1
|
Jawaid MM, Narejo S, Riaz F, Reyes-Aldasoro CC, Slabaugh G, Brown J. Non-calcified plaque-based coronary stenosis grading in contrast enhanced CT. Med Eng Phys 2024; 129:104182. [PMID: 38906576 DOI: 10.1016/j.medengphy.2024.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND The high mortality rate associated with coronary heart disease has led to state-of-the-art non-invasive methods for cardiac diagnosis including computed tomography and magnetic resonance imaging. However, stenosis computation and clinical assessment of non-calcified plaques has been very challenging due to their ambiguous intensity response in CT i.e. a significant overlap with surrounding muscle tissues and blood. Accordingly, this research presents an approach for computation of coronary stenosis by investigating cross-sectional lumen behaviour along the length of 3D coronary segments. METHODS Non-calcified plaques are characterized by comparatively lower-intensity values with respect to the surrounding. Accordingly, segment-wise orthogonal volume was reconstructed in 3D space using the segmented coronary tree. Subsequently, the cross sectional volumetric data was investigated using proposed CNN-based plaque quantification model and subsequent stenosis grading in clinical context was performed. In the last step, plaque-affected orthogonal volume was further investigated by comparing vessel-wall thickness and lumen area obstruction w.r.t. expert-based annotations to validate the stenosis grading performance of model. RESULTS The experimental data consists of clinical CT images obtained from the Rotterdam CT repository leading to 600 coronary segments and subsequent 15786 cross-sectional images. According to the results, the proposed method quantified coronary vessel stenosis i.e. severity of the non-calcified plaque with an overall accuracy of 83%. Moreover, for individual grading, the proposed model show promising results with accuracy equal to 86%, 90% and 79% respectively for severe, moderate and mild stenosis. The stenosis grading performance of the proposed model was further validated by performing lumen-area versus wall-thickness analysis as per annotations of manual experts. The statistical results for lumen area analysis precisely correlates with the quantification performance of the model with a mean deviation of 5% only. CONCLUSION The overall results demonstrates capability of the proposed model to grade the vessel stenosis with reasonable accuracy and precision equivalent to human experts.
Collapse
Affiliation(s)
| | - Sanam Narejo
- Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | | | | | | | | |
Collapse
|
2
|
Lu H, Yao Y, Wang L, Yan J, Tu S, Xie Y, He W. Research Progress of Machine Learning and Deep Learning in Intelligent Diagnosis of the Coronary Atherosclerotic Heart Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3016532. [PMID: 35516452 PMCID: PMC9064517 DOI: 10.1155/2022/3016532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
The coronary atherosclerotic heart disease is a common cardiovascular disease with high morbidity, disability, and societal burden. Early, precise, and comprehensive diagnosis of the coronary atherosclerotic heart disease is of great significance. The rise of artificial intelligence technologies, represented by machine learning and deep learning, provides new methods to address the above issues. In recent years, artificial intelligence has achieved an extraordinary progress in multiple aspects of coronary atherosclerotic heart disease diagnosis, including the construction of intelligent diagnostic models based on artificial intelligence algorithms, applications of artificial intelligence algorithms in coronary angiography, coronary CT angiography, intravascular imaging, cardiac magnetic resonance, and functional parameters. This paper presents a comprehensive review of the technical background and current state of research on the application of artificial intelligence in the diagnosis of the coronary atherosclerotic heart disease and analyzes recent challenges and perspectives in this field.
Collapse
Affiliation(s)
- Haoxuan Lu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yudong Yao
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Li Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Jianing Yan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Shuangshuang Tu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yanqing Xie
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Wenming He
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
3
|
Kagiyama N, Tokodi M, Sengupta PP. Machine Learning in Cardiovascular Imaging. Heart Fail Clin 2022; 18:245-258. [DOI: 10.1016/j.hfc.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Indumathy D, Ramesh K, Senthilkumar G, Sudha S. Investigations on coronary artery plaque detection and subclassification using machine learning classifier. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:513-529. [PMID: 35147573 DOI: 10.3233/xst-211077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coronary artery diseases are one of the high-risk diseases, which occur due to the insufficient blood supply to the heart. The different types of plaques formed inside the artery leads to the blockage of the blood stream. Understanding the type of plaques along with the detection and classification of plaques supports in reducing the mortality of patients. The objective of this study is to present a novel clustering method of plaque segmentation followed by wavelet transform based feature extraction. The extracted features of all different kinds of calcified and sub calcified plaques are applied to first train and test three machine learning classifiers including support vector machine, random forest and decision tree classifiers. The bootstrap ensemble classifier then decides the best classification result through a voting method of three classifiers. A training dataset including 64 normal CTA images and 73 abnormal CTA images is used, while a testing dataset consists of 111 normal CTA images and 103 abnormal CTA images. The evaluation metrics shows better classification rate and accuracy of 97.7%. The Sensitivity and Specificity rates are 97.8% and 97.5%, respectively. As a result, our study results demonstrate the feasibility and advantages of developing and applying this new image processing and machine learning scheme to assist coronary artery plaque detection and classification.
Collapse
Affiliation(s)
- D Indumathy
- Department of Electronics and Communication Engineering, Rajalakshmi Engineering College, Thandalam, Chennai, India
| | | | - G Senthilkumar
- Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, India
| | - S Sudha
- Department of Electronics and Communication Engineering, Easwari Engineering College, Chennai, India
| |
Collapse
|
5
|
Recent Trends in Artificial Intelligence-Assisted Coronary Atherosclerotic Plaque Characterization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910003. [PMID: 34639303 PMCID: PMC8508413 DOI: 10.3390/ijerph181910003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
Coronary artery disease is a major cause of morbidity and mortality worldwide. Its underlying histopathology is the atherosclerotic plaque, which comprises lipid, fibrous and—when chronic—calcium components. Intravascular ultrasound (IVUS) and intravascular optical coherence tomography (IVOCT) performed during invasive coronary angiography are reference standards for characterizing the atherosclerotic plaque. Fine image spatial resolution attainable with contemporary coronary computed tomographic angiography (CCTA) has enabled noninvasive plaque assessment, including identifying features associated with vulnerable plaques known to presage acute coronary events. Manual interpretation of IVUS, IVOCT and CCTA images demands scarce physician expertise and high time cost. This has motivated recent research into and development of artificial intelligence (AI)-assisted methods for image processing, feature extraction, plaque identification and characterization. We performed parallel searches of the medical and technical literature from 1995 to 2021 focusing respectively on human plaque characterization using various imaging modalities and the use of AI-assisted computer aided diagnosis (CAD) to detect and classify atherosclerotic plaques, including their composition and the presence of high-risk features denoting vulnerable plaques. A total of 122 publications were selected for evaluation and the analysis was summarized in terms of data sources, methods—machine versus deep learning—and performance metrics. Trends in AI-assisted plaque characterization are detailed and prospective research challenges discussed. Future directions for the development of accurate and efficient CAD systems to characterize plaque noninvasively using CCTA are proposed.
Collapse
|
6
|
Zhang ZZ, Guo Y, Hou Y. Artificial intelