1
|
Yuan W, Fan P, Zhang L, Pan W, Zhang L. Bone Age Assessment Using Various Medical Imaging Techniques Enhanced by Artificial Intelligence. Diagnostics (Basel) 2025; 15:257. [PMID: 39941187 PMCID: PMC11817689 DOI: 10.3390/diagnostics15030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Bone age (BA) reflects skeletal maturity and is crucial in clinical and forensic contexts, particularly for growth assessment, adult height prediction, and managing conditions like short stature and precocious puberty, often using X-ray, MRI, CT, or ultrasound imaging. Traditional BA assessment methods, including the Greulich-Pyle and Tanner-Whitehouse techniques, compare morphological changes to reference atlases. Despite their effectiveness, factors like genetics and environment complicate evaluations, emphasizing the need for new methods that account for comprehensive variations in skeletal maturity. The limitations of classical BA assessment methods increase the demand for automated solutions. The first automated tool, HANDX, was introduced in 1989. Researchers now focus on developing reliable artificial intelligence (AI)-driven tools, utilizing machine learning and deep learning techniques to improve accuracy and efficiency in BA evaluations, addressing traditional methods' shortcomings. Recent reviews on BA assessment methods rarely compare AI-based approaches across imaging technologies. This article explores advancements in BA estimation, focusing on machine learning methods and their clinical implications while providing a historical context and highlighting each approach's benefits and limitations.
Collapse
Affiliation(s)
- Wenhao Yuan
- Information Technology Center, Wenzhou Medical University, Wenzhou 325035, China; (W.Y.)
- Department of Mathematics and Statistics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Pei Fan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Le Zhang
- Information Technology Center, Wenzhou Medical University, Wenzhou 325035, China; (W.Y.)
| | - Wenbiao Pan
- Information Technology Center, Wenzhou Medical University, Wenzhou 325035, China; (W.Y.)
| | - Liwei Zhang
- State-Owned Assets and Laboratory Management Office, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Amiri E, Mosallanejad A, Sheikhahmadi A. CFDMI-SEC: An optimal model for copy-move forgery detection of medical image using SIFT, EOM and CHM. PLoS One 2024; 19:e0303332. [PMID: 39042655 PMCID: PMC11265725 DOI: 10.1371/journal.pone.0303332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
Image forgery is one of the issues that can create challenges for law enforcement. Digital devices can easily Copy-move images, forging medical photos. In the insurance industry, forensics, and sports, image forgery has become very common and has created problems. Copy-Move Forgery in Medical Images (CMFMI) has led to abuses in areas where access to advanced medical devices is unavailable. The proposed model (SEC) is a three-part model based on an evolutionary algorithm that can detect fake blocks well. In the first part, suspicious points are discovered with the help of the SIFT algorithm. In the second part, suspicious blocks are found using the equilibrium optimization algorithm. Finally, color histogram Matching (CHM) matches questionable points and blocks. The proposed method (SEC) was evaluated based on accuracy, recall, and F1 criteria, and 100, 97.00, and 98.47% were obtained for the fake medical images, respectively. Experimental results show robustness against different transformation and post-processing operations on medical images.
Collapse
Affiliation(s)
- Ehsan Amiri
- Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ahmad Mosallanejad
- Department of Computer Engineering, Sepidan Branch, Islamic Azad University, Sepidan, Iran
| | - Amir Sheikhahmadi
- Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
3
|
Guetari R, Ayari H, Sakly H. Computer-aided diagnosis systems: a comparative study of classical machine learning versus deep learning-based approaches. Knowl Inf Syst 2023; 65:1-41. [PMID: 37361377 PMCID: PMC10205571 DOI: 10.1007/s10115-023-01894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
The diagnostic phase of the treatment process is essential for patient guidance and follow-up. The accuracy and effectiveness of this phase can determine the life or death of a patient. For the same symptoms, different doctors may come up with different diagnoses whose treatments may, instead of curing a patient, be fatal. Machine learning (ML) brings new solutions to healthcare professionals to save time and optimize the appropriate diagnosis. ML is a data analysis method that automates the creation of analytical models and promotes predictive data. There are several ML models and algorithms that rely on features extracted from, for example, a patient's medical images to indicate whether a tumor is benign or malignant. The models differ in the way they operate and the method used to extract the discriminative features of the tumor. In this article, we review different ML models for tumor classification and COVID-19 infection to evaluate the different works. The computer-aided diagnosis (CAD) systems, which we referred to as classical, are based on accurate feature identification, usually performed manually or with other ML techniques that are not involved in classification. The deep learning-based CAD systems automatically perform the identification and extraction of discriminative features. The results show that the two types of DAC have quite close performances but the use of one or the other type depends on the datasets. Indeed, manual feature extraction is necessary when the size of the dataset is small; otherwise, deep learning is used.
Collapse
Affiliation(s)
- Ramzi Guetari
- SERCOM Laboratory, Polytechnic School of Tunisia, University of Carthage, PO Box 743, La Marsa, 2078 Tunisia
| | - Helmi Ayari
- SERCOM Laboratory, Polytechnic School of Tunisia, University of Carthage, PO Box 743, La Marsa, 2078 Tunisia
| | - Houneida Sakly
- RIADI Laboratory, National School of Computer Sciences, University of Manouba, Manouba, 2010 Tunisia
| |
Collapse
|
4
|
Kim H, Kim CS, Lee JM, Lee JJ, Lee J, Kim JS, Choi SH. Prediction of Fishman's skeletal maturity indicators using artificial intelligence. Sci Rep 2023; 13:5870. [PMID: 37041244 PMCID: PMC10090071 DOI: 10.1038/s41598-023-33058-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
The present study aimed to evaluate the performance of automated skeletal maturation assessment system for Fishman's skeletal maturity indicators (SMI) for the use in dental fields. Skeletal maturity is particularly important in orthodontics for the determination of treatment timing and method. SMI is widely used for this purpose, as it is less time-consuming and practical in clinical use compared to other methods. Thus, the existing automated skeletal age assessment system based on Greulich and Pyle and Tanner-Whitehouse3 methods was further developed to include SMI using artificial intelligence. This hybrid SMI-modified system consists of three major steps: (1) automated detection of region of interest; (2) automated evaluation of skeletal maturity of each region; and (3) SMI stage mapping. The primary validation was carried out using a dataset of 2593 hand-wrist radiographs, and the SMI mapping algorithm was adjusted accordingly. The performance of the final system was evaluated on a test dataset of 711 hand-wrist radiographs from a different institution. The system achieved a prediction accuracy of 0.772 and mean absolute error and root mean square error of 0.27 and 0.604, respectively, indicating a clinically reliable performance. Thus, it can be used to improve clinical efficiency and reproducibility of SMI prediction.
Collapse
Affiliation(s)
- Harim Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | | | - Ji-Min Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | | | | | | | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Liu ZQ, Hu ZJ, Wu TQ, Ye GX, Tang YL, Zeng ZH, Ouyang ZM, Li YZ. Bone age recognition based on mask R-CNN using xception regression model. Front Physiol 2023; 14:1062034. [PMID: 36866173 PMCID: PMC9971911 DOI: 10.3389/fphys.2023.1062034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Background and Objective: Bone age detection plays an important role in medical care, sports, judicial expertise and other fields. Traditional bone age identification and detection is according to manual interpretation of X-ray images of hand bone by doctors. This method is subjective and requires experience, and has certain errors. Computer-aided detection can effectually enhance the validity of medical diagnosis, especially with the fast development of machine learning and neural network, the method of bone age recognition using machine learning has gradually become the focus of research, which has the advantages of simple data pretreatment, good robustness and high recognition accuracy. Methods: In this paper, the hand bone segmentation network based on Mask R-CNN was proposed to segment the hand bone area, and the segmented hand bone region was directly input into the regression network for bone age evaluation. The regression network is using an enhancd network Xception of InceptionV3. After the output of Xception, the convolutional block attention module is connected to refine the feature mapping from channel and space to obtain more effective features. Results: According to the experimental results, the hand bone segmentation network model based on Mask R-CNN can segment the hand bone region and eliminate the interference of redundant background information. The average Dice coefficient on the verification set is 0.976. The mean absolute error of predicting bone age on our data set was only 4.97 months, which exceeded the accuracy of most other bone age assessment methods. Conclusion: Experiments show that the accuracy of bone age assessment can be enhancd by using the Mask R-CNN-based hand bone segmentation network and the Xception bone age regression network to form a model, which can be well applied to actual clinical bone age assessment.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Zi-Jian Hu
- Department of Radiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian-Qiong Wu
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Geng-Xin Ye
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Yu-Liang Tang
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Zi-Hua Zeng
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Zhong-Min Ouyang
- Department of Radiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Yuan-Zhe Li, ; Zhong-Min Ouyang,
| | - Yuan-Zhe Li
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,*Correspondence: Yuan-Zhe Li, ; Zhong-Min Ouyang,
| |
Collapse
|
6
|
A Global-Local Feature Fusion Convolutional Neural Network for Bone Age Assessment of Hand X-ray Images. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone age assessment plays a critical role in the investigation of endocrine, genetic, and growth disorders in children. This process is usually conducted manually, with some drawbacks, such as reliance on the pediatrician’s experience and extensive labor, as well as high variations among methods. Most deep learning models use one neural network to extract the global information from the whole input image, ignoring the local details that doctors care about. In this paper, we propose a global-local feature fusion convolutional neural network, including a global pathway to capture the global contextual information and a local pathway to extract the fine-grained information from local patches. The fine-grained information is integrated into the global context information layer-by-layer to assist in predicting bone age. We evaluated the proposed method on a dataset with 11,209 X-ray images with an age range of 4–18 years. Compared with other state-of-the-art methods, the proposed global-local network reduces the mean absolute error of the estimated ages to 0.427 years for males and 0.455 years for females; the average accuracy rate is within 6 months and 12 months, reaching 70% and 91%, respectively. In addition, the effectiveness and rationality of the model were verified on a public dataset.
Collapse
|
7
|
Tang H, Pei X, Li X, Tong H, Li X, Huang S. End-to-end multi-domain neural networks with explicit dropout for automated bone age assessment. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Li X, Jiang Y, Liu Y, Zhang J, Yin S, Luo H. RAGCN: Region Aggregation Graph Convolutional Network for Bone Age Assessment From X-Ray Images. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2022; 71:1-12. [DOI: 10.1109/tim.2022.3190025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Affiliation(s)
- Xiang Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Yuchen Jiang
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Yiliu Liu
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiusi Zhang
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Shen Yin
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hao Luo
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
9
|
Turek P, Grzywiński S, Bużantowicz W. Selected Issues and Constraints of Image Matching in Terrain-Aided Navigation: A Comparative Study. ARTIF INTELL 2021. [DOI: 10.5772/intechopen.95039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The sensitivity of global navigation satellite systems to disruptions precludes their use in conditions of armed conflict with an opponent possessing comparable technical capabilities. In military unmanned aerial vehicles (UAVs) the aim is to obtain navigational data to determine the location and correction of flight routes by means of other types of navigational systems. To correct the position of an UAV relative to a given trajectory, the systems that associate reference terrain maps with image information can be used. Over the last dozen or so years, new, effective algorithms for matching digital images have been developed. The results of their performance effectiveness are based on images that are fragments taken from source files, and therefore their qualitatively identical counterparts exist in the reference images. However, the differences between the reference image stored in the memory of navigation system and the image recorded by the sensor can be significant. In this paper modern methods of image registration and matching to UAV position refinement are compared, and adaptation of available methods to the operating conditions of the UAV navigation system is discussed.
Collapse
|
10
|
Dehghani F, Karimian A, Sirous M, Rasti J, Soleymanpour A. Bone Age Assessment of Iranian Children in an Automatic Manner. JOURNAL OF MEDICAL SIGNALS & SENSORS 2021; 11:24-30. [PMID: 34026587 PMCID: PMC8043122 DOI: 10.4103/jmss.jmss_9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 11/04/2022]
Abstract
Background Bone age assessment (BAA) is a radiological process with the aim of identifying growth disorders in children. The objective of this study is to assess the bone age of Iranian children in an automatic manner. Methods In this context, three computer vision techniques including histogram of oriented gradients (HOG), local binary pattern (LBP), and scale-invariant feature transform (SIFT) are applied to extract appropriate features from the carpal and epiphyseal regions of interest. Two different datasets are applied here: the University of Southern California hand atlas for training this computer-aided diagnosis (CAD) system and Iranian radiographs for evaluating the performance of this system for BAA of Iranian children. In this study, the concatenation of HOG, LBP, and dense SIFT feature vectors and background subtraction are applied to improve the performance of this approach. Support vector machine (SVM) and K-nearest neighbor are used here for classification and the better results yielded by SVM. Results The accuracy of female radiographs is 90% and of male is 71.42%. The mean absolute error is 0.16 and 0.42 years for female and male test radiographs, respectively. Cohen's kappa coefficients are 0.86 and 0.6, P < 0.05, for female and male radiographs, respectively. The results indicate that this proposed approach is in substantial agreement with the bone age reported by the experienced radiologist. Conclusion This approach is easy to implement and reliable, thus qualified for CAD and automatic BAA of Iranian children.
Collapse
Affiliation(s)
- Farzaneh Dehghani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Alireza Karimian
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mehri Sirous
- Department of Radiology, AL-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Rasti
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ali Soleymanpour
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| |
Collapse
|
11
|
Al Turkestani N, Bianchi J, Deleat-Besson R, Le C, Tengfei L, Prieto JC, Gurgel M, Ruellas ACO, Massaro C, Aliaga Del Castillo A, Evangelista K, Yatabe M, Benavides E, Soki F, Zhang W, Najarian K, Gryak J, Styner M, Fillion-Robin JC, Paniagua B, Soroushmehr R, Cevidanes LHS. Clinical decision support systems in orthodontics: A narrative review of data science approaches. Orthod Craniofac Res 2021; 24 Suppl 2:26-36. [PMID: 33973362 DOI: 10.1111/ocr.12492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022]
Abstract
Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high-end computing solutions, artificial intelligence and machine learning approaches can assist in extracting meaningful information that enhances population health and well-being. Furthermore, the extracted knowledge can provide new avenues for modern healthcare delivery via clinical decision support systems. This manuscript presents a narrative review of data science approaches for clinical decision support systems in orthodontics. We describe the fundamental components of data science approaches including (a) Data collection, storage and management; (b) Data processing; (c) In-depth data analysis; and (d) Data communication. Then, we introduce a web-based data management platform, the Data Storage for Computation and Integration, for temporomandibular joint and dental clinical decision support systems.
Collapse
Affiliation(s)
- Najla Al Turkestani
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Restorative and Aesthetic Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jonas Bianchi
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Orthodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Romain Deleat-Besson
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Celia Le
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Li Tengfei
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Marcela Gurgel
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Antonio C O Ruellas
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Massaro
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Orthodontics, Bauru Dental School, University of São Paulo, São Paulo, Brazil
| | - Aron Aliaga Del Castillo
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Orthodontics, Bauru Dental School, University of São Paulo, São Paulo, Brazil
| | - Karine Evangelista
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Orthodontics, School of Dentistry, University of Goias, Goiania, Brazil
| | - Marilia Yatabe
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Erika Benavides
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Fabiana Soki
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Winston Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Gryak
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Martin Styner
- Departments Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Reza Soroushmehr
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lucia H S Cevidanes
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Lee BD, Lee MS. Automated Bone Age Assessment Using Artificial Intelligence: The Future of Bone Age Assessment. Korean J Radiol 2021; 22:792-800. [PMID: 33569930 PMCID: PMC8076828 DOI: 10.3348/kjr.2020.0941] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Bone age assessments are a complicated and lengthy process, which are prone to inter- and intra-observer variabilities. Despite the great demand for fully automated systems, developing an accurate and robust bone age assessment solution has remained challenging. The rapidly evolving deep learning technology has shown promising results in automated bone age assessment. In this review article, we will provide information regarding the history of automated bone age assessments, discuss the current status, and present a literature review, as well as the future directions of artificial intelligence-based bone age assessments.
Collapse
Affiliation(s)
- Byoung Dai Lee
- Division of Computer Science and Engineering, Kyonggi University, Suwon, Korea
| | - Mu Sook Lee
- Department of Radiology, Keimyung University Dongsan Hospital, Daegu, Korea.
| |
Collapse
|
13
|
Zulkifley MA, Mohamed NA, Abdani SR, Kamari NAM, Moubark AM, Ibrahim AA. Intelligent Bone Age Assessment: An Automated System to Detect a Bone Growth Problem Using Convolutional Neural Networks with Attention Mechanism. Diagnostics (Basel) 2021; 11:765. [PMID: 33923215 PMCID: PMC8146101 DOI: 10.3390/diagnostics11050765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal bone age assessment using X-ray images is a standard clinical procedure to detect any anomaly in bone growth among kids and babies. The assessed bone age indicates the actual level of growth, whereby a large discrepancy between the assessed and chronological age might point to a growth disorder. Hence, skeletal bone age assessment is used to screen the possibility of growth abnormalities, genetic problems, and endocrine disorders. Usually, the manual screening is assessed through X-ray images of the non-dominant hand using the Greulich-Pyle (GP) or Tanner-Whitehouse (TW) approach. The GP uses a standard hand atlas, which will be the reference point to predict the bone age of a patient, while the TW uses a scoring mechanism to assess the bone age using several regions of interest information. However, both approaches are heavily dependent on individual domain knowledge and expertise, which is prone to high bias in inter and intra-observer results. Hence, an automated bone age assessment system, which is referred to as Attention-Xception Network (AXNet) is proposed to automatically predict the bone age accurately. The proposed AXNet consists of two parts, which are image normalization and bone age regression modules. The image normalization module will transform each X-ray image into a standardized form so that the regressor network can be trained using better input images. This module will first extract the hand region from the background, which is then rotated to an upright position using the angle calculated from the four key-points of interest. Then, the masked and rotated hand image will be aligned such that it will be positioned in the middle of the image. Both of the masked and rotated images will be obtained through existing state-of-the-art deep learning methods. The last module will then predict the bone age through the Attention-Xception network that incorporates multiple layers of spatial-attention mechanism to emphasize the important features for more accurate bone age prediction. From the experimental results, the proposed AXNet achieves the lowest mean absolute error and mean squared error of 7.699 months and 108.869 months2, respectively. Therefore, the proposed AXNet has demonstrated its potential for practical clinical use with an error of less than one year to assist the experts or radiologists in evaluating the bone age objectively.
Collapse
|
14
|
Automated Bone Age Assessment with Image Registration Using Hand X-ray Images. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the methods for identifying growth disorder is by assessing the skeletal bone age. A child with a healthy growth rate will have approximately the same chronological and bone ages. It is important to detect any growth disorder as early as possible, so that mitigation treatment can be administered with less negative consequences. Recently, the most popular approach in assessing the discrepancy between bone and chronological ages is through the subjective protocol of Tanner–Whitehouse that assesses selected regions in the hand X-ray images. This approach relies heavily on the medical personnel experience, which produces a high intra-observer bias. Therefore, an automated bone age prediction system with image registration using hand X-ray images is proposed in order to complement the inexperienced doctors by providing the second opinion. The system relies on an optimized regression network using a novel residual separable convolution model. The regressor network requires an input image to be 299 × 299 pixels, which will be mapped to the predicted bone age through three modules of the Xception network. Moreover, the images will be pre-processed or registered first to a standardized and normalized pose using separable convolutional neural networks. Three steps image registration are performed by segmenting the hand regions, which will be rotated using angle calculated from four keypoints of interest, before positional alignment is applied to ensure the region of interest is located in the middle. The hand segmentation is based on DeepLab V3 plus architecture, while keypoints regressor for angle alignment is based on MobileNet V1 architecture, where both of them use separable convolution as the core operators. To avoid the pitfall of underfitting, synthetic data are generated while using various rotation angles, zooming factors, and shearing images in order to augment the training dataset. The experimental results show that the proposed method returns the lowest mean absolute error and mean squared error of 8.200 months and 121.902 months2, respectively. Hence, an error of less than one year is acceptable in predicting the bone age, which can serve as a good supplement tool for providing the second expert opinion. This work does not consider gender information, which is crucial in making a better prediction, as the male and female bone structures are naturally different.
Collapse
|
15
|
Dehghani F, Karimian A, Sirous M. Assessing the Bone Age of Children in an Automatic Manner Newborn to 18 Years Range. J Digit Imaging 2020; 33:399-407. [PMID: 31388865 PMCID: PMC7165206 DOI: 10.1007/s10278-019-00209-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bone age assessment (BAA) is a radiological process to identify the growth disorders in children. Although this is a frequent task for radiologists, it is cumbersome. The objective of this study is to assess the bone age of children from newborn to 18 years old in an automatic manner through computer vision methods including histogram of oriented gradients (HOG), local binary pattern (LBP), and scale invariant feature transform (SIFT). Here, 442 left-hand radiographs are applied from the University of Southern California (USC) hand atlas. In this experiment, for the first time, HOG-LBP-dense SIFT features with background subtraction are applied to assess the bone age of the subject group. For this purpose, features are extracted from the carpal and epiphyseal regions of interest (ROIs). The SVM and 5-fold cross-validation are used for classification. The accuracy of female radiographs is 73.88% and of the male is 68.63%. The mean absolute error is 0.5 years for both genders' radiographs. The accuracy a within 1-year range is 95.32% for female and 96.51% for male radiographs. The accuracy within a 2-year range is 100% and 99.41% for female and male radiographs, respectively. The Cohen's kappa statistical test reveals that this proposed approach, Cohen's kappa coefficients are 0.71 for female and 0.66 for male radiographs, p value < 0.05, is in substantial agreement with the bone age assessed by experienced radiologists within the USC dataset. This approach is robust and easy to implement, thus, qualified for computer-aided diagnosis (CAD). The reduced processing time and number of ROIs facilitate BAA.
Collapse
Affiliation(s)
- Farzaneh Dehghani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Alireza Karimian
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mehri Sirous
- Department of Radiology, AL-Zahra Hospital, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
16
|
Asiri SN, Tadlock LP, Schneiderman E, Buschang PH. Applications of artificial intelligence and machine learning in orthodontics. APOS TRENDS IN ORTHODONTICS 2020. [DOI: 10.25259/apos_117_2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past two decades, artificial intelligence (AI) and machine learning (ML) have undergone considerable development. There have been various applications in medicine and dentistry. Their application in orthodontics has progressed slowly, despite promising results. The available literature pertaining to the orthodontic applications of AI and ML has not been adequately synthesized and reviewed. This review article provides orthodontists with an overview of AI and ML, along with their applications. It describes state-of-the-art applications in the areas of orthodontic diagnosis, treatment planning, growth evaluations, and in the prediction of treatment outcomes. AI and ML are powerful tools that can be utilized to overcome some of the clinical problems that orthodontists face daily. With the availability of more data, better AI and ML systems should be expected to be developed that will help orthodontists practice more efficiently and improve the quality of care.
Collapse
Affiliation(s)
- Saeed N. Asiri
- Departments of Orthodontics, College of Dentistry, Texas A&M University, Dallas, Texas, United States
- Departments of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, Texas, United States,
| | - Larry P. Tadlock
- Departments of Orthodontics, College of Dentistry, Texas A&M University, Dallas, Texas, United States
| | - Emet Schneiderman
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia,
| | - Peter H. Buschang
- Departments of Orthodontics, College of Dentistry, Texas A&M University, Dallas, Texas, United States
| |
Collapse
|
17
|
Babaie M, Kashani H, Kumar MD, Tizhoosh HR. A New Local Radon Descriptor for Content-Based Image Search. Artif Intell Med 2020. [DOI: 10.1007/978-3-030-59137-3_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Štern D, Payer C, Urschler M. Automated age estimation from MRI volumes of the hand. Med Image Anal 2019; 58:101538. [PMID: 31400620 DOI: 10.1016/j.media.2019.101538] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/21/2019] [Indexed: 10/26/2022]
Abstract
Highly relevant for both clinical and legal medicine applications, the established radiological methods for estimating unknown age in children and adolescents are based on visual examination of bone ossification in X-ray images of the hand. Our group has initiated the development of fully automatic age estimation methods from 3D MRI scans of the hand, in order to simultaneously overcome the problems of the radiological methods including (1) exposure to ionizing radiation, (2) necessity to define new, MRI specific staging systems, and (3) subjective influence of the examiner. The present work provides a theoretical background for understanding the nonlinear regression problem of biological age estimation and chronological age approximation. Based on this theoretical background, we comprehensively evaluate machine learning methods (random forests, deep convolutional neural networks) with different simplifications of the image information used as an input for learning. Trained on a large dataset of 328 MR images, we compare the performance of the different input strategies and demonstrate unprecedented results. For estimating biological age, we obtain a mean absolute error of 0.37 ± 0.51 years for the age range of the subjects ≤ 18 years, i.e. where bone ossification has not yet saturated. Finally, we validate our findings by adapting our best performing method to 2D images and applying it to a publicly available dataset of X-ray images, showing that we are in line with the state-of-the-art automatic methods for this task.
Collapse
Affiliation(s)
- Darko Štern
- Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria; BioTechMed-Graz, Medical University Graz, Graz, Austria
| | - Christian Payer
- Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria; Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
| | - Martin Urschler
- Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria; School of Computer Science, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
19
|
Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin Berglund J. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. PLoS One 2019; 14:e0220242. [PMID: 31344143 PMCID: PMC6657881 DOI: 10.1371/journal.pone.0220242] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/11/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The assessment of bone age and skeletal maturity and its comparison to chronological age is an important task in the medical environment for the diagnosis of pediatric endocrinology, orthodontics and orthopedic disorders, and legal environment in what concerns if an individual is a minor or not when there is a lack of documents. Being a time-consuming activity that can be prone to inter- and intra-rater variability, the use of methods which can automate it, like Machine Learning techniques, is of value. OBJECTIVE The goal of this paper is to present the state of the art evidence, trends and gaps in the research related to bone age assessment studies that make use of Machine Learning techniques. METHOD A systematic literature review was carried out, starting with the writing of the protocol, followed by searches on three databases: Pubmed, Scopus and Web of Science to identify the relevant evidence related to bone age assessment using Machine Learning techniques. One round of backward snowballing was performed to find additional studies. A quality assessment was performed on the selected studies to check for bias and low quality studies, which were removed. Data was extracted from the included studies to build summary tables. Lastly, a meta-analysis was performed on the performances of the selected studies. RESULTS 26 studies constituted the final set of included studies. Most of them proposed automatic systems for bone age assessment and investigated methods for bone age assessment based on hand and wrist radiographs. The samples used in the studies were mostly comprehensive or bordered the age of 18, and the data origin was in most of cases from United States and West Europe. Few studies explored ethnic differences. CONCLUSIONS There is a clear focus of the research on bone age assessment methods based on radiographs whilst other types of medical imaging without radiation exposure (e.g. magnetic resonance imaging) are not much explored in the literature. Also, socioeconomic and other aspects that could influence in bone age were not addressed in the literature. Finally, studies that make use of more than one region of interest for bone age assessment are scarce.
Collapse
Affiliation(s)
- Ana Luiza Dallora
- Department of Health, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Peter Anderberg
- Department of Health, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Ola Kvist
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Emilia Mendes
- Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Sandra Diaz Ruiz
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
20
|
Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, Wong SC, Min JK, Dunham S, Mosadegh B. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS One 2019; 14:e0219174. [PMID: 31260497 PMCID: PMC6602420 DOI: 10.1371/journal.pone.0219174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
The primary mode of visualization during transcatheter procedures for structrural heart disease is fluoroscopy, which suffers from low contrast and lacks any depth perception, thus limiting the ability of an interventionalist to position a catheter accurately. This paper describes a new image guidance system by utilizing augmented reality to provide a 3D visual environment and quantitative feedback of the catheter’s position within the heart of the patient. The real-time 3D position of the catheter is acquired via two fluoroscopic images taken at different angles, and a patient-specific 3D heart rendering is produced pre-operatively from a CT scan. The spine acts as a fiduciary land marker, allowing the position and orientation of the catheter within the heart to be fully registered. The automated registration method is based on Fourier transformation, and has a high success rate (100%), low registration error (0.42 mm), and clinically acceptable computational cost (1.22 second). The 3D renderings are displayed and updated on the augmented reality device (i.e., Microsoft HoloLens), which can provide pre-set views of various angles of the heart using voice-command. This new image-guidance system with augmented reality provides a better visualization to interventionalists and potentially assists them in understanding of complicated cases. Furthermore, this system coupled with the developed 3D printed models can serve as a training tool for the next generation of cardiac interventionalists.
Collapse
Affiliation(s)
- Jun Liu
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Subhi J. Al’Aref
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Gurpreet Singh
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Alexandre Caprio
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Amir Ali Amiri Moghadam
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Sun-Joo Jang
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - S. Chiu Wong
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - James K. Min
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Simon Dunham
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Liu Y, Zhang C, Cheng J, Chen X, Wang ZJ. A multi-scale data fusion framework for bone age assessment with convolutional neural networks. Comput Biol Med 2019; 108:161-173. [PMID: 31005008 DOI: 10.1016/j.compbiomed.2019.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Bone age assessment (BAA) has various clinical applications such as diagnosis of endocrine disorders and prediction of final adult height for adolescents. Recent studies indicate that deep learning techniques have great potential in developing automated BAA methods with significant advantages over the conventional methods based on handcrafted features. In this paper, we propose a multi-scale data fusion framework for bone age assessment with X-ray images based on non-subsampled contourlet transform (NSCT) and convolutional neural networks (CNNs). Unlike the existing CNN-based BAA methods that adopt the original spatial domain image as network input directly, we pre-extract a rich set of features for the input image by performing NSCT to obtain its multi-scale and multi-direction representations. This feature pre-extraction strategy could be beneficial to network training as the number of annotated examples in the problem of BAA is typically quite limited. The obtained NSCT coefficient maps at each scale are fed into a convolutional network individually and the information from different scales are then merged to achieve the final prediction. Specifically, two CNN models with different data fusion strategies are presented for BAA: a regression model with feature-level fusion and a classification model with decision-level fusion. Experiments on the public BAA dataset Digital Hand Atlas demonstrate that the proposed method can obtain promising results and outperform many state-of-the-art BAA methods. In particular, the proposed approaches exhibit obvious advantages over the corresponding spatial domain approaches (generally with an improvement of more than 0.1 years on the mean absolute error), showing great potential in the future study of this field.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Chao Zhang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Cheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xun Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Z Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Govindarajan S, Swaminathan R. Analysis of Tuberculosis in Chest Radiographs for Computerized Diagnosis using Bag of Keypoint Features. J Med Syst 2019; 43:87. [DOI: 10.1007/s10916-019-1222-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
|
23
|
Reyes-Acosta A, Lopez-Juarez I, Osorio-Comparan R, Lefranc G. 3D pipe reconstruction employing video information from mobile robots. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2018.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Ji X, Zhu Q, Ma J, Lu P, Yan T. Three Landmark Optimization Strategies for Mobile Robot Visual Homing. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3180. [PMID: 30241365 PMCID: PMC6210367 DOI: 10.3390/s18103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Visual homing is an attractive autonomous mobile robot navigation technique, which only uses vision sensors to guide the robot to the specified target location. Landmark is the only input form of the visual homing approaches, which is usually represented by scale-invariant features. However, the landmark distribution has a great impact on the homing performance of the robot, as irregularly distributed landmarks will significantly reduce the navigation precision. In this paper, we propose three strategies to solve this problem. We use scale-invariant feature transform (SIFT) features as natural landmarks, and the proposed strategies can optimize the landmark distribution without over-eliminating landmarks or increasing calculation amount. Experiments on both panoramic image databases and a real mobile robot have verified the effectiveness and feasibility of the proposed strategies.
Collapse
Affiliation(s)
- Xun Ji
- College of Automation, Harbin Engineering University, Harbin 150001, China.
| | - Qidan Zhu
- College of Automation, Harbin Engineering University, Harbin 150001, China.
| | - Junda Ma
- College of Automation, Harbin Engineering University, Harbin 150001, China.
| | - Peng Lu
- College of Automation, Harbin Engineering University, Harbin 150001, China.
| | - Tianhao Yan
- College of Automation, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
25
|
|
26
|
Abstract
This paper introduces the "encoded local projections" (ELP) as a new dense-sampling image descriptor for search and classification problems. The gradient changes of multiple projections in local windows of gray-level images are encoded to build a histogram that captures spatial projection patterns. Using projections is a conventional technique in both medical imaging and computer vision. Furthermore, powerful dense-sampling methods, such as local binary patterns and the histogram of oriented gradients, are widely used for image classification and recognition. Inspired by many achievements of such existing descriptors, we explore the design of a new class of histogram-based descriptors with particular applications in medical imaging. We experiment with three public datasets (IRMA, Kimia Path24, and CT Emphysema) to comparatively evaluate the performance of ELP histograms. In light of the tremendous success of deep architectures, we also compare the results with deep features generated by pretrained networks. The results are quite encouraging as the ELP descriptor can surpass both conventional and deep descriptors in performance in several experimental settings.
Collapse
|
27
|
3D Model Identification Using Weighted Implicit Shape Representation and Panoramic View. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Artwork Identification for 360-Degree Panoramic Images Using Polyhedron-Based Rectilinear Projection and Keypoint Shapes. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Deformable Object Matching Algorithm Using Fast Agglomerative Binary Search Tree Clustering. Symmetry (Basel) 2017. [DOI: 10.3390/sym9020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Moreno-García CF, Serratosa F. Obtaining the consensus of multiple correspondences between graphs through online learning. Pattern Recognit Lett 2017. [DOI: 10.1016/j.patrec.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 2017; 36:41-51. [DOI: 10.1016/j.media.2016.10.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
32
|
Simu S, Lal S, Nagarsekar P, Naik A. Fully automatic ROI extraction and edge-based segmentation of radius and ulna bones from hand radiographs. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|