1
|
Romitti GS, Liberos A, Termenón-Rivas M, Barrios-Álvarez de Arcaya J, Serra D, Romero P, Calvo D, Lozano M, García-Fernández I, Sebastian R, Rodrigo M. Implementation of a Cellular Automaton for efficient simulations of atrial arrhythmias. Med Image Anal 2025; 101:103484. [PMID: 39946778 DOI: 10.1016/j.media.2025.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025]
Abstract
In silico models offer a promising advancement for studying cardiac arrhythmias and their clinical implications. However, existing detailed mathematical models often suffer from prolonged computational time compared to diagnostic needs. This study introduces a Cellular Automaton (CA) model tailored to replicate atrial electrophysiology in different stages of Atrial Fibrillation (AF), including persistent AF (PsAF). The CA, using a finite set of states, has been trained using biophysical simulations on a reduced domain for a large set of pacing conditions. Fine-tuning included tissue heterogeneity and anisotropic propagation through pacing simulations. Characterized by Action Potential Duration (APD), Diastolic Interval (DI) and Conduction Velocity (CV) for varying levels of electrical remodeling, the biophysical simulations introduced restitution curves or surfaces into the CA. Validation involved a comprehensive comparison with realistic 2D and 3D atrial models, evaluating healthy and pro-arrhythmic behaviors. Comparisons between CA and biophysical solver revealed striking proximity, with a Cycle Length difference of <10 ms in self-sustained re-entry and a 4.66±0.57 ms difference in depolarization times across the complete atrial geometry. Notably, the CA model exhibited a 80% accuracy, 96% specificity and 45% sensitivity in predicting AF inducibility under different pacing sites and substrate conditions. Additionally, the CA allowed for a 64-fold decrease in computing time compared to the biophysical solver. CA emerges as an efficient and valid model for simulation of atrial electrophysiology across different stages of AF, with potential as a general screening tool for rapid tests. While biophysical tests are recommended for investigating specific mechanisms, CA proves valuable in clinical applications for personalized therapy planning through digital twin simulations.
Collapse
Affiliation(s)
- Giada S Romitti
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - Alejandro Liberos
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - María Termenón-Rivas
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - Javier Barrios-Álvarez de Arcaya
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - Dolors Serra
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - Pau Romero
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - David Calvo
- Arrhythmia Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) and CIBERCV, Madrid, Spain
| | - Miguel Lozano
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - Ignacio García-Fernández
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - Rafael Sebastian
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain
| | - Miguel Rodrigo
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science and Department of Electronic Engineering, Universitat de València, Av. de l'Universitat s/n, Burjassot 46100, Spain.
| |
Collapse
|
2
|
Hashemi S, Baghaei K, Fathi A, Aghadavoudi N, Hashemi SS, Atash R, Khademi SS. Stress Analysis of Endodontically Treated Tooth-Implant Different Connectors Designs in Maxillary Posterior Region: A Finite Element Analysis. Eur J Dent 2024; 18:587-597. [PMID: 37848070 PMCID: PMC11132775 DOI: 10.1055/s-0043-1772780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVES Using finite element analysis (FEA), this study aimed to determine the effect of nonrigid connectors (NRCs) and their position on the success of tooth and implant-supported fixed prostheses in the maxillary posterior region. MATERIALS AND METHODS Three three-dimensional FEA models were designed, presuming maxillary second premolar and first molar to be extracted. Implant (replacing first molar), abutment, bone (spongious and cortical), first premolar (containing dentin, root cement, gutta-percha, and casting post and core), periodontal ligament, and three three-unit cemented porcelain-fused-to-metal prostheses (a rigid one and two nonrigid) were modeled. The NRC was once on the tooth side and once on the implant side. The prostheses were loaded twice. The first molar (180 N) and premolars (120 N) teeth were subjected to progressive vertical and oblique (12-degree) loads, and maximum von Mises stress and strain in teeth and connectors were calculated for each model. RESULTS The findings of the current study showed evidence that tooth-implant design with an NRC has significantly increased the average stress in the tooth. The average stress in dentin was 769.02 for the mesial connector and 766.95 for the distal connector, and this was only 731.59 for rigid connector. Furthermore, it was observed that rigid connector has considerably minimized the stress within the tooth-implant-supported fixed partial denture. The average stress for the crown and metal frame is 346.22 and 526.41 in rigid connector, while it is 1,172.9 and 2,050.9 for the nonrigid mesial connector. CONCLUSION Although distal NRC was more efficient than mesial NRC, using NRC will only reduce the stress applied to cortical bone and is not recommended in the posterior region of the maxilla.
Collapse
Affiliation(s)
- Sara Hashemi
- Dental Students Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kimia Baghaei
- Dental Students Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Fathi
- Department of Dental Prosthodontics, Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Navid Aghadavoudi
- Dental Students Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ramin Atash
- Department of Prosthodontics, School of Dentistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Sayed Sobhan Khademi
- Department of Prosthodontics, School of Dentistry, Islamic Azad University (Khorasgan Branch), Isfahan, Iran
| |
Collapse
|
3
|
Lu X, Wang X, Zhang W, Wen A, Ren Y. An end-to-end model for ECG signals classification based on residual attention network. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
A Review on Atrial Fibrillation (Computer Simulation and Clinical Perspectives). HEARTS 2022. [DOI: 10.3390/hearts3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Atrial fibrillation (AF), a heart condition, has been a well-researched topic for the past few decades. This multidisciplinary field of study deals with signal processing, finite element analysis, mathematical modeling, optimization, and clinical procedure. This article is focused on a comprehensive review of journal articles published in the field of AF. Topics from the age-old fundamental concepts to specialized modern techniques involved in today’s AF research are discussed. It was found that a lot of research articles have already been published in modeling and simulation of AF. In comparison to that, the diagnosis and post-operative procedures for AF patients have not yet been totally understood or explored by the researchers. The simulation and modeling of AF have been investigated by many researchers in this field. Cellular model, tissue model, and geometric model among others have been used to simulate AF. Due to a very complex nature, the causes of AF have not been fully perceived to date, but the simulated results are validated with real-life patient data. Many algorithms have been proposed to detect the source of AF in human atria. There are many ablation strategies for AF patients, but the search for more efficient ablation strategies is still going on. AF management for patients with different stages of AF has been discussed in the literature as well but is somehow limited mostly to the patients with persistent AF. The authors hope that this study helps to find existing research gaps in the analysis and the diagnosis of AF.
Collapse
|
5
|
Ciaccio EJ, Wan EY, Saluja DS, Acharya UR, Peters NS, Garan H. Addressing challenges of quantitative methodologies and event interpretation in the study of atrial fibrillation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:113-122. [PMID: 31416540 PMCID: PMC6748794 DOI: 10.1016/j.cmpb.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 06/14/2019] [Indexed: 05/06/2023]
Abstract
Atrial fibrillation (AF) is the commonest arrhythmia, yet the mechanisms of its onset and persistence are incompletely known. Although techniques for quantitative assessment have been investigated, there have been few attempts to integrate this information to advance disease treatment protocols. In this review, key quantitative methods for AF analysis are described, and suggestions are provided for the coordination of the available information, and to develop foci and directions for future research efforts. Quantitative biologists may have an interest in this topic in order to develop machine learning and tools for arrhythmia characterization, but they may perhaps have a minimal background in the clinical methodology and in the types of observed events and mechanistic hypotheses that have thus far been developed. We attempt to address these issues via exploration of the published literature. Although no new data is presented in this review, examples are shown of current lines of investigation, and in particular, how electrogram analysis and whole-chamber quantitative modeling of the left atrium may be useful to characterize fibrillatory patterns of activity, so as to propose avenues for more efficacious acquisition and interpretation of AF data.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Elaine Y Wan
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Deepak S Saluja
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Filos D, Tachmatzidis D, Maglaveras N, Vassilikos V, Chouvarda I. Understanding the Beat-to-Beat Variations of P-Waves Morphologies in AF Patients During Sinus Rhythm: A Scoping Review of the Atrial Simulation Studies. Front Physiol 2019; 10:742. [PMID: 31275161 PMCID: PMC6591370 DOI: 10.3389/fphys.2019.00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
The remarkable advances in high-performance computing and the resulting increase of the computational power have the potential to leverage computational cardiology toward improving our understanding of the pathophysiological mechanisms of arrhythmias, such as Atrial Fibrillation (AF). In AF, a complex interaction between various triggers and the atrial substrate is considered to be the leading cause of AF initiation and perpetuation. In electrocardiography (ECG), P-wave is supposed to reflect atrial depolarization. It has been found that even during sinus rhythm (SR), multiple P-wave morphologies are present in AF patients with a history of AF, suggesting a higher dispersion of the conduction route in this population. In this scoping review, we focused on the mechanisms which modify the electrical substrate of the atria in AF patients, while investigating the existence of computational models that simulate the propagation of the electrical signal through different routes. The adopted review methodology is based on a structured analytical framework which includes the extraction of the keywords based on an initial limited bibliographic search, the extensive literature search and finally the identification of relevant articles based on the reference list of the studies. The leading mechanisms identified were classified according to their scale, spanning from mechanisms in the cell, tissue or organ level, and the produced outputs. The computational modeling approaches for each of the factors that influence the initiation and the perpetuation of AF are presented here to provide a clear overview of the existing literature. Several levels of categorization were adopted while the studies which aim to translate their findings to ECG phenotyping are highlighted. The results denote the availability of multiple models, which are appropriate under specific conditions. However, the consideration of complex scenarios taking into account multiple spatiotemporal scales, personalization of electrophysiological and anatomical models and the reproducibility in terms of ECG phenotyping has only partially been tackled so far.
Collapse
Affiliation(s)
- Dimitrios Filos
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, United States
| | - Vassilios Vassilikos
- 3rd Cardiology Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Ciaccio EJ, Peters NS, Garan H. Use of an automaton model to suggest methods for cessation of intractable fibrillatory activity. Comput Biol Med 2018; 102:357-368. [PMID: 30097173 DOI: 10.1016/j.compbiomed.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart arrhythmia, and permanent AF is an intractable medical problem. If cessation of permanent AF were possible, via extensive substrate ablation or multisite stimulation, it could significantly improve the public health. METHOD A cellular automaton composed of 576 × 576 computerized grid nodes, described in detail previously, was used to test hypotheses concerning the cessation of fibrillatory electrical activity. A refractory period gradient across the grid, and addition of randomly located nonconducting fibers, were utilized as conditions leading to fibrillatory activity. A premature S1-S2 stimulus was applied to one grid corner, resulting in unidirectional conduction block at some locations, followed by rotational activity and random propagation of activation wavelets throughout the grid, none of which terminated spontaneously. Simulated ablation lesions of dimension 20 × 20 grid nodes, imparted at core locations of rotational activity, and multisite electrode stimulation (MES) applied at nodes where recovery of excitability had occurred, were used in attempts to terminate fibrillatory activity. Six impositions of random fiber location were utilized in separate trials. RESULTS Simulated ablation lesions eliminated the targeted swirling vortices; however, additional vortices then often appeared at other locations. After ablating approximately one third of the grid area, localized vortices were eliminated, but individual wavelets continued to propagate about longer viable pathways forming at ablation lesions. Thus extensive ablation was unsuccessful in terminating arrhythmia. However, MES applied uniformly throughout the grid, with a coupling interval slightly longer than the maximum refractory period, terminated fibrillatory activity in some trials. More efficaciously, application of MES with a coupling interval half the maximum refractory period of the grid succeeded in capture of activation at all nodes, and when followed by a doubling of the MES coupling interval, resulted in cessation of all fibrillatory activity. CONCLUSIONS It is possible to terminate simulated fibrillatory activity in a computerized grid that would otherwise be intractable, using multisite stimulation with a coupling interval related to the maximum refractory period of the substrate. If each MES stimulating electrode could be individually controlled, it would be possible to apply a stimulation pattern mimicking the normal heart activation sequence.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
8
|
Hagiwara Y, Fujita H, Oh SL, Tan JH, Tan RS, Ciaccio EJ, Acharya UR. Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.07.063] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Roney CH, Bayer JD, Cochet H, Meo M, Dubois R, Jaïs P, Vigmond EJ. Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. PLoS Comput Biol 2018; 14:e1006166. [PMID: 29795549 PMCID: PMC5997352 DOI: 10.1371/journal.pcbi.1006166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/12/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022] Open
Abstract
Success rates for catheter ablation of persistent atrial fibrillation patients are currently low; however, there is a subset of patients for whom electrical isolation of the pulmonary veins alone is a successful treatment strategy. It is difficult to identify these patients because there are a multitude of factors affecting arrhythmia susceptibility and maintenance, and the individual contributions of these factors are difficult to determine clinically. We hypothesised that the combination of pulmonary vein (PV) electrophysiology and atrial body fibrosis determine driver location and effectiveness of pulmonary vein isolation (PVI). We used bilayer biatrial computer models based on patient geometries to investigate the effects of PV properties and atrial fibrosis on arrhythmia inducibility, maintenance mechanisms, and the outcome of PVI. Short PV action potential duration (APD) increased arrhythmia susceptibility, while longer PV APD was found to be protective. Arrhythmia inducibility increased with slower conduction velocity (CV) at the LA/PV junction, but not for cases with homogeneous CV changes or slower CV at the distal PV. Phase singularity (PS) density in the PV region for cases with PV fibrosis was increased. Arrhythmia dynamics depend on both PV properties and fibrosis distribution, varying from meandering rotors to PV reentry (in cases with baseline or long APD), to stable rotors at regions of high fibrosis density. Measurement of fibrosis and PV properties may indicate patient specific susceptibility to AF initiation and maintenance. PV PS density before PVI was higher for cases in which AF terminated or converted to a macroreentry; thus, high PV PS density may indicate likelihood of PVI success. Atrial fibrillation is the most commonly encountered cardiac arrhythmia, affecting a significant portion of the population. Currently, ablation is the most effective treatment but success rates are less than optimal, being 70% one-year post-treatment. There is a large effort to find better ablation strategies to permanently cure the condition. Pulmonary vein isolation by ablation is more or less the standard of care, but many questions remain since pulmonary vein ectopy by itself does not explain all of the clinical successes or failures. We used computer simulations to investigate how electrophysiological properties of the pulmonary veins can affect rotor formation and maintenance in patients suffering from atrial fibrillation. We used complex, biophysical representations of cellular electrophysiology in highly detailed geometries constructed from patient scans. We heterogeneously varied electrophysiological and structural properties to see their effects on rotor initiation and maintenance. Our study suggests a metric for indicating the likelihood of success of pulmonary vein isolation. Thus either measuring this clinically, or running patient-specific simulations to estimate this metric may suggest whether ablation in addition to pulmonary vein isolation should be performed. Our study provides motivation for a retrospective clinical study or experimental study into this metric.
Collapse
Affiliation(s)
- Caroline H. Roney
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Jason D. Bayer
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, F-33400 Talence, France
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Hôpital Cardiologique du Haut-L’évêque, Université de Bordeaux, LIRYC Institute: IHU LIRYC ANR-10-IAHU-04 and Equipex MUSIC ANR-11-EQPX-0030, Bordeaux, France
| | - Marianna Meo
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
| | - Rémi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
| | - Pierre Jaïs
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Hôpital Cardiologique du Haut-L’évêque, Université de Bordeaux, LIRYC Institute: IHU LIRYC ANR-10-IAHU-04 and Equipex MUSIC ANR-11-EQPX-0030, Bordeaux, France
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, F-33400 Talence, France
- * E-mail:
| |
Collapse
|
10
|
Ciaccio EJ, Peters NS, Garan H. Effects of refractory gradients and ablation on fibrillatory activity. Comput Biol Med 2018; 95:175-187. [PMID: 29501736 DOI: 10.1016/j.compbiomed.2018.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND The mechanisms involved in onset, maintenance, and termination of atrial fibrillation are not well understood. A biophysical model could be useful to determine how the events unfold. METHOD A two-dimensional cellular automaton consisting of 576 × 576 grid nodes was implemented to demonstrate the types of electrical activity that may occur in compromised atrial substrate. Electrical activation between nodes was made anisotropic (2:1), and the refractory period (RP) was adjusted from 74 to 192 ms in the spatial domain. Presence of collagen fibers were simulated as short lines of conduction block at many random grid sites, while ablation lesions were delineated as longer lines of block. An S1-S2 pulse from one grid corner was utilized to initiate simulated electrical activity. Simulations were done in which 1. no ablation lines, 2. random ablation lines, and 3. parallel ablation lines were added to the grid to determine how this affected the formation and annihilation of rotational activity after S1-S2 stimulation. RESULTS As the premature (S2) wavefront traversed the grid, rotational activity formed near boundaries where wavefronts propagated from shorter to longer refractory regions, causing unidirectional block, and were anchored by fiber clusters. Multiple wavelets appeared when wavefronts originating from different driving rotational features collided, and/or by their encounter with RP discontinuities. With the addition of randomly orientated simulated ablation lesions, followed by reinduction of fibrillatory activity, mean activation interval (AI) prolonged from a baseline level of 144.2 ms-160.3 ms (p < 0.001 in most comparisons). During fibrillatory activity, when parallel ablation lines were added to short RP regions, AI prolonged to 150.4 ms (p < 0.001), and when added to long RP regions, AI prolonged to 185.3 ms (p < 0.001). In all cases, AI prolongation after simulated ablation resulted from reduced number and/or from the isolation of local drivers, so that distant drivers in short RP regions activated long RP regions N:1, while distant drivers in long RP regions activated short RP regions at a relatively slow rate. CONCLUSIONS An automaton model was found useful to generate and test hypotheses concerning fibrillatory activity, which can then be validated in the clinical electrophysiology laboratory.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, United States; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
11
|
McGillivray MF, Cheng W, Peters NS, Christensen K. Machine learning methods for locating re-entrant drivers from electrograms in a model of atrial fibrillation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172434. [PMID: 29765687 PMCID: PMC5936952 DOI: 10.1098/rsos.172434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 05/14/2023]
Abstract
Mapping resolution has recently been identified as a key limitation in successfully locating the drivers of atrial fibrillation (AF). Using a simple cellular automata model of AF, we demonstrate a method by which re-entrant drivers can be located quickly and accurately using a collection of indirect electrogram measurements. The method proposed employs simple, out-of-the-box machine learning algorithms to correlate characteristic electrogram gradients with the displacement of an electrogram recording from a re-entrant driver. Such a method is less sensitive to local fluctuations in electrical activity. As a result, the method successfully locates 95.4% of drivers in tissues containing a single driver, and 95.1% (92.6%) for the first (second) driver in tissues containing two drivers of AF. Additionally, we demonstrate how the technique can be applied to tissues with an arbitrary number of drivers. In its current form, the techniques presented are not refined enough for a clinical setting. However, the methods proposed offer a promising path for future investigations aimed at improving targeted ablation for AF.
Collapse
Affiliation(s)
- Max Falkenberg McGillivray
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - William Cheng
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London W12 0NN, UK
| | - Kim Christensen
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London W12 0NN, UK
| |
Collapse
|