targeting FIKK9.5 in the pursuit of innovative antimalarial.
Collapse
Affiliation(s)
- Prajna Ritaparna
- School of Biotechnology, KIIT Deemed To be University, Bhubaneswar, Odisha, India
- National Innovation Foundation-India, TBI-KIIT, Bhubaneswar, Odisha, India
| | - Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed To be University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
3
|
Chen P, Wu L, Qin B, Yao H, Xu D, Cui S, Zhao L. Computational Insights into Acrylamide Fragment Inhibition of SARS-CoV-2 Main Protease. Curr Issues Mol Biol 2024; 46:12847-12865. [PMID: 39590359 PMCID: PMC11592536 DOI: 10.3390/cimb46110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The pathogen of COVID-19, SARS-CoV-2, has caused a severe global health crisis. So far, while COVID-19 has been suppressed, the continuous evolution of SARS-CoV-2 variants has reduced the effectiveness of vaccines such as mRNA-1273 and drugs such as Remdesivir. To uphold the effectiveness of vaccines and drugs prior to potential coronavirus outbreaks, it is necessary to explore the underlying mechanisms between biomolecules and nanodrugs. The experimental study reported that acrylamide fragments covalently attached to Cys145, the main protease enzyme (Mpro) of SARS-CoV-2, and occupied the substrate binding pocket, thereby disrupting protease dimerization. However, the potential mechanism linking them is unclear. The purpose of this work is to complement and validate experimental results, as well as to facilitate the study of novel antiviral drugs. Based on our experimental studies, we identified two acrylamide fragments and constructed corresponding protein-ligand complex models. Subsequently, we performed molecular dynamics (MD) simulations to unveil the crucial interaction mechanisms between these nanodrugs and SARS-CoV-2 Mpro. This approach allowed the capture of various binding conformations of the fragments on both monomeric and dimeric Mpro, revealing significant conformational dissociation between the catalytic and helix domains, which indicates the presence of allosteric targets. Notably, Compound 5 destabilizes Mpro dimerization and acts as an effective inhibitor by specifically targeting the active site, resulting in enhanced inhibitory effects. Consequently, these fragments can modulate Mpro's conformational equilibrium among extended monomeric, compact, and dimeric forms, shedding light on the potential of these small molecules as novel inhibitors against coronaviruses. Overall, this research contributes to a broader understanding of drug development and fragment-based approaches in antiviral covalent therapeutics.
Collapse
Affiliation(s)
- Ping Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (B.Q.); (S.C.)
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
| | - Deting Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (B.Q.); (S.C.)
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Lohachova KO, Kyrychenko A, Kalugin ON. Critical assessment of popular biomolecular force fields for molecular dynamics simulations of folding and enzymatic activity of main protease of coronavirus SARS-CoV-2. Biophys Chem 2024; 311:107258. [PMID: 38776839 DOI: 10.1016/j.bpc.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The main cysteine protease (Mpro) of coronavirus SARS-CoV-2 has become a promising target for computational development in anti-COVID-19 treatments. Here, we benchmarked the performance of six biomolecular molecular dynamics (MD) force fields (OPLS-AA, CHARMM27, CHARMM36, AMBER03, AMBER14SB and GROMOS G54A7) and three water models (TIP3P, TIP4P and SPC) for reproducing the native fold and the enzymatic activity of Mpro as monomeric and dimeric units. The MD sampling up to 1 μs suggested that the proper choice of the force fields and water models plays an essential role in reproducing the tertiary structure and the inter-residue distance between the catalytic dyad His41-Cys145. We found that while most benchmarked all-atom force fields reproduce well the native fold of Mpro, the CHARMM27/TIP3P and OPLS-AA/TIP4P setups revealed a good performance in reproducing the structure of the catalytic domain. In addition, these FF setups were also well-adopted for MD sampling of Mpro at the physiologic conditions by mimicking the presence of 100 mM NaCl and the elevated temperature of 310 K. Finally, both FFs were also performed well in reproducing the native fold of Mpro in a dimeric form. Therefore, comparing the preservation of the native fold of Mpro and the stability of its catalytic site architecture, our MD benchmarking suggests that the OPLS-AA/TIP4P and CHARMM27/TIP3P MD setups at the physiologic conditions may be well-suited for rapid in silico screening and developing broad-spectrum anti-coronaviral therapeutic agents.
Collapse
Affiliation(s)
- Kateryna O Lohachova
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine.
| | - Oleg N Kalugin
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| |
Collapse
|
5
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Liang JJ, Pitsillou E, Hung A, Karagiannis TC. A repository of COVID-19 related molecular dynamics simulations and utilisation in the context of nsp10-nsp16 antivirals. J Mol Graph Model 2024; 126:108666. [PMID: 37976980 DOI: 10.1016/j.jmgm.2023.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of establishing systems and infrastructure to develop vaccines, antiviral drugs, and therapeutic antibodies against emerging pathogens. Typical drug discovery processes involve targeting suitable proteins to effect pathogen replication or to attenuate host responses, by examining either large chemical databases or protein-protein interactions. Following initial screens, molecular dynamics (MD) simulations are critical for gaining further insight into molecular interactions. During the COVID-19 pandemic, many research groups made their simulations widely available, as highlighted by the comprehensive D.E. Shaw Research trajectory database. To investigate protein target sites and evaluate potential lead compounds, we performed over 300 MD simulations relating to COVID-19. We organised our simulations into a repository, which is publicly available at https://epimedlab.org/trajectories/. The trajectories cover a large part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteome, and the majority of our MD simulations focused on the identification of potential antivirals. For example, we focused on the S-adenosyl-l-methionine binding site of the nsp10-nsp16 complex, a critical component of viral replication, revealing verbascoside as a potential lead. Moreover, we utilised MD trajectories to explore the interface between the spike protein receptor binding domain and human angiotensin-converting enzyme 2 receptor, with the ultimate aim being investigation of new variants in real-time. Overall, MD simulations are a critical component of the in silico drug discovery process and as highlighted throughout the pandemic, data sharing enables accelerated progress. We have organised our extensive collection of COVID-19 related MD trajectories into an easily accessible repository.
Collapse
Affiliation(s)
- Julia J Liang
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Xing C, Chen P, Zhang L. Computational insight into stability-enhanced systems of anthocyanin with protein/peptide. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100168. [PMID: 36923156 PMCID: PMC10009195 DOI: 10.1016/j.fochms.2023.100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Anthocyanins, which belong to the flavonoid group, are commonly found in the organs of plants native to South and Central America. However, these pigments are unstable under conditions of varying pH, heat, etc., which limits their potential applications. One method for preserving the stability of anthocyanins is through encapsulation using proteins or peptides. Nevertheless, the complex and diverse structure of these molecules, as well as the limitation of experimental technologies, have hindered a comprehensive understanding of the encapsulation processes and the mechanisms by which stability is enhanced. To address these challenges, computational methods, such as molecular docking and molecular dynamics simulation have been used to study the binding affinity and dynamics of interactions between proteins/peptides and anthocyanins. This review summarizes the mechanisms of interaction between these systems, based on computational approaches, and highlights the role of proteins and peptides in the stability enhancement of anthocyanins. It also discusses the current limitations of these methods and suggests possible solutions.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
- School of Science, Beijing Jiaotong University, 100044 Beijing, China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
8
|
Bono A, Lauria A, La Monica G, Alamia F, Mingoia F, Martorana A. In Silico Design of New Dual Inhibitors of SARS-CoV-2 M PRO through Ligand- and Structure-Based Methods. Int J Mol Sci 2023; 24:ijms24098377. [PMID: 37176082 PMCID: PMC10179319 DOI: 10.3390/ijms24098377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The viral main protease is one of the most attractive targets among all key enzymes involved in the life cycle of SARS-CoV-2. Considering its mechanism of action, both the catalytic and dimerization regions could represent crucial sites for modulating its activity. Dual-binding the SARS-CoV-2 main protease inhibitors could arrest the replication process of the virus by simultaneously preventing dimerization and proteolytic activity. To this aim, in the present work, we identified two series' of small molecules with a significant affinity for SARS-CoV-2 MPRO, by a hybrid virtual screening protocol, combining ligand- and structure-based approaches with multivariate statistical analysis. The Biotarget Predictor Tool was used to filter a large in-house structural database and select a set of benzo[b]thiophene and benzo[b]furan derivatives. ADME properties were investigated, and induced fit docking studies were performed to confirm the DRUDIT prediction. Principal component analysis and docking protocol at the SARS-CoV-2 MPRO dimerization site enable the identification of compounds 1b,c,i,l and 2i,l as promising drug molecules, showing favorable dual binding site affinity on SARS-CoV-2 MPRO.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
9
|
Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2. J Mol Liq 2023; 374:121253. [PMID: 36694691 PMCID: PMC9854241 DOI: 10.1016/j.molliq.2023.121253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Combination drugs have been used for several diseases for many years since they produce better therapeutic effects. However, it is still a challenge to discover candidates to form a combination drug. This study aimed to investigate whether using a comprehensive in silico approach to identify novel combination drugs from a Chinese herbal formula is an appropriate and creative strategy. We, therefore, used Toujie Quwen Granules for the main protease (Mpro) of SARS-CoV-2 as an example. We first used molecular docking to identify molecular components of the formula which may inhibit Mpro. Baicalein (HQA004) is the most favorable inhibitory ligand. We also identified a ligand from the other component, cubebin (CHA008), which may act to support the proposed HQA004 inhibitor. Molecular dynamics simulations were then performed to further elucidate the possible mechanism of inhibition by HQA004 and synergistic bioactivity conferred by CHA008. HQA004 bound strongly at the active site and that CHA008 enhanced the contacts between HQA004 and Mpro. However, CHA008 also dynamically interacted at multiple sites, and continued to enhance the stability of HQA004 despite diffusion to a distant site. We proposed that HQA004 acted as a possible inhibitor, and CHA008 served to enhance its effects via allosteric effects at two sites. Additionally, our novel wavelet analysis showed that as a result of CHA008 binding, the dynamics and structure of Mpro were observed to have more subtle changes, demonstrating that the inter-residue contacts within Mpro were disrupted by the synergistic ligand. This work highlighted the molecular mechanism of synergistic effects between different herbs as a result of allosteric crosstalk between two ligands at a protein target, as well as revealed that using the multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis to discover novel combination drugs from a Chinese herbal remedy is an innovative pathway.
Collapse
Key Words
- ADME/T, absorption, distribution, metabolism, excretion and toxicity
- COVID-19
- COVID-19, Coronavirus disease 2019
- Combination drug therapy
- Computer simulation
- Computers molecular
- H-bonds, hydrogen bonds
- LD50, median lethal dose
- MD, molecular dynamics
- MM-PBSA, molecular mechanics Poisson Boltzmann surface area
- Mpro, main protease
- Natural products
- PAINS, Pan-assay interference compounds
- RCO, inter-residue contact order
- RMSF, root-mean-square-fluctuation
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SMILES, Simplified Molecular-input Line-entry System
- TCMSP, traditional Chinese medicine systems pharmacology database and analysis platform
- TQG, Toujie Quwen Granule
- Virus diseases
Collapse
|
10
|
Marques da Fonseca A, Freire da Silva A, Barbosa da Silva FL, Caluaco BJ, Gaieta EM, Nunes da Rocha M, Colares RP, Sobczak JF, Marinho GS, Dos Santos HS, Marinho ES. Isolation, characterization and in silico study of propenamide alkaloids from Hymenoepmecis bicolor poison against active μ-opioid receptor. J Biomol Struct Dyn 2023; 41:14621-14637. [PMID: 36815273 DOI: 10.1080/07391102.2023.2183043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Some insects produce venoms to defend against predators and directly interact with opioid receptors. In the present study, it was identified two alkaloids in the wasp venom species Hymenoepimecis bicolor. It was demonstrated that these could act as potential inhibitors of opioid receptors through their robust affinity to the receptors. The interaction profile was given to opioid receptors (μOR), with 60% of targets similar to alkaloid 1, with 0.25 probability, and 46.7% of targets similar to alkaloid 2, with a probability 0.17 of affinity as a target, which is considered signaling macromolecules and can mediate the most potent analgesic and addictive properties of opiate alkaloids. Notably, both alkaloids showed -7.6 kcal/mol affinity to the morphine agonies through six residues, Gly124, Asp147, Trp293, Ile296, Ile322, and Tyr326. These observations suggest further research on opioid receptors using in vitro studies of possible therapeutic applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Ananias Freire da Silva
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, CE, Brazil
| | - Francisco Lennon Barbosa da Silva
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, CE, Brazil
| | - Bernardino Joaquim Caluaco
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Eduardo Menezes Gaieta
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Matheus Nunes da Rocha
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Regilany Paulo Colares
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Jober Fernando Sobczak
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Gabrielle Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| |
Collapse
|
11
|
Bram Y, Duan X, Nilsson-Payant BE, Chandar V, Wu H, Shore D, Fajardo A, Sinha S, Hassan N, Weinstein H, TenOever BR, Chen S, Schwartz RE. Dual-Reporter System for Real-Time Monitoring of SARS-CoV-2 Main Protease Activity in Live Cells Enables Identification of an Allosteric Inhibition Path. ACS BIO & MED CHEM AU 2022; 2:627-641. [PMID: 36570071 PMCID: PMC9603010 DOI: 10.1021/acsbiomedchemau.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
The SARS-CoV-2 pandemic is an ongoing threat to global health, and the continuing emergence of contagious variants highlights the urgent need for additional antiviral therapy to attenuate COVID-19 disease. The SARS-CoV-2 main protease (3CLpro) presents an attractive target for such therapy due to its high sequence conservation and key role in the viral life cycle. In this study, we designed a fluorescent-luminescent cell-based reporter for the detection and quantification of 3CLpro intracellular activity. Employing this platform, we examined the efficiency of known protease inhibitors against 3CLpro and further identified potent inhibitors through high-throughput chemical screening. Computational analysis confirmed a direct interaction of the lead compounds with the protease catalytic site and identified a prototype for efficient allosteric inhibition. These developments address a pressing need for a convenient sensor and specific targets for both virus detection and rapid discovery of potential inhibitors.
Collapse
Affiliation(s)
- Yaron Bram
- Division
of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Xiaohua Duan
- Department
of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Benjamin E. Nilsson-Payant
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, One Gustav L Levy Place, New York, New York 10029, United
States
| | - Vasuretha Chandar
- Division
of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Hao Wu
- Department
of Physiology, Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Derek Shore
- Department
of Physiology, Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Alvaro Fajardo
- Division
of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Saloni Sinha
- Division
of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Nora Hassan
- Division
of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Harel Weinstein
- Department
of Physiology, Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10065, United States,
| | - Benjamin R. TenOever
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, One Gustav L Levy Place, New York, New York 10029, United
States,
| | - Shuibing Chen
- Department
of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States,
| | - Robert E. Schwartz
- Division
of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States,Department
of Physiology, Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10065, United States,
| |
Collapse
|
12
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
13
|
Mahgoub MA, Alnaem A, Fadlelmola M, Abo-Idris M, Makki AA, Abdelgadir AA, Alzain AA. Discovery of novel potential inhibitors of TMPRSS2 and Mpro of SARS-CoV-2 using E-pharmacophore and docking-based virtual screening combined with molecular dynamic and quantum mechanics. J Biomol Struct Dyn 2022:1-14. [PMID: 35997154 DOI: 10.1080/07391102.2022.2112080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pandemic of coronavirus disease is caused by the SARS-CoV-2 which is considered a global health issue. The main protease of COVID 19 (Mpro) has an important role in viral multiplication in the host cell. Inhibiting Mpro is a novel approach to drug discovery and development. Also, transmembrane serine proteases (TMPSS2) facilitate viral activation by cleavage S glycoproteins, thus considered one of the essential host factors for COVID-19 pathogenicity. Computational tools were widely used to reduce time and costs in search of effective inhibitors. A chemical library that contains over two million molecules was virtually screened against TMPRSS2. Also, XP docking for the top hits was screened against (Mpro) to identify dual-target inhibitors. Furthermore, MM-GBSA and predictive ADMET were performed. The top hits were further studied through density functional theory (DFT) calculation and showed good binding to the active sites. Moreover, molecular dynamics (MD) for the top hits were performed which gave information about the stability of the protein-ligand complex during the simulation period. This study has led to the discovery of potential dual-target inhibitors Z751959696, Z751954014, and Z56784282 for COVID-19 with acceptable pharmacokinetic properties. The outcome of this study can participate in the development of novel inhibitors to defeat SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohanad A Mahgoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Ahmed Alnaem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Mohammed Fadlelmola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Mazin Abo-Idris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Alaa A Makki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | | | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
14
|
Alzyoud L, Ghattas MA, Atatreh N. Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents. Drug Des Devel Ther 2022; 16:2463-2478. [PMID: 35941927 PMCID: PMC9356625 DOI: 10.2147/dddt.s370574] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/23/2022] [Indexed: 12/23/2022] Open
Abstract
The current pandemic caused by the COVID-19 disease has reached everywhere in the world and has affected every aspect of our lives. As of the current data, the World Health Organization (WHO) has reported more than 300 million confirmed COVID-19 cases worldwide and more than 5 million deaths. Mpro is an enzyme that plays a key role in the life cycle of the SARS-CoV-2 virus, and it is vital for the disease progression. The Mpro enzyme seems to have several allosteric sites that can hinder the enzyme catalytic activity. Furthermore, some of these allosteric sites are located at or nearby the dimerization interface which is essential for the overall Mpro activity. In this review paper, we investigate the potential of the Mpro allosteric site to act as a drug target, especially since they interestingly appear to be resistant to mutation. The work is illustrated through three subsequent sections: First, the two main categories of Mpro allosteric sites have been explained and discussed. Second, a total of six pockets have been studied and evaluated for their druggability and cavity characteristics. Third, the experimental and computational attempts for the discovery of new allosteric inhibitors have been illustrated and discussed. To sum up, this review paper gives a detailed insight into the feasibility of developing new Mpro inhibitors to act as a potential treatment for the COVID-19 disease.
Collapse
Affiliation(s)
- Lara Alzyoud
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- Correspondence: Mohammad A Ghattas; Noor Atatreh, Email ;
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Alvarado YJ, Olivarez Y, Lossada C, Vera-Villalobos J, Paz JL, Vera E, Loroño M, Vivas A, Torres FJ, Jeffreys LN, Hurtado-León ML, González-Paz L. Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT. Comput Biol Chem 2022; 99:107692. [PMID: 35640480 PMCID: PMC9107165 DOI: 10.1016/j.compbiolchem.2022.107692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.
Collapse
Affiliation(s)
- Ysaias José Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| | - Yosmari Olivarez
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eddy Vera
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Vivas
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Fernando Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela
| | - Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botanicos y Agroforestales, (CEBA), Laboratorio de Proteccion Vegetal, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| |
Collapse
|
16
|
Pitsillou E, Liang J, Hung A, Karagiannis TC. The SARS-CoV-2 helicase as a target for antiviral therapy: Identification of potential small molecule inhibitors by in silico modelling. J Mol Graph Model 2022; 114:108193. [PMID: 35462185 PMCID: PMC9014761 DOI: 10.1016/j.jmgm.2022.108193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Although vaccines that provide protection against severe illness from coronavirus disease (COVID-19) have been made available, emerging variant strains of severe acute respiratory syndrome 2 coronavirus 2 (SARS-CoV-2) are of concern. A different research direction involves investigation of antiviral therapeutics. In addition to structural proteins, the SARS-CoV-2 non-structural proteins are of interest and this includes the helicase (nsp13). In this study, an initial screen of 300 ligands was performed to identify potential inhibitors of the SARS-CoV-2 nsp13 examining the nucleoside triphosphatase site (NTPase activity) as the target region. The antiviral activity of polyphenols has been previously reported in the literature and as a result, the phenolic compounds and fatty acids from the OliveNet™ library were utilised. Synthetic compounds with antimicrobial and anti-inflammatory properties were also selected. The structures of the SARS-CoV and MERS-CoV helicases, as well as the human RECQ-like DNA helicase, DHX9 helicase, PcrA helicase, hepatitis C NS3 helicase, and mouse Dna2 nuclease-helicase were used for comparison. As expected, sequence and structural homology between the various species was evident. A number of broad-spectrum and well-known inhibitors interacted with the NTPase active site highlighting the need to potentially identify more specific inhibitors for SARS-CoV-2. Acetylcysteine, clavulanic acid and homovanillic acid were identified as potential lead compounds for the SARS-CoV-2 helicase. Molecular dynamics simulations were performed with the leads bound to the SARS-CoV-2 helicase for 200 ns in triplicate, with favourable binding free energies to the NTPase site. Given their availability, further exploration of their potential inhibitory activity could be considered.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
17
|
Dimerization Tendency of 3CLpros of Human Coronaviruses Based on the X-ray Crystal Structure of the Catalytic Domain of SARS-CoV-2 3CLpro. Int J Mol Sci 2022; 23:ijms23095268. [PMID: 35563658 PMCID: PMC9103169 DOI: 10.3390/ijms23095268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022] Open
Abstract
3CLpro of SARS-CoV-2 is a promising target for developing anti-COVID19 agents. In order to evaluate the catalytic activity of 3CLpros according to the presence or absence of the dimerization domain, two forms had been purified and tested. Enzyme kinetic studies with a FRET method revealed that the catalytic domain alone presents enzymatic activity, despite it being approximately 8.6 times less than that in the full domain. The catalytic domain was crystallized and its X-ray crystal structure has been determined to 2.3 Å resolution. There are four protomers in the asymmetric unit. Intriguingly, they were packed as a dimer though the dimerization domain was absent. The RMSD of superimposed two catalytic domains was 0.190 for 182 Cα atoms. A part of the long hinge loop (LH-loop) from Gln189 to Asp197 was not built in the model due to its flexibility. The crystal structure indicates that the decreased proteolytic activity of the catalytic domain was due to the incomplete construction of the substrate binding part built by the LH-loop. A structural survey with other 3CLpros showed that SARS-CoV families do not have interactions between DM-loop due to the conformational difference at the last turn of helix α7 compared with others. Therefore, we can conclude that the monomeric form contains nascent enzyme activity and that its efficiency increases by dimerization. This new insight may contribute to understanding the behavior of SARS-CoV-2 3CLpro and thus be useful in developing anti-COVID-19 agents.
Collapse
|
18
|
Molecular Docking as a Potential Approach in Repurposing Drugs Against COVID-19: a Systematic Review and Novel Pharmacophore Models. CURRENT PHARMACOLOGY REPORTS 2022; 8:212-226. [PMID: 35381996 PMCID: PMC8970976 DOI: 10.1007/s40495-022-00285-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Purpose of Review This article provides a review of the recent literature related to the FDA-approved drugs that had been repurposed as potential drug candidates against COVID-19. Moreover, we performed a quality pharmacophore study for frequently studied targets, namely, the main protease, RNA-dependent RNA polymerase, and spike protein. Recent Findings Ever since the COVID-19 pandemic, the whole spectrum of scientific community is still unable to invent an absolute therapeutic agent for COVID-19. Considering such a fact, drug repurposing strategies seem a truly viable approach to develop novel therapeutic interventions. Summery Drug repurposing explores previously approved drugs of known safety and pharmacokinetics profile for possible new effects, reducing the cost, time, and predicting prospective side effects and drug interactions. COVID-19 virulent machinery appeared similar to other viruses, making antiviral agents widely repurposed in pursuit for curative candidates. Our main protease pharmacophoric study revealed multiple features and could be a probable starting point for upcoming research.
Collapse
|
19
|
Prakash A, Borkotoky S, Dubey VK. Targeting two potential sites of SARS-CoV-2 main protease through computational drug repurposing. J Biomol Struct Dyn 2022; 41:3014-3024. [PMID: 35266856 DOI: 10.1080/07391102.2022.2044907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Before the rise of SARS-CoV-2, emergence of different coronaviruses such as SARS-CoV and MERS-CoV has been reported that indicates possibility of the future novel pathogen from the coronavirus family at a pandemic level. In this context, explicit studies on identifying inhibitors focused on the coronavirus life cycle, are immensely important. The main protease is critical for the life cycle of coronaviruses. Majority of the work done on the inhibitor studies on the catalytically active dimeric SARS-CoV-2 main protease (Mpro), primarily focussed on the catalytic site of a single protomer, with a few targeting the dimeric site. In this study, we have exploited the FDA-approved drugs, for a computational drug repurposing study against the Mpro. A virtual screening approach was employed with docking and molecular dynamics (MD) methods. Out of 1576, FDA-approved compounds, our study suggests three compounds: netupitant, paliperidone and vilazodone as possible inhibitors with a potential to inhibit both sites (monomeric and dimeric) of the Mpro. These compounds were found to be stable during the MD simulations and their post simulation binding energies were also correlated for both the targeted sites, suggesting equal binding capacity. This unique efficiency of the reported compounds might support further experimental studies on developing inhibitors against SARS-CoV-2 main protease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Archisha Prakash
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Subhomoi Borkotoky
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
20
|
Shcherbakov D, Baev D, Kalinin M, Dalinger A, Chirkova V, Belenkaya S, Khvostov A, Krut’ko D, Medved’ko A, Volosnikova E, Sharlaeva E, Shanshin D, Tolstikova T, Yarovaya O, Maksyutov R, Salakhutdinov N, Vatsadze S. Design and Evaluation of Bispidine-Based SARS-CoV-2 Main Protease Inhibitors. ACS Med Chem Lett 2022; 13:140-147. [PMID: 35043075 PMCID: PMC8491553 DOI: 10.1021/acsmedchemlett.1c00299] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
For the first time, derivatives of 3,7-diazabicyclo[3.3.1]nonane (bispidine) were proposed as potential inhibitors of the SARS-CoV-2 main viral protease (3-chymotrypsin-like, 3CLpro). Based on the created pharmacophore model of the active site of the protease, a group of compounds were modeled and tested for activity against 3CLpro. The 3CLpro activity was measured using the fluorogenic substrate Dabcyl-VNSTLQSGLRK(FAM)MA; the efficiency of the proposed approach was confirmed by comparison with literature data for ebselen and disulfiram. The results of the experiments performed with bispidine compounds showed that 14 compounds exhibited activity in the concentration range 1-10 μM, and 3 samples exhibited submicromolar activity. The structure-activity relationship studies showed that the molecules containing a carbonyl group in the ninth position of the bicycle exhibited the maximum activity. Based on the experimental and theoretical results obtained, further directions for the development of this topic were proposed.
Collapse
Affiliation(s)
- Dmitriy Shcherbakov
- State
Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Russia, Koltsovo, Novosibirsk Region, Russian Federation
- Altay
State University, 656049, Barnaul, Leninski pr.
61, Russian Federation
| | - Dmitriy Baev
- N.N.
Vorozhtsov Novosibirsk Institute of Organic chemistry SB RAS, Lavrent’ev
av., 630090, Russia, Novosibirsk, Russian Federation
| | - Mikhail Kalinin
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninski pr., 47, 119991 Moscow, Russian Federation
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie Gory, 1-3, 119991 Moscow, Russian Federation
| | - Alexander Dalinger
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie Gory, 1-3, 119991 Moscow, Russian Federation
| | - Varvara Chirkova
- Altay
State University, 656049, Barnaul, Leninski pr.
61, Russian Federation
| | - Svetlana Belenkaya
- State
Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Russia, Koltsovo, Novosibirsk Region, Russian Federation
- Novosibirsk
State University, Novosibirsk
Pirogova 1, 630090 Novosibirsk, Russian Federation
| | - Aleksei Khvostov
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie Gory, 1-3, 119991 Moscow, Russian Federation
| | - Dmitry Krut’ko
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie Gory, 1-3, 119991 Moscow, Russian Federation
| | - Aleksei Medved’ko
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninski pr., 47, 119991 Moscow, Russian Federation
| | - Ekaterina Volosnikova
- State
Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Russia, Koltsovo, Novosibirsk Region, Russian Federation
| | - Elena Sharlaeva
- Altay
State University, 656049, Barnaul, Leninski pr.
61, Russian Federation
| | - Daniil Shanshin
- State
Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Russia, Koltsovo, Novosibirsk Region, Russian Federation
| | - Tatyana Tolstikova
- N.N.
Vorozhtsov Novosibirsk Institute of Organic chemistry SB RAS, Lavrent’ev
av., 630090, Russia, Novosibirsk, Russian Federation
| | - Olga Yarovaya
- N.N.
Vorozhtsov Novosibirsk Institute of Organic chemistry SB RAS, Lavrent’ev
av., 630090, Russia, Novosibirsk, Russian Federation
| | - Rinat Maksyutov
- State
Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Russia, Koltsovo, Novosibirsk Region, Russian Federation
| | - Nariman Salakhutdinov
- N.N.
Vorozhtsov Novosibirsk Institute of Organic chemistry SB RAS, Lavrent’ev
av., 630090, Russia, Novosibirsk, Russian Federation
| | - Sergey Vatsadze
- N.D.
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninski pr., 47, 119991 Moscow, Russian Federation
| |
Collapse
|
21
|
Small molecule interactions with the SARS-CoV-2 main protease: In silico all-atom microsecond MD simulations, PELE Monte Carlo simulations, and determination of in vitro activity inhibition. J Mol Graph Model 2021; 110:108050. [PMID: 34655918 PMCID: PMC8504156 DOI: 10.1016/j.jmgm.2021.108050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing COVID-19 pandemic. With some notable exceptions, safe and effective vaccines, which are now being widely distributed globally, have largely begun to stabilise the situation. However, emerging variants of concern and vaccine hesitancy are apparent obstacles to eradication. Therefore, the need for the development of potent antivirals is still of importance. In this context, the SARS-CoV-2 main protease (Mpro) is a critical target and numerous clinical trials, predominantly in the private domain, are currently in progress. Here, our aim was to extend our previous studies, with hypericin and cyanidin-3-O-glucoside, as potential inhibitors of the SARS-CoV-2 Mpro. Firstly, we performed all-atom microsecond molecular dynamics simulations, which highlight the stability of the ligands in the Mpro active site over the duration of the trajectories. We also invoked PELE Monte Carlo simulations which indicate that both hypericin and cyanidin-3-O-glucoside preferentially interact with the Mpro active site and known allosteric sites. For further validation, we performed an in vitro enzymatic activity assay that demonstrated that hypericin and cyanidin-3-O-glucoside inhibit Mpro activity in a dose-dependent manner at biologically relevant (μM) concentrations. However, both ligands are much less potent than the well-known covalent antiviral GC376, which was used as a positive control in our experiments. Nevertheless, the biologically relevant activity of hypericin and cyanidin-3-O-glucoside is encouraging. In particular, a synthetic version of hypericin has FDA orphan drug designation, which could simplify potential clinical evaluation in the context of COVID-19.
Collapse
|
22
|
El Ahdab D, Lagardère L, Inizan TJ, Célerse F, Liu C, Adjoua O, Jolly LH, Gresh N, Hobaika Z, Ren P, Maroun RG, Piquemal JP. Interfacial Water Many-Body Effects Drive Structural Dynamics and Allosteric Interactions in SARS-CoV-2 Main Protease Dimerization Interface. J Phys Chem Lett 2021; 12:6218-6226. [PMID: 34196568 PMCID: PMC8262171 DOI: 10.1021/acs.jpclett.1c01460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
Following our previous work ( Chem. Sci. 2021, 12, 4889-4907), we study the structural dynamics of the SARS-CoV-2 Main Protease dimerization interface (apo dimer) by means of microsecond adaptive sampling molecular dynamics simulations (50 μs) using the AMOEBA polarizable force field (PFF). This interface is structured by a complex H-bond network that is stable only at physiological pH. Structural correlations analysis between its residues and the catalytic site confirms the presence of a buried allosteric site. However, noticeable differences in allosteric connectivity are observed between PFFs and non-PFFs. Interfacial polarizable water molecules are shown to appear at the heart of this discrepancy because they are connected to the global interface H-bond network and able to adapt their dipole moment (and dynamics) to their diverse local physicochemical microenvironments. The water-interface many-body interactions appear to drive the interface volume fluctuations and to therefore mediate the allosteric interactions with the catalytic cavity.
Collapse
Affiliation(s)
- Dina El Ahdab
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Université Saint-Joseph de Beyrouth, UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, 1104 2020 Beirut, Lebanon
| | - Louis Lagardère
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Sorbonne Université, IP2CT, FR 2622 CNRS, 75005 Paris, France
| | | | - Fréderic Célerse
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Sorbonne Université, IPCM, UMR 8232 CNRS, 75005 Paris, France
| | - Chengwen Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Olivier Adjoua
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
| | - Luc-Henri Jolly
- Sorbonne Université, IP2CT, FR 2622 CNRS, 75005 Paris, France
| | - Nohad Gresh
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
| | - Zeina Hobaika
- Université Saint-Joseph de Beyrouth, UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, 1104 2020 Beirut, Lebanon
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard G Maroun
- Université Saint-Joseph de Beyrouth, UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, 1104 2020 Beirut, Lebanon
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
23
|
Liang J, Pitsillou E, Burbury L, Hung A, Karagiannis TC. In silico investigation of potential small molecule inhibitors of the SARS-CoV-2 nsp10-nsp16 methyltransferase complex. Chem Phys Lett 2021; 774:138618. [PMID: 33850334 PMCID: PMC8032478 DOI: 10.1016/j.cplett.2021.138618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in an international health emergency. The SARS-CoV-2 nsp16 is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase, and with its cofactor nsp10, is responsible for RNA cap formation. This study aimed to identify small molecules binding to the SAM-binding site of the nsp10-nsp16 heterodimer for potential inhibition of methyltransferase activity. By screening a library of 300 compounds, 30 compounds were selected based on binding scores, side-effects, and availability. Following more advanced docking, six potential lead compounds were further investigated using molecular dynamics simulations. This revealed the dietary compound oleuropein as a potential methyltransferase inhibitor.
Collapse
Affiliation(s)
- Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Lucy Burbury
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew Hung
- School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia,Corresponding author at: Head Epigenomic Medicine Program, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
24
|
Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021; 10:971. [PMID: 34204362 PMCID: PMC8235474 DOI: 10.3390/antiox10060971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an emergent infectious disease that has caused millions of deaths throughout the world. COVID-19 infection's main symptoms are fever, cough, fatigue, and neurological manifestations such as headache, myalgias, anosmia, ageusia, impaired consciousness, seizures, and even neuromuscular junctions' disorders. In addition, it is known that this disease causes a series of systemic complications such as adverse respiratory distress syndrome, cardiac injury, acute kidney injury, and liver dysfunction. Due to the neurological symptoms associated with COVID-19, damage in the central nervous system has been suggested as well as the neuroinvasive potential of SARS-CoV-2. It is known that CoV infections are associated with an inflammation process related to the imbalance of the antioxidant system; cellular changes caused by oxidative stress contribute to brain tissue damage. Although anti-COVID-19 vaccines are under development, there is no specific treatment for COVID-19 and its clinical manifestations and complications; only supportive treatments with immunomodulators, anti-vascular endothelial growth factors, modulating drugs, statins, or nutritional supplements have been used. In the present work, we analyzed the potential of antioxidants as adjuvants for the treatment of COVID-19 and specifically their possible role in preventing or decreasing the neurological manifestations and neurological complications present in the disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - América Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, SEDENA, Ciudad de México 11200, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | | | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, UNAM, Ciudad de México 04150, Mexico; (E.Y.H.-C.); (J.P.-C.)
