1
|
Praveenkumar S, Kalaiselvi T, Somasundaram K. Methods of Brain Extraction from Magnetic Resonance Images of Human Head: A Review. Crit Rev Biomed Eng 2023; 51:1-40. [PMID: 37581349 DOI: 10.1615/critrevbiomedeng.2023047606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Medical images are providing vital information to aid physicians in diagnosing a disease afflicting the organ of a human body. Magnetic resonance imaging is an important imaging modality in capturing the soft tissues of the brain. Segmenting and extracting the brain is essential in studying the structure and pathological condition of brain. There are several methods that are developed for this purpose. Researchers in brain extraction or segmentation need to know the current status of the work that have been done. Such an information is also important for improving the existing method to get more accurate results or to reduce the complexity of the algorithm. In this paper we review the classical methods and convolutional neural network-based deep learning brain extraction methods.
Collapse
Affiliation(s)
| | - T Kalaiselvi
- Department of Computer Science and Applications, Gandhigram Rural Institute, Gandhigram 624302, Tamil Nadu, India
| | | |
Collapse
|
2
|
Vinurajkumar S, Anandhavelu S. An Enhanced Fuzzy Segmentation Framework for extracting white matter from T1-weighted MR images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Saeidifar M, Yazdi M, Zolghadrasli A. Performance Improvement in Brain Tumor Detection in MRI Images Using a Combination of Evolutionary Algorithms and Active Contour Method. J Digit Imaging 2021; 34:1209-1224. [PMID: 34561783 DOI: 10.1007/s10278-021-00514-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022] Open
Abstract
The process of treating brain cancer depends on the experience and knowledge of the physician, which may be associated with eye errors or may vary from person to person. For this reason, it is important to utilize an automatic tumor detection algorithm to assist radiologists and physicians for brain tumor diagnosis. The aim of the present study is to automatically detect the location of the tumor in a brain MRI image with high accuracy. For this end, in the proposed algorithm, first, the skull is separated from the brain using morphological operators. The image is then segmented by six evolutionary algorithms, i.e., Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Genetic Algorithm (GA), Differential Evolution (DE), Harmony Search (HS), and Gray Wolf Optimization (GWO), as well as two other frequently-used techniques in the literature, i.e., K-means and Otsu thresholding algorithms. Afterwards, the tumor area is isolated from the brain using the four features extracted from the main tumor. Evaluation of the segmented area revealed that the PSO has the best performance compared with the other approaches. The segmented results of the PSO are then used as the initial curve for the Active contour to precisely specify the tumor boundaries. The proposed algorithm is applied on fifty images with two different types of tumors. Experimental results on T1-weighted brain MRI images show a better performance of the proposed algorithm compared to other evolutionary algorithms, K-means, and Otsu thresholding methods.
Collapse
Affiliation(s)
- Mahtab Saeidifar
- School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Mehran Yazdi
- School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
4
|
Conventional and Deep Learning Methods for Skull Stripping in Brain MRI. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Skull stripping in brain magnetic resonance volume has recently been attracting attention due to an increased demand to develop an efficient, accurate, and general algorithm for diverse datasets of the brain. Accurate skull stripping is a critical step for neuroimaging diagnostic systems because neither the inclusion of non-brain tissues nor removal of brain parts can be corrected in subsequent steps, which results in unfixed error through subsequent analysis. The objective of this review article is to give a comprehensive overview of skull stripping approaches, including recent deep learning-based approaches. In this paper, the current methods of skull stripping have been divided into two distinct groups—conventional or classical approaches, and convolutional neural networks or deep learning approaches. The potentials of several methods are emphasized because they can be applied to standard clinical imaging protocols. Finally, current trends and future developments are addressed giving special attention to recent deep learning algorithms.
Collapse
|
5
|
Hashempour N, Tuulari JJ, Merisaari H, Lidauer K, Luukkonen I, Saunavaara J, Parkkola R, Lähdesmäki T, Lehtola SJ, Keskinen M, Lewis JD, Scheinin NM, Karlsson L, Karlsson H. A Novel Approach for Manual Segmentation of the Amygdala and Hippocampus in Neonate MRI. Front Neurosci 2019; 13:1025. [PMID: 31616245 PMCID: PMC6768976 DOI: 10.3389/fnins.2019.01025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
The gross anatomy of the infant brain at term is fairly similar to that of the adult brain, but structures are immature, and the brain undergoes rapid growth during the first 2 years of life. Neonate magnetic resonance (MR) images have different contrasts compared to adult images, and automated segmentation of brain magnetic resonance imaging (MRI) can thus be considered challenging as less software options are available. Despite this, most anatomical regions are identifiable and thus amenable to manual segmentation. In the current study, we developed a protocol for segmenting the amygdala and hippocampus in T2-weighted neonatal MR images. The participants were 31 healthy infants between 2 and 5 weeks of age. Intra-rater reliability was measured in 12 randomly selected MR images, where 6 MR images were segmented at 1-month intervals between the delineations, and another 6 MR images at 6-month intervals. The protocol was also tested by two independent raters in 20 randomly selected T2-weighted images, and finally with T1 images. Intraclass correlation coefficient (ICC) and Dice similarity coefficient (DSC) for intra-rater, inter-rater, and T1 vs. T2 comparisons were computed. Moreover, manual segmentations were compared to automated segmentations performed by iBEAT toolbox in 10 T2-weighted MR images. The intra-rater reliability was high ICC ≥ 0.91, DSC ≥ 0.89, the inter-rater reliabilities were satisfactory ICC ≥ 0.90, DSC ≥ 0.75 for hippocampus and DSC ≥ 0.52 for amygdalae. Segmentations for T1 vs. T2-weighted images showed high consistency ICC ≥ 0.90, DSC ≥ 0.74. The manual and iBEAT segmentations showed no agreement, DSC ≥ 0.39. In conclusion, there is a clear need to improve and develop the procedures for automated segmentation of infant brain MR images.
Collapse
Affiliation(s)
- Niloofar Hashempour
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Kristian Lidauer
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Iiris Luukkonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Maria Keskinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Child Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Noorizadeh N, Kazemi K, Danyali H, Aarabi A. Multi-atlas based neonatal brain extraction using a two-level patch-based label fusion strategy. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.101602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Documenting and predicting topic changes in Computers in Biology and Medicine: A bibliometric keyword analysis from 1990 to 2017. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images. PLoS One 2017; 12:e0186071. [PMID: 29023597 PMCID: PMC5638331 DOI: 10.1371/journal.pone.0186071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023] Open
Abstract
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.
Collapse
|
9
|
Devi CN, Chandrasekharan A, V.K. S, Alex ZC. Automatic segmentation of infant brain MR images: With special reference to myelinated white matter. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Yilmaz B, Durdu A, Emlik GD. A new method for skull stripping in brain MRI using multistable cellular neural networks. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2834-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Abstract
The high resolution magnetic resonance (MR) brain images contain some non-brain tissues such as skin, fat, muscle, neck, and eye balls compared to the functional images namely positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI) which usually contain relatively less non-brain tissues. The presence of these non-brain tissues is considered as a major obstacle for automatic brain image segmentation and analysis techniques. Therefore, quantitative morphometric studies of MR brain images often require a preliminary processing to isolate the brain from extra-cranial or non-brain tissues, commonly referred to as skull stripping. This paper describes the available methods on skull stripping and an exploratory review of recent literature on the existing skull stripping methods.
Collapse
Affiliation(s)
- P. Kalavathi
- />Department of Computer Science and Applications, Gandhigram Rural Institute - Deemed University, Gandhigram, Tamil Nadu 624302 India
| | - V. B. Surya Prasath
- />Computational Imaging and VisAnalysis (CIVA) Lab, Department of Computer Science, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
12
|
Alansary A, Ismail M, Soliman A, Khalifa F, Nitzken M, Elnakib A, Mostapha M, Black A, Stinebruner K, Casanova MF, Zurada JM, El-Baz A. Infant Brain Extraction in T1-Weighted MR Images Using BET and Refinement Using LCDG and MGRF Models. IEEE J Biomed Health Inform 2016; 20:925-935. [DOI: 10.1109/jbhi.2015.2415477] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images. Brain Inform 2016; 3:53-61. [PMID: 27747598 PMCID: PMC4883165 DOI: 10.1007/s40708-016-0033-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023] Open
Abstract
To isolate the brain from non-brain tissues using a fully automatic method may be affected by the presence of radio frequency non-homogeneity of MR images (MRI), regional anatomy, MR sequences, and the subjects of the study. In order to automate the brain tumor (Glioblastoma) detection, we proposed a novel approach of skull stripping for axial slices derived from MRI. Then, the brain tumor was detected using multi-level threshold segmentation based on histogram analysis. Skull-stripping method, was applied by adaptive morphological operations approach. This is considered an empirical threshold by calculation of the area of brain tissue, iteratively. It was employed on the registration of non-contrast T1-weighted (T1-WI) and its corresponding fluid attenuated inversion recovery sequence. Then, we used multi-thresholding segmentation (MTS) method which is proposed by Otsu. We calculated the performance metrics based on the similarity coefficients for patients (n = 120) with tumor. The adaptive algorithm of skull stripping and MTS of segmented tumors were achieved efficient in preliminary results with 92 and 80 % of Dice similarity coefficient and 0.3 and 25.8 % of false negative rate, respectively. The adaptive skull stripping algorithm provides robust skull-stripping results, and the tumor area for medical diagnosis was determined by MTS.
Collapse
|
14
|
Ou Y, Gollub RL, Retzepi K, Reynolds N, Pienaar R, Pieper S, Murphy SN, Grant PE, Zöllei L. Brain extraction in pediatric ADC maps, toward characterizing neuro-development in multi-platform and multi-institution clinical images. Neuroimage 2015; 122:246-61. [PMID: 26260429 PMCID: PMC4966541 DOI: 10.1016/j.neuroimage.2015.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 01/18/2023] Open
Abstract
Apparent Diffusion Coefficient (ADC) maps can be used to characterize myelination and to detect abnormalities in the developing brain. However, given the normal variation in regional ADC with myelination, detection of abnormalities is difficult when based on visual assessment. Quantitative and automated analysis of pediatric ADC maps is thus desired but requires accurate brain extraction as the first step. Currently, most existing brain extraction methods are optimized for structural T1-weighted MR images of fully myelinated brains. Due to differences in age and image contrast, these approaches do not translate well to pediatric ADC maps. To address this problem, we present a multi-atlas brain extraction framework that has 1) specificity: designed and optimized specifically for pediatric ADC maps; 2) generality: applicable to multi-platform and multi-institution data, and to subjects at various neuro-developmental stages across the first 6 years of life; 3) accuracy: highly accurate compared to expert annotations; and 4) consistency: consistently accurate regardless of sources of data and ages of subjects. We show how we achieve these goals, via optimizing major components in a multi-atlas brain extraction framework, and via developing and evaluating new criteria for its atlas ranking component. Moreover, we demonstrate that these goals can be achieved with a fixed set of atlases and a fixed set of parameters, which opens doors for our optimized framework to be used in large-scale and multi-institution neuro-developmental and clinical studies. In a pilot study, we use this framework in a dataset containing scanner-generated ADC maps from 308 pediatric patients collected during the course of routine clinical care. Our framework leads to successful quantifications of the changes in whole-brain volumes and mean ADC values across the first 6 years of life.
Collapse
Affiliation(s)
- Yangming Ou
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA.
| | - Randy L Gollub
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Kallirroi Retzepi
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Nathaniel Reynolds
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Rudolph Pienaar
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's Hospital Boston, Harvard Medical School, 1 Autumn St, Boston, MA 02115, USA
| | - Steve Pieper
- Isomics, Inc., 55 Kirkland St, Cambridge, MA 02138, USA
| | - Shawn N Murphy
- Research Computing, Partners HealthCare, 1 Constitution Center, Charlestown, MA 02129, USA; Laboratory of Computer Science, Massachusetts General Hospital, Harvard Medical School, 50 Staniford St, Boston, MA 02114, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's Hospital Boston, Harvard Medical School, 1 Autumn St, Boston, MA 02115, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| |
Collapse
|
15
|
Huang M, Yang W, Jiang J, Wu Y, Zhang Y, Chen W, Feng Q. Brain extraction based on locally linear representation-based classification. Neuroimage 2014; 92:322-39. [PMID: 24525169 DOI: 10.1016/j.neuroimage.2014.01.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/16/2014] [Accepted: 01/31/2014] [Indexed: 01/18/2023] Open
Abstract
Brain extraction is an important procedure in brain image analysis. Although numerous brain extraction methods have been presented, enhancing brain extraction methods remains challenging because brain MRI images exhibit complex characteristics, such as anatomical variability and intensity differences across different sequences and scanners. To address this problem, we present a Locally Linear Representation-based Classification (LLRC) method for brain extraction. A novel classification framework is derived by introducing the locally linear representation to the classical classification model. Under this classification framework, a common label fusion approach can be considered as a special case and thoroughly interpreted. Locality is important to calculate fusion weights for LLRC; this factor is also considered to determine that Local Anchor Embedding is more applicable in solving locally linear coefficients compared with other linear representation approaches. Moreover, LLRC supplies a way to learn the optimal classification scores of the training samples in the dictionary to obtain accurate classification. The International Consortium for Brain Mapping and the Alzheimer's Disease Neuroimaging Initiative databases were used to build a training dataset containing 70 scans. To evaluate the proposed method, we used four publicly available datasets (IBSR1, IBSR2, LPBA40, and ADNI3T, with a total of 241 scans). Experimental results demonstrate that the proposed method outperforms the four common brain extraction methods (BET, BSE, GCUT, and ROBEX), and is comparable to the performance of BEaST, while being more accurate on some datasets compared with BEaST.
Collapse
Affiliation(s)
- Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Wei Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Jun Jiang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Yao Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | | |
Collapse
|
16
|
Wang Y, Nie J, Yap PT, Li G, Shi F, Geng X, Guo L, Shen D. Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates. PLoS One 2014; 9:e77810. [PMID: 24489639 PMCID: PMC3906014 DOI: 10.1371/journal.pone.0077810] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness.
Collapse
Affiliation(s)
- Yaping Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Jingxin Nie
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Xiujuan Geng
- Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, United States of America
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
- * E-mail:
| | | |
Collapse
|
17
|
Beare R, Chen J, Adamson CL, Silk T, Thompson DK, Yang JYM, Anderson VA, Seal ML, Wood AG. Brain extraction using the watershed transform from markers. Front Neuroinform 2013; 7:32. [PMID: 24367327 PMCID: PMC3856384 DOI: 10.3389/fninf.2013.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/16/2013] [Indexed: 01/18/2023] Open
Abstract
Isolation of the brain from other tissue types in magnetic resonance (MR) images is an important step in many types of neuro-imaging research using both humans and animal subjects. The importance of brain extraction is well appreciated-numerous approaches have been published and the benefits of good extraction methods to subsequent processing are well known. We describe a tool-the marker based watershed scalper (MBWSS)-for isolating the brain in T1-weighted MR images built using filtering and segmentation components from the Insight Toolkit (ITK) framework. The key elements of MBWSS-the watershed transform from markers and aggressive filtering with large kernels-are techniques that have rarely been used in neuroimaging segmentation applications. MBWSS is able to reliably isolate the brain without expensive preprocessing steps, such as registration to an atlas, and is therefore useful as the first stage of processing pipelines. It is an informative example of the level of accuracy achievable without using priors in the form of atlases, shape models or libraries of examples. We validate the MBWSS using a publicly available dataset, a paediatric cohort, an adolescent cohort, intra-surgical scans and demonstrate flexibility of the approach by modifying the method to extract macaque brains.
