1
|
Jalali H, Pouladian M, Nasrabadi AM, Movahed A. Sleep stages classification based on feature extraction from music of brain. Heliyon 2025; 11:e41147. [PMID: 39807512 PMCID: PMC11728888 DOI: 10.1016/j.heliyon.2024.e41147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.752 selected 1-min sleep records extracted from the capsleep database are applied as the statistical population for this assessment. In this process, first, the tempo and scale parameters are extracted from the signal according to the rules of music, and next by applying them and changing the dominant frequency of the pre-processed single-channel EEG signal, a sequence of musical notes is produced. A total of 19 features are extracted from the sequence of notes and fed into feature reduction algorithms; the selected features are applied to a two-stage classification structure: 1) the classification of 5 classes (merging S1 and REM-S2-S3-S4-W) is made with an accuracy of 89.5 % (Cap sleep database), 85.9 % (Sleep-EDF database), 86.5 % (Sleep-EDF expanded database), and 2) the classification of 2 classes (S1 vs. REM) is made with an accuracy of 90.1 % (Cap sleep database),88.9 % (Sleep-EDF database), 90.1 % (Sleep-EDF expanded database). The overall percentage of correct classification for 6 sleep stages are 88.13 %, 84.3 % and 86.1 % for those databases, respectively. The other objective of this study is to present a new single-channel EEG sonification method, The classification accuracy obtained is higher or comparable to contemporary methods. This shows the efficiency of our proposed method.
Collapse
Affiliation(s)
- Hamidreza Jalali
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Pouladian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Motie Nasrabadi
- Biomedical Engineering Department, Faculty of Engineering, Shahed University, Tehran, Iran
| | - Azin Movahed
- School of Music, College of Fine Arts, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Lyu J, Shi W, Zhang C, Yeh CH. A Novel Sleep Staging Method Based on EEG and ECG Multimodal Features Combination. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4073-4084. [PMID: 37819827 DOI: 10.1109/tnsre.2023.3323892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Accurate sleep staging evaluates the quality of sleep, supporting the clinical diagnosis and intervention of sleep disorders and related diseases. Although previous attempts to classify sleep stages have achieved high classification performance, little attention has been paid to integrating the rich information in brain and heart dynamics during sleep for sleep staging. In this study, we propose a generalized EEG and ECG multimodal feature combination to classify sleep stages with high efficiency and accuracy. Briefly, a hybrid features combination in terms of multiscale entropy and intrinsic mode function are used to reflect nonlinear dynamics in multichannel EEGs, along with heart rate variability measures over time/frequency domains, and sample entropy across scales are applied for ECGs. For both the max-relevance and min-redundancy method and principal component analysis were used for dimensionality reduction. The selected features were classified by four traditional machine learning classifiers. Macro-F1 score, macro-geometric mean, and Cohen kappa value are adopted to evaluate the classification performance of each class in an imbalanced dataset. Experimental results show that EEG features contribute more to wake stage classification while ECG features contribute more to deep sleep stages. The proposed combination achieves the highest accuracy of 84.3% and the highest kappa value of 0.794 on the support vector machine in the ISRUC-S3 dataset, suggesting the proposed multimodal features combination is promising in accuracy and efficiency compared to other state-of-the-art methods.
Collapse
|
3
|
von Ellenrieder N, Peter-Derex L, Gotman J, Frauscher B. SleepSEEG: Automatic sleep scoring using intracranial EEG recordings only. J Neural Eng 2022; 19. [PMID: 35439736 DOI: 10.1088/1741-2552/ac6829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To perform automatic sleep scoring based only on intracranial EEG, without the need for scalp electroencephalography (EEG), electrooculography (EOG) and electromyography (EMG), in order to study sleep, epilepsy, and their interaction. APPROACH Data from 33 adult patients was used for development and training of the automatic scoring algorithm using both oscillatory and non-oscillatory spectral features. The first step consisted in unsupervised clustering of channels based on feature variability. For each cluster the classification was done in two steps, a multiclass tree followed by binary classification trees to distinguish the more challenging stage N1. The test data consisted in 11 patients, in whom the classification was done independently for each channel and then combined to get a single stage per epoch. MAIN RESULTS An overall agreement of 78% was observed in the test set between the sleep scoring of the algorithm and two human experts scoring based on scalp EEG, EOG and EMG. Balanced sensitivity and specificity were obtained for the different sleep stages. The performance was excellent for stages W, N2, and N3, and good for stage R, but with high variability across patients. The performance for the challenging stage N1 was poor, but at a similar level as for published algorithms based on scalp EEG. High confidence epochs in different stages (other than N1) can be identified with median per patient specificity >80%. SIGNIFICANCE The automatic algorithm can perform sleep scoring of long term recordings of patients with intracranial electrodes undergoing presurgical evaluation in the absence of scalp EEG, EOG and EMG, which are normally required to define sleep stages but are difficult to use in the context of intracerebral studies. It also constitutes a valuable tool to generate hypotheses regarding local aspects of sleep, and will be significant for sleep evaluation in clinical epileptology and neuroscience research.
Collapse
Affiliation(s)
- Nicolás von Ellenrieder
- Montreal Neurological Institute and Hospital, McGill University, 3801 University streeet, Montreal, Quebec, H3A 2B4, CANADA
| | - Laure Peter-Derex
- PAM Team, Centre de Recherche en Neurosciences de Lyon, 95 Boulevard Pinel, Lyon, Rhône-Alpes , 69675 BRON, FRANCE
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, H3A 2B4, CANADA
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, CANADA
| |
Collapse
|
4
|
Automated Classification of Sleep Stages Using Single-Channel EEG A Machine Learning-Based Method. INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH 2022. [DOI: 10.4018/ijirr.299941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The main contribution of this paper is to present a novel approach for classifying the sleep stages based on optimal feature selection with ensemble learning stacking model using single-channel EEG signals.To find the suitable features from extracted feature vector, we obtained the ReliefF (ReF), Fisher Score (FS) and Online Stream Feature Selection (OSFS) selection algorithms.The proposed research work was performed on two different subgroups of sleep data of ISRUC-Sleep dataset. The experimental results of the proposed methodology signify that single-channel of EEG signal superior to other machine learning classification models with overall accuracies of 97.93%, 97%, and 95.96% using ISRUC-Sleep subgroup-I (SG-I) data and similarly the proposed model achieved an overall accuracies of 98.16%, 98.78%, and 95.26% using ISRUC-Sleep subgroup-III (SG-III) data with FS, ReF and OSFS respectively.
Collapse
|
5
|
Xu Z, Zhu Y, Zhao H, Guo F, Wang H, Zheng M. Sleep Stage Classification Based on Multi-Centers: Comparison Between Different Ages, Mental Health Conditions and Acquisition Devices. Nat Sci Sleep 2022; 14:995-1007. [PMID: 35637772 PMCID: PMC9148176 DOI: 10.2147/nss.s355702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the general sleep stage classification performance of deep learning networks, three datasets, across different age groups, mental health conditions, and acquisition devices, comprising adults (SHHS) and children without mental health conditions (CCSHS), and subjects with mental health conditions (XJ), were included in this study. METHODS A long short-term memory (LSTM) network was used to evaluate the effect of different ages, mental health conditions, and acquisition devices on the sleep stage classification performance and the general performance. RESULTS Results showed that the age and different mental health conditions may affect the sleep stage classification performance of the network. The same acquisition device using different parameters may not have an obvious effect on the classification performance. When using a single dataset and two datasets for training, the network performed better only on the training dataset. When training was conducted with three datasets, the network performed well for all datasets with a Cohen's Kappa of 0.8192 and 0.8472 for the SHHS and CCSHS, respectively, but performed relatively worse (0.6491) for the XJ, which indicated the complexity effect of different mental health conditions on the sleep stage classification task. Moreover, the performance of the network trained using three datasets was similar for each dataset to that of the network trained using a single dataset and tested on the same dataset. CONCLUSION These results suggested that when more datasets across different age groups, mental health conditions, and acquisition devices (ie, more datasets with different feature distributions for each sleep stage) are used for training, the general performance of a deep learning network will be superior for sleep stage classification tasks with varied conditions.
Collapse
Affiliation(s)
- Ziliang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Hongliang Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| |
Collapse
|
6
|
Prognosis of automated sleep staging based on two-layer ensemble learning stacking model using single-channel EEG signal. Soft comput 2021. [DOI: 10.1007/s00500-021-06218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Paulo JR, Pires G, Nunes UJ. Cross-Subject Zero Calibration Driver's Drowsiness Detection: Exploring Spatiotemporal Image Encoding of EEG Signals for Convolutional Neural Network Classification. IEEE Trans Neural Syst Rehabil Eng 2021; 29:905-915. [PMID: 33979288 DOI: 10.1109/tnsre.2021.3079505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper explores two methodologies for drowsiness detection using EEG signals in a sustained-attention driving task considering pre-event time windows, and focusing on cross-subject zero calibration. Driving accidents are a major cause of injuries and deaths on the road. A considerable portion of those are due to fatigue and drowsiness. Advanced driver assistance systems that could detect mental states which are associated with hazardous situations, such as drowsiness, are of critical importance. EEG signals are used widely for brain-computer interfaces, as well as mental state recognition. However, these systems are still difficult to design due to very low signal-to-noise ratios and cross-subject disparities, requiring individual calibration cycles. To tackle this research domain, here, we explore drowsiness detection based on EEG signals' spatiotemporal image encoding representations in the form of either recurrence plots or gramian angular fields for deep convolutional neural network (CNN) classification. Results comparing both techniques using a public dataset of 27 subjects show a superior balanced accuracy of up to 75.87% for leave-one-out cross-validation, using both techniques, against works in the literature, demonstrating the possibility to pursue cross-subject zero calibration design.
Collapse
|
8
|
Satapathy S, Loganathan D, Kondaveeti HK, Rath R. Performance analysis of machine learning algorithms on automated sleep staging feature sets. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2021. [DOI: 10.1049/cit2.12042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Santosh Satapathy
- Puducherry Research Scholar of Computer Science and Engineering Pondicherry Engineering College, Puducherry India
| | - D Loganathan
- Professor of Computer Science and Engineering Pondicherry Engineering College, Puducherry Puducherry India
| | - Hari Kishan Kondaveeti
- Assistant Professor of Computer Science and Engineering VIT University, Amaravati Andhra Pradesh India
| | - RamaKrushna Rath
- Research Scholar of Computer Science and Engineering, Anna University Chennai India
| |
Collapse
|
9
|
Chriskos P, Frantzidis CA, Nday CM, Gkivogkli PT, Bamidis PD, Kourtidou-Papadeli C. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med Rev 2020; 55:101377. [PMID: 33017770 DOI: 10.1016/j.smrv.2020.101377] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/11/2020] [Accepted: 06/02/2020] [Indexed: 12/09/2022]
Abstract
Sleep staging is a vital process conducted in order to analyze polysomnographic data. To facilitate prompt interpretation of these recordings, many automatic sleep staging methods have been proposed. These methods rely on bio-signal recordings, which include electroencephalography, electrocardiography, electromyography, electrooculography, respiratory, pulse oximetry and others. However, advanced, uncomplicated and swift sleep-staging-evaluation is still needed in order to improve the existing polysomnographic data interpretation. The present review focuses on automatic sleep staging methods through bio-signal recording including current and future challenges.
Collapse
Affiliation(s)
- Panteleimon Chriskos
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A Frantzidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Christiane M Nday
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Polyxeni T Gkivogkli
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece.
| | | |
Collapse
|
10
|
|
11
|
Diykh M, Li Y, Abdulla S. EEG sleep stages identification based on weighted undirected complex networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105116. [PMID: 31629158 DOI: 10.1016/j.cmpb.2019.105116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/14/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. METHODS Each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. RESULTS In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. CONCLUSIONS An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard.
Collapse
Affiliation(s)
- Mohammed Diykh
- School of Agricultural, Computational and Environmental Sciences, University of Southern Queensland, Australia; College of Education for Pure Science, University of Thi-Qar, Iraq.
| | - Yan Li
- School of Agricultural, Computational and Environmental Sciences, University of Southern Queensland, Australia.
| | - Shahab Abdulla
- Open Access College, University of Southern Queensland, Australia.
| |
Collapse
|
12
|
Chriskos P, Frantzidis CA, Gkivogkli PT, Bamidis PD, Kourtidou-Papadeli C. Automatic Sleep Staging Employing Convolutional Neural Networks and Cortical Connectivity Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:113-123. [PMID: 30892246 DOI: 10.1109/tnnls.2019.2899781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding of the neuroscientific sleep mechanisms is associated with mental/cognitive and physical well-being and pathological conditions. A prerequisite for further analysis is the identification of the sleep macroarchitecture through manual sleep staging. Several computer-based approaches have been proposed to extract time and/or frequency-domain features with accuracy ranging from 80% to 95% compared with the golden standard of manual staging. However, their acceptability by the medical community is still suboptimal. Recently, utilizing deep learning methodologies increased the research interest in computer-assisted recognition of sleep stages. Aiming to enhance the arsenal of automatic sleep staging, we propose a novel classification framework based on convolutional neural networks. These receive as input synchronizations features derived from cortical interactions within various electroencephalographic rhythms (delta, theta, alpha, and beta) for specific cortical regions which are critical for the sleep deepening. These functional connectivity metrics are then processed as multidimensional images. We also propose to augment the small portion of sleep onset (N1 stage) through the Synthetic Minority Oversampling Technique in order to deal with the great difference in its duration when compared with the remaining sleep stages. Our results (99.85%) indicate the flexibility of deep learning techniques to learn sleep-related neurophysiological patterns.
Collapse
|
13
|
Zhao D, Wang Y, Wang Q, Wang X. Comparative analysis of different characteristics of automatic sleep stages. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 175:53-72. [PMID: 31104715 DOI: 10.1016/j.cmpb.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE With the acceleration of social rhythm and the increase of pressure, there are various sleep problems among people. Sleep staging is an important basis for the diagnosis of sleep disorders and other related diseases. The process of automatic staging of sleep is mainly divided into three core steps: data preprocessing, feature extraction, and classification. Accurate analysis of the features of sleep electroencephalogram (EEG) signals is not only helpful to improve the accuracy of sleep staging, but also help people to understand their sleep status. METHODS This paper focuses on the analysis of EEG features during sleep staging, and reviews many feature extraction methods and classification methods for sleep staging and sums up these algorithms used in literatures and its staging results. Besides, this paper lists a total of 22 features based on time domain, time-frequency, and nonlinear analysis methods, including kurtosis, skewness, Hjorth parameters, and standard deviations, wavelets energy; sample entropy (SampEn), fuzzy entropy, Tsallis entropy, fractal dimension (FD), complexity. The data set comes from EDF database. Wavelet transform (WT) and support vector machine (SVM) are used to achieve the sleep staging based on single-channel EEG signal. And the characteristic feature data was analyzed by ANOVA. RESULTS By comparison, the SampEn, fuzzy entropy, FD and complexity can achieve ideal sleep staging. The highest accuracy of sleep staging is 85.93%. The FD and complexity are simpler than the entropy value, but their accuracies are lower. Furthermore, the distribution of these methods in different sleep period is more significant than others, which is content with the results of sleep staging. CONCLUSION In a word, due to the non-stationary and non-linear characteristics of EEG signals, time domain and time-frequency analysis methods all have some limitations. Nonlinear analysis was more effective and practical for the analysis of sleep EEG.
Collapse
Affiliation(s)
- Dechun Zhao
- Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Yi Wang
- Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qiangqiang Wang
- Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xing Wang
- College of Biomedical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Phan H, Andreotti F, Cooray N, Chén OY, De Vos M. Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification. IEEE Trans Biomed Eng 2019; 66:1285-1296. [PMID: 30346277 PMCID: PMC6487915 DOI: 10.1109/tbme.2018.2872652] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/22/2018] [Indexed: 11/07/2022]
Abstract
Correctly identifying sleep stages is important in diagnosing and treating sleep disorders. This paper proposes a joint classification-and-prediction framework based on convolutional neural networks (CNNs) for automatic sleep staging, and, subsequently, introduces a simple yet efficient CNN architecture to power the framework. Given a single input epoch, the novel framework jointly determines its label (classification) and its neighboring epochs' labels (prediction) in the contextual output. While the proposed framework is orthogonal to the widely adopted classification schemes, which take one or multiple epochs as contextual inputs and produce a single classification decision on the target epoch, we demonstrate its advantages in several ways. First, it leverages the dependency among consecutive sleep epochs while surpassing the problems experienced with the common classification schemes. Second, even with a single model, the framework has the capacity to produce multiple decisions, which are essential in obtaining a good performance as in ensemble-of-models methods, with very little induced computational overhead. Probabilistic aggregation techniques are then proposed to leverage the availability of multiple decisions. To illustrate the efficacy of the proposed framework, we conducted experiments on two public datasets: Sleep-EDF Expanded (Sleep-EDF), which consists of 20 subjects, and Montreal Archive of Sleep Studies (MASS) dataset, which consists of 200 subjects. The proposed framework yields an overall classification accuracy of 82.3% and 83.6%, respectively. We also show that the proposed framework not only is superior to the baselines based on the common classification schemes but also outperforms existing deep-learning approaches. To our knowledge, this is the first work going beyond the standard single-output classification to consider multitask neural networks for automatic sleep staging. This framework provides avenues for further studies of different neural-network architectures for automatic sleep staging.
Collapse
Affiliation(s)
- Huy Phan
- Institute of Biomedical EngineeringUniversity of OxfordOxfordOX3 7DQU.K.
| | | | - Navin Cooray
- Institute of Biomedical EngineeringUniversity of Oxford
| | | | | |
Collapse
|
15
|
Ravan M, Begnaud J. Investigating the Effect of Short Term Responsive VNS Therapy on Sleep Quality Using Automatic Sleep Staging. IEEE Trans Biomed Eng 2019; 66:3301-3309. [PMID: 30869604 DOI: 10.1109/tbme.2019.2903987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this work is to objectively evaluate the effectiveness of responsive (or closed-loop) Vagus nerve stimulation (VNS) therapy in sleep quality in patients with medically refractory epilepsy. METHODS Using quantitative features obtained from electroencephalography, we first developed a new automatic sleep-staging framework that consists of a multi-class support vector machine (SVM) classification, based on a decision tree approach. To train and evaluate the performance of the framework, we used polysomnographic data of 23 healthy subjects from the PhysioBank database where the sleep stages have been visually annotated. We then used the trained classifier to label the sleep stages using data from 22 patients with epilepsy, treated with short term responsive VNS therapy during an epilepsy-monitoring unit visit, one month after VNS implantation, and ten VNS-naïve patients with epilepsy. RESULTS Application of multi-class SVM classifier to classify the three sleep stages of awake, light sleep + rapid eye movement, and deep sleep achieved a classification accuracy of 90%. Results of the application of this methodology to VNS-treated and VNS-naïve patients revealed that the patients treated with short term responsive VNS therapy showed significant increase in sleep efficiency, and significant decrease in seizures plus interictal epileptiform discharges and awakenings. CONCLUSION These results indicate that VNS treatment can reduce the epileptiform activities and thus help in achieving better sleep quality for patients with epilepsy. SIGNIFICANCE The proposed approach can be used to investigate the effect of long-term VNS therapy on sleep quality.
Collapse
|
16
|
Phan H. SeqSleepNet: End-to-End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep Staging. IEEE Trans Neural Syst Rehabil Eng 2019; 27:400-410. [PMID: 30716040 PMCID: PMC6481557 DOI: 10.1109/tnsre.2019.2896659] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Automatic sleep staging has been often treated as a simple classification problem that aims at determining the label of individual target polysomnography epochs one at a time. In this paper, we tackle the task as a sequence-to-sequence classification problem that receives a sequence of multiple epochs as input and classifies all of their labels at once. For this purpose, we propose a hierarchical recurrent neural network named SeqSleepNet (source code is available at http://github.com/pquochuy/SeqSleepNet). At the epoch processing level, the network consists of a filterbank layer tailored to learn frequency-domain filters for preprocessing and an attention-based recurrent layer designed for short-term sequential modeling. At the sequence processing level, a recurrent layer placed on top of the learned epoch-wise features for long-term modeling of sequential epochs. The classification is then carried out on the output vectors at every time step of the top recurrent layer to produce the sequence of output labels. Despite being hierarchical, we present a strategy to train the network in an end-to-end fashion. We show that the proposed network outperforms the state-of-the-art approaches, achieving an overall accuracy, macro F1-score, and Cohen's kappa of 87.1%, 83.3%, and 0.815 on a publicly available dataset with 200 subjects.
Collapse
Affiliation(s)
- Huy Phan
- School of Computing, University of Kent, Chatham Maritime, Kent ME4 4AG, United Kingdom and the Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
17
|
Gerla V, Kremen V, Macas M, Dudysova D, Mladek A, Sos P, Lhotska L. Iterative expert-in-the-loop classification of sleep PSG recordings using a hierarchical clustering. J Neurosci Methods 2019; 317:61-70. [PMID: 30738880 DOI: 10.1016/j.jneumeth.2019.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/27/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The classification of sleep signals is a subjective and time consuming task. A large number of automatic classifiers have been published in the past decade but a sleep community has no strong confidence to use them in clinical practice and still remains using a standard manual scoring according standardized rules. NEW METHOD We developed a semi-supervised data-driven approach for objective and efficient evaluation of polysomnographic (PSG) data. The proposed algorithm finds a representative set of signal segments that are subsequently scored by a sleep neurologist. The remaining part of the recording is then automatically classified using these templates. RESULTS The method was evaluated on 36 PSG recordings (18 chronic insomniacs, 18 healthy controls). We show a faster and objective evaluation of PSG data compared to the manual scoring that is over-performing automated classifiers (accuracy increases ∼14%). The classification results are comparable on both datasets. COMPARISON WITH EXISTING METHOD(S) The methodology that we propose has not yet been published in the area of sleep PSG data processing. The performance of our method is comparable to various published automated approaches (a typical published classification accuracy is ∼75-95%). The method allows the evaluation of PSG recordings in more general terms and across different recording devices and standards. CONCLUSIONS The proposed solution is not based on a single-purpose rules or heuristics and training model is not trained on other patient's sleep recordings. The method is applicable to wide range of similar tasks and various types of physiological signals.
Collapse
Affiliation(s)
- V Gerla
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic.
| | - V Kremen
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic.
| | - M Macas
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic
| | - D Dudysova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Mladek
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic; Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic; Neurosurgical Department, 1st Faculty of Medicine, Charles University, Czech Republic
| | - P Sos
- National Institute of Mental Health, Klecany, Czech Republic
| | - L Lhotska
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic; Faculty of Biomedical Engineering, Czech Technical University in Prague, Czech Republic
| |
Collapse
|
18
|
Detection of REM sleep behaviour disorder by automated polysomnography analysis. Clin Neurophysiol 2019; 130:505-514. [PMID: 30772763 DOI: 10.1016/j.clinph.2019.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. METHODS Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. RESULTS Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved from 86% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. CONCLUSIONS This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. SIGNIFICANCE This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.
Collapse
|
19
|
Ugon A, Kotti A, Séroussi B, Sedki K, Bouaud J, Ganascia JG, Garda P, Philippe C, Pinna A. Knowledge-based decision system for automatic sleep staging using symbolic fusion in a turing machine-like decision process formalizing the sleep medicine guidelines. EXPERT SYSTEMS WITH APPLICATIONS 2018; 114:414-427. [DOI: 10.1016/j.eswa.2018.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Investigating the contribution of distance-based features to automatic sleep stage classification. Comput Biol Med 2018. [DOI: 10.1016/j.compbiomed.2018.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin Neurophysiol 2018; 129:815-828. [DOI: 10.1016/j.clinph.2017.12.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023]
|
22
|
Sousa T, Amaral C, Andrade J, Pires G, Nunes UJ, Castelo-Branco M. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders. J Neural Eng 2017; 14:046026. [DOI: 10.1088/1741-2552/aa70ac] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Imtiaz SA, Rodriguez-Villegas E. Automatic sleep staging using state machine-controlled decision trees. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2015:378-81. [PMID: 26736278 DOI: 10.1109/embc.2015.7318378] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Automatic sleep staging from a reduced number of channels is desirable to save time, reduce costs and make sleep monitoring more accessible by providing home-based polysomnography. This paper introduces a novel algorithm for automatic scoring of sleep stages using a combination of small decision trees driven by a state machine. The algorithm uses two channels of EEG for feature extraction and has a state machine that selects a suitable decision tree for classification based on the prevailing sleep stage. Its performance has been evaluated using the complete dataset of 61 recordings from PhysioNet Sleep EDF Expanded database achieving an overall accuracy of 82% and 79% on training and test sets respectively. The algorithm has been developed with a very small number of decision tree nodes that are active at any given time making it suitable for use in resource-constrained wearable systems.
Collapse
|
24
|
Tian P, Hu J, Qi J, Ye X, Che D, Ding Y, Peng Y. A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Onton JA, Kang DY, Coleman TP. Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device Reveals Distinct Deep Sleep Stages with Differential Electrodermal Activity. Front Hum Neurosci 2016; 10:605. [PMID: 27965558 PMCID: PMC5126123 DOI: 10.3389/fnhum.2016.00605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/14/2016] [Indexed: 11/17/2022] Open
Abstract
Brain activity during sleep is a powerful marker of overall health, but sleep lab testing is prohibitively expensive and only indicated for major sleep disorders. This report demonstrates that mobile 2-channel in-home electroencephalogram (EEG) recording devices provided sufficient information to detect and visualize sleep EEG. Displaying whole-night sleep EEG in a spectral display allowed for quick assessment of general sleep stability, cycle lengths, stage lengths, dominant frequencies and other indices of sleep quality. By visualizing spectral data down to 0.1 Hz, a differentiation emerged between slow-wave sleep with dominant frequency between 0.1–1 Hz or 1–3 Hz, but rarely both. Thus, we present here the new designations, Hi and Lo Deep sleep, according to the frequency range with dominant power. Simultaneously recorded electrodermal activity (EDA) was primarily associated with Lo Deep and very rarely with Hi Deep or any other stage. Therefore, Hi and Lo Deep sleep appear to be physiologically distinct states that may serve unique functions during sleep. We developed an algorithm to classify five stages (Awake, Light, Hi Deep, Lo Deep and rapid eye movement (REM)) using a Hidden Markov Model (HMM), model fitting with the expectation-maximization (EM) algorithm, and estimation of the most likely sleep state sequence by the Viterbi algorithm. The resulting automatically generated sleep hypnogram can help clinicians interpret the spectral display and help researchers computationally quantify sleep stages across participants. In conclusion, this study demonstrates the feasibility of in-home sleep EEG collection, a rapid and informative sleep report format, and novel deep sleep designations accounting for spectral and physiological differences.
Collapse
Affiliation(s)
- Julie A Onton
- Institute for Neural Computation, University of California, San DiegoLa Jolla, CA, USA; Naval Health Research CenterSan Diego, CA, USA
| | - Dae Y Kang
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| | - Todd P Coleman
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
26
|
Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation. ENTROPY 2016. [DOI: 10.3390/e18090272] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Khalighi S, Sousa T, Santos JM, Nunes U. ISRUC-Sleep: A comprehensive public dataset for sleep researchers. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 124:180-92. [PMID: 26589468 DOI: 10.1016/j.cmpb.2015.10.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/06/2015] [Accepted: 10/05/2015] [Indexed: 05/27/2023]
Abstract
To facilitate the performance comparison of new methods for sleep patterns analysis, datasets with quality content, publicly-available, are very important and useful. We introduce an open-access comprehensive sleep dataset, called ISRUC-Sleep. The data were obtained from human adults, including healthy subjects, subjects with sleep disorders, and subjects under the effect of sleep medication. Each recording was randomly selected between PSG recordings that were acquired by the Sleep Medicine Centre of the Hospital of Coimbra University (CHUC). The dataset comprises three groups of data: (1) data concerning 100 subjects, with one recording session per subject; (2) data gathered from 8 subjects; two recording sessions were performed per subject, and (3) data collected from one recording session related to 10 healthy subjects. The polysomnography (PSG) recordings, associated with each subject, were visually scored by two human experts. Comparing the existing sleep-related public datasets, ISRUC-Sleep provides data of a reasonable number of subjects with different characteristics such as: data useful for studies involving changes in the PSG signals over time; and data of healthy subjects useful for studies involving comparison of healthy subjects with the patients, suffering from sleep disorders. This dataset was created aiming to complement existing datasets by providing easy-to-apply data collection with some characteristics not covered yet. ISRUC-Sleep can be useful for analysis of new contributions: (i) in biomedical signal processing; (ii) in development of ASSC methods; and (iii) on sleep physiology studies. To evaluate and compare new contributions, which use this dataset as a benchmark, results of applying a subject-independent automatic sleep stage classification (ASSC) method on ISRUC-Sleep dataset are presented.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Institute of Systems and Robotics (ISR-UC), Department of Electrical and Computer Engineering, University of Coimbra, Portugal.
| | - Teresa Sousa
- Institute of Systems and Robotics (ISR-UC), Department of Electrical and Computer Engineering, University of Coimbra, Portugal
| | - José Moutinho Santos
- Sleep Medicine Centre, The Central Hospital of University of Coimbra (CHUC), Portugal
| | - Urbano Nunes
- Institute of Systems and Robotics (ISR-UC), Department of Electrical and Computer Engineering, University of Coimbra, Portugal
| |
Collapse
|