| | - Liliana Carmona-Aparicio
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| |
Collapse
|
25
|
Kumar B, Parasuraman P, Murthy TPK, Murahari M, Chandramohan V. In silico screening of therapeutic potentials from Strychnos nux-vomica against the dimeric main protease (M pro) structure of SARS-CoV-2. J Biomol Struct Dyn 2021; 40:7796-7814. [PMID: 33759690 DOI: 10.1080/07391102.2021.1902394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The novel coronavirus also referred to as SARS-CoV-2 causes COVID-19 and became global epidemic since its initial outbreak in Wuhan, China, in December 2019. Research efforts are still been endeavoured towards discovering/designing of potential drugs and vaccines against this virus. In the present studies, we have contributed to the development of a drug based on natural products to combat the newly emerged and life-threatening disease. The main protease (MPro) of SARS-CoV-2 is a homodimer and a key component involved in viral replication, and is considered as a prime target for anti-SARS-CoV-2 drug development. Literature survey revealed that the phytochemicals present in Strychnos nux-vomica possess several therapeutic activities. Initially, in the light of drug likeness laws, the ligand library of phytoconstituents was subjected to drug likeness analysis. The resulting compounds were taken to binding site-specific consensus-based molecular docking studies and the results were compared with the positive control drug, lopinavir, which is a main protease inhibitor. The top compounds were tested for ADME-Tox properties and antiviral activity. Further molecular dynamics simulations and MM-PBSA-based binding affinity estimation were carried out for top two lead compounds' complexes along with the apo form of main protease and positive control drug lopinavir complex, and the results were comparatively analysed. The results revealed that the two analogues of same scaffold, namely demethoxyguiaflavine and strychnoflavine, have potential against Mpro and can be validated through clinical studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Birendra Kumar
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - P Parasuraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | | | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| |
Collapse
|
26
|
Jaffrelot Inizan T, Célerse F, Adjoua O, El Ahdab D, Jolly LH, Liu C, Ren P, Montes M, Lagarde N, Lagardère L, Monmarché P, Piquemal JP. High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling. Chem Sci 2021; 12:4889-4907. [PMID: 34168762 PMCID: PMC8179654 DOI: 10.1039/d1sc00145k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023] Open
Abstract
We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs). The global exploration problem is decomposed into a set of separate MD trajectories that can be restarted within a selective process to achieve sufficient phase-space sampling. Accurate statistical properties can be obtained through reweighting. Within this highly parallel setup, the Tinker-HP package can be powered by an arbitrary large number of GPUs on supercomputers, reducing exploration time from years to days. This approach is used to tackle the urgent modeling problem of the SARS-CoV-2 Main Protease (Mpro) producing more than 38 μs of all-atom simulations of its apo (ligand-free) dimer using the high-resolution AMOEBA PFF. The first 15.14 μs simulation (physiological pH) is compared to available non-PFF long-timescale simulation data. A detailed clustering analysis exhibits striking differences between FFs, with AMOEBA showing a richer conformational space. Focusing on key structural markers related to the oxyanion hole stability, we observe an asymmetry between protomers. One of them appears less structured resembling the experimentally inactive monomer for which a 6 μs simulation was performed as a basis for comparison. Results highlight the plasticity of the Mpro active site. The C-terminal end of its less structured protomer is shown to oscillate between several states, being able to interact with the other protomer, potentially modulating its activity. Active and distal site volumes are found to be larger in the most active protomer within our AMOEBA simulations compared to non-PFFs as additional cryptic pockets are uncovered. A second 17 μs AMOEBA simulation is performed with protonated His172 residues mimicking lower pH. Data show the protonation impact on the destructuring of the oxyanion loop. We finally analyze the solvation patterns around key histidine residues. The confined AMOEBA polarizable water molecules are able to explore a wide range of dipole moments, going beyond bulk values, leading to a water molecule count consistent with experimental data. Results suggest that the use of PFFs could be critical in drug discovery to accurately model the complexity of the molecular interactions structuring Mpro.
Collapse
Affiliation(s)
| | - Frédéric Célerse
- Sorbonne Université, LCT, UMR 7616 CNRS Paris France
- Sorbonne Université, IPCM, UMR 8232 CNRS Paris France
| | | | - Dina El Ahdab
- Sorbonne Université, LCT, UMR 7616 CNRS Paris France
- Université Saint-Joseph de Beyrouth, UR-EGP Faculté des Sciences Lebanon
| | | | - Chengwen Liu
- University of Texas at Austin, Department of Biomedical Engineering Texas USA
| | - Pengyu Ren
- University of Texas at Austin, Department of Biomedical Engineering Texas USA
| | - Matthieu Montes
- Laboratoire GBCM, EA 7528, CNAM, Hésam Université Paris France
| | | | - Louis Lagardère
- Sorbonne Université, LCT, UMR 7616 CNRS Paris France
- Sorbonne Université, IP2CT, FR 2622 CNRS Paris France
| | - Pierre Monmarché
- Sorbonne Université, LCT, UMR 7616 CNRS Paris France
- Sorbonne Université, LJLL, UMR 7598 CNRS Paris France
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR 7616 CNRS Paris France
- University of Texas at Austin, Department of Biomedical Engineering Texas USA
- Institut Universitaire de France Paris France
| |
Collapse
|
27
|
Iida S, Fukunishi Y. Asymmetric dynamics of dimeric SARS-CoV-2 and SARS-CoV main proteases in an apo form: Molecular dynamics study on fluctuations of active site, catalytic dyad, and hydration water. BBA ADVANCES 2021; 1:100016. [PMID: 34235495 PMCID: PMC8214910 DOI: 10.1016/j.bbadva.2021.100016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread around the world. It is necessary to examine the viral proteins that play a notorious role in the invasion of our body. The main protease (3CLpro) facilitates the maturation of the coronavirus. It is thought that the dimerization of 3CLpro leads to its catalytic activity; the detailed mechanism has, however, not been suggested. Furthermore, the structural differences between the predecessor SARS-CoV 3CLpro and SARS-CoV-2 3CLpro have not been fully understood. Here, we show the structural and dynamical differences between the two main proteases, and demonstrate the relationship between the dimerization and the activity via atomistic molecular dynamics simulations. Simulating monomeric and dimeric 3CLpro systems for each protease, we show that (i) global dynamics between the two different proteases are not conserved, (ii) the dimerization stabilizes the catalytic dyad and hydration water molecules behind the dyad, and (iii) the substrate-binding site (active site) and hydration water molecules in each protomer fluctuate asymmetrically. We then speculate the roles of hydration water molecules in their catalytic activity.
Collapse
Affiliation(s)
- Shinji Iida
- Technology Research Association for Next-Generation Natural Products Chemistry, 2-3-26, Aomi, Koto-ku, Tokyo, Japan 135-0064
- Corresponding author.
| | - Yoshifumi Fukunishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, Japan 135-0064
| |
Collapse
|