Collapse
Affiliation(s)
- Richard Beare
- Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Stroke and Aging Research Group, Department of Medicine, Southern Clinical School, Monash University Melbourne, VIC, Australia
| | - Jian Chen
- Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Stroke and Aging Research Group, Department of Medicine, Southern Clinical School, Monash University Melbourne, VIC, Australia
| | - Christopher L Adamson
- Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia
| | - Timothy Silk
- Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Department of Paediatrics, University of Melbourne VIC, Australia
| | - Deanne K Thompson
- Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Victorian Infant Brain Studies, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Florey Department of Neuroscience and Mental Health, University of Melbourne VIC, Australia
| | - Joseph Y M Yang
- Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Department of Neurosurgery, Royal Childrens Hospital Melbourne, VIC, Australia
| | - Vicki A Anderson
- Clinical Sciences, Murdoch Childrens Research Institute Melbourne, VIC, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Department of Paediatrics, University of Melbourne VIC, Australia
| | - Amanda G Wood
- School of Psychology, University of Birmingham Edgbaston, UK
| |
Collapse
|
18
|
Yang X, Fei B. Multiscale segmentation of the skull in MR images for MRI-based attenuation correction of combined MR/PET. J Am Med Inform Assoc 2013; 20:1037-45. [PMID: 23761683 PMCID: PMC3822115 DOI: 10.1136/amiajnl-2012-001544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Combined magnetic resonance/positron emission tomography (MR/PET) is a relatively new, hybrid imaging modality. MR-based attenuation correction often requires segmentation of the bone on MR images. In this study, we present an automatic segmentation method for the skull on MR images for attenuation correction in brain MR/PET applications. MATERIALS AND METHODS Our method transforms T1-weighted MR images to the Radon domain and then detects the features of the skull image. In the Radon domain we use a bilateral filter to construct a multiscale image series. For the repeated convolution we increase the spatial smoothing in each scale and make the width of the spatial and range Gaussian function doubled in each scale. Two filters with different kernels along the vertical direction are applied along the scales from the coarse to fine levels. The results from a coarse scale give a mask for the next fine scale and supervise the segmentation in the next fine scale. The use of the multiscale bilateral filtering scheme is to improve the robustness of the method for noise MR images. After combining the two filtered sinograms, the reciprocal binary sinogram of the skull is obtained for the reconstruction of the skull image. RESULTS This method has been tested with brain phantom data, simulated brain data, and real MRI data. For real MRI data the Dice overlap ratios are 92.2%±1.9% between our segmentation and manual segmentation. CONCLUSIONS The multiscale segmentation method is robust and accurate and can be used for MRI-based attenuation correction in combined MR/PET.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, Georgia, USA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Liu HT, Sheu TWH, Chang HH. Automatic segmentation of brain MR images using an adaptive balloon snake model with fuzzy classification. Med Biol Eng Comput 2013; 51:1091-104. [DOI: 10.1007/s11517-013-1089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
20
|
Shi F, Wang L, Dai Y, Gilmore JH, Lin W, Shen D. LABEL: pediatric brain extraction using learning-based meta-algorithm. Neuroimage 2012; 62:1975-86. [PMID: 22634859 DOI: 10.1016/j.neuroimage.2012.05.042] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 05/18/2012] [Indexed: 01/18/2023] Open
Abstract
Magnetic resonance imaging of pediatric brain provides valuable information for early brain development studies. Automated brain extraction is challenging due to the small brain size and dynamic change of tissue contrast in the developing brains. In this paper, we propose a novel Learning Algorithm for Brain Extraction and Labeling (LABEL) specially for the pediatric MR brain images. The idea is to perform multiple complementary brain extractions on a given testing image by using a meta-algorithm, including BET and BSE, where the parameters of each run of the meta-algorithm are effectively learned from the training data. Also, the representative subjects are selected as exemplars and used to guide brain extraction of new subjects in different age groups. We further develop a level-set based fusion method to combine multiple brain extractions together with a closed smooth surface for obtaining the final extraction. The proposed method has been extensively evaluated in subjects of three representative age groups, such as neonate (less than 2 months), infant (1-2 years), and child (5-18 years). Experimental results show that, with 45 subjects for training (15 neonates, 15 infant, and 15 children), the proposed method can produce more accurate brain extraction results on 246 testing subjects (75 neonates, 126 infants, and 45 children), i.e., at average Jaccard Index of 0.953, compared to those by BET (0.918), BSE (0.902), ROBEX (0.901), GCUT (0.856), and other fusion methods such as Majority Voting (0.919) and STAPLE (0.941). Along with the largely-improved computational efficiency, the proposed method demonstrates its ability of automated brain extraction for pediatric MR images in a large age range.
Collapse
Affiliation(s)
- Feng Shi
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599-7513, USA
| | | | | | | | | | | |
Collapse
|
21
|
Galdames FJ, Jaillet F, Perez CA. An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images. J Neurosci Methods 2012; 206:103-19. [PMID: 22387261 DOI: 10.1016/j.jneumeth.2012.02.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/18/2023]
Abstract
Skull stripping methods are designed to eliminate the non-brain tissue in magnetic resonance (MR) brain images. Removal of non-brain tissues is a fundamental step in enabling the processing of brain MR images. The aim of this study is to develop an automatic accurate skull stripping method based on deformable models and histogram analysis. A rough-segmentation step is used to find the optimal starting point for the deformation and is based on thresholds and morphological operators. Thresholds are computed using comparisons with an atlas, and modeling by Gaussians. The deformable model is based on a simplex mesh and its deformation is controlled by the image local gray levels and the information obtained on the gray level modeling of the rough-segmentation. Our Simplex Mesh and Histogram Analysis Skull Stripping (SMHASS) method was tested on the following international databases commonly used in scientific articles: BrainWeb, Internet Brain Segmentation Repository (IBSR), and Segmentation Validation Engine (SVE). A comparison was performed against three of the best skull stripping methods previously published: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), and Hybrid Watershed Algorithm (HWA). Performance was measured using the Jaccard index (J) and Dice coefficient (κ). Our method showed the best performance and differences were statistically significant (p<0.05): J=0.904 and κ=0.950 on BrainWeb; J=0.905 and κ=0.950 on IBSR; J=0.946 and κ=0.972 on SVE.
Collapse
Affiliation(s)
- Francisco J Galdames
- Biomedical Engineering Laboratory, Department of Electrical Engineering, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
22
|
Gambino O, Daidone E, Sciortino M, Pirrone R, Ardizzone E. Automatic skull stripping in MRI based on morphological filters and fuzzy c-means segmentation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:5040-3. [PMID: 22255471 DOI: 10.1109/iembs.2011.6091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper a new automatic skull stripping method for T1-weighted MR image of human brain is presented. Skull stripping is a process that allows to separate the brain from the rest of tissues. The proposed method is based on a 2D brain extraction making use of fuzzy c-means segmentation and morphological operators applied on transversal slices. The approach is extended to the 3D case, taking into account the result obtained from the preceding slice to solve the organ splitting problem. The proposed approach is compared with BET (Brain Extraction Tool) implemented in MRIcro software.
Collapse
Affiliation(s)
- Orazio Gambino
- Department of Computer Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Kazemi K, Moghaddam HA, Grebe R, Gondry-Jouet C, Wallois F. Design and construction of a brain phantom to simulate neonatal MR images. Comput Med Imaging Graph 2010; 35:237-50. [PMID: 21146956 DOI: 10.1016/j.compmedimag.2010.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 08/25/2010] [Accepted: 11/11/2010] [Indexed: 11/17/2022]
Abstract
This paper presents the design and construction of a 3D digital neonatal neurocranial phantom and its application for the simulation of brain magnetic resonance (MR) images. Commonly used digital brain phantoms (e.g. BrainWeb) are based on the adult brain. With the growing interest in computer-aided methods for neonatal MR image processing, there is a growing demand a digital phantom and brain MR image simulator especially for the neonatal brains. This is due to the pronounced differences between adult and neonatal brains not only in terms of size but also, more importantly, in terms of geometrical proportions and the need to subdivide white matter into two different tissue types in neonates. Therefore the neonatal brain phantom created in the here presented work consists of 9 different tissue types: skin, fat, muscle, skull, dura mater, gray matter, myelinated white matter, nonmyelinated white matter and cerebrospinal fluid. Each voxel has a vector consisting of 9 components, one for each of these nine tissue types. This digital phantom can be used to map simulated magnetic resonance signal intensities resulting in simulated MR images of the newborns head. These images with controlled degradation of the image data present a representative, reproducible data set ideal for development and evaluation of neonatal MRI analysis methods, e.g. segmentation and registration algorithms.
Collapse
Affiliation(s)
- Kamran Kazemi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | | | | | | | | |
Collapse
|
25
|
Park JG, Lee C. Skull stripping based on region growing for magnetic resonance brain images. Neuroimage 2009; 47:1394-407. [PMID: 19389477 DOI: 10.1016/j.neuroimage.2009.04.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 03/09/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022] Open
Abstract
In this paper, we propose a new skull stripping method for T1-weighted magnetic resonance (MR) brain images. Skull stripping has played an important role in neuroimage research because it is a basic preliminary step in many clinical applications. The process of skull stripping can be challenging due to the complexity of the human brain, variable parameters of MR scanners, individual characteristics, etc. In this paper, we aim to develop a computationally efficient and robust method. In the proposed algorithm, after eliminating the background voxels with histogram analysis, two seed regions of the brain and non-brain regions were automatically identified using a mask produced by morphological operations. Then we expanded these seed regions with a 2D region growing algorithm based on general brain anatomy information. The proposed algorithm was validated using 56 volumes of human brain data and simulated phantom data with manually segmented masks. It was compared with two popular automated skull stripping methods: the brain surface extractor (BSE) and the brain extraction tool (BET). The experimental results showed that the proposed algorithm produced accurate and stable results against data sets acquired from various MR scanners and effectively addressed difficult problems such as low contrast and large anatomical connections between the brain and surrounding tissues. The proposed method was also robust against noise, RF, and intensity inhomogeneities.
Collapse
Affiliation(s)
- Jong Geun Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | | |
Collapse
|
26
|
Uberti MG, Boska MD, Liu Y. A semi-automatic image segmentation method for extraction of brain volume from in vivo mouse head magnetic resonance imaging using Constraint Level Sets. J Neurosci Methods 2009; 179:338-44. [PMID: 19428546 DOI: 10.1016/j.jneumeth.2009.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
In vivo magnetic resonance imaging (MRI) of mouse brain has been widely used to non-invasively monitor disease progression and/or therapeutic effects in murine models of human neurodegenerative disease. Segmentation of MRI to differentiate brain from non-brain tissue (usually referred to as brain extraction) is required for many MRI data processing and analysis methods, including coregistration, statistical parametric analysis, and mapping to brain atlas and histology. This paper presents a semi-automatic brain extraction technique based on a level set method with the incorporation of user-defined constraints. The constraints are derived from the prior knowledge of brain anatomy by defining brain boundary on orthogonal planes of the MRI. Constraints are incorporated in the level set method by spatially varying the weighting factors of the internal and external forces and modifying the image gradient (edge) map. Both two-dimensional multislice and three-dimensional versions of the brain extraction technique were developed and applied to MRI data with minimal brain/non-brain contrast T(1)-weighted (T(1)-wt) FLASH and maximized contrast T(2)-weighted (T(2)-wt) RARE. Results were evaluated by calculating the overlap measure (OM) between the automatically segmented and manually traced brain volumes. Results demonstrate that this technique accurately extracts the brain volume (mean OM=94%) and consistently outperformed the region growing method applied to the T(2)-wt RARE MRI (mean OM=81%). This method not only successfully extracts the mouse brain in low and high contrast MRI, but can also be used to segment other organs and tissues.
Collapse
Affiliation(s)
- Mariano G Uberti
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | |
Collapse
|
27
|
|
28
|
Ingress of blood-borne macrophages across the blood-brain barrier in murine HIV-1 encephalitis. J Neuroimmunol 2008; 200:41-52. [PMID: 18653244 DOI: 10.1016/j.jneuroim.2008.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 12/31/2022]
Abstract
Blood-borne macrophage ingress into brain in HIV-1 associated neurocognitive disorders governs the tempo of disease. We used superparamagnetic iron-oxide particles loaded into murine bone marrow-derived macrophages (BMM) injected intravenously into HIV-1 encephalitis mice to quantitatively assess BMM entry into diseased brain regions. Magnetic resonance imaging tests were validated by histological coregistration and enhanced image processing. The demonstration of robust BMM migration into areas of focal encephalitis provide 'proof of concept' for the use of MRI to monitor macrophage ingress into brain.
Collapse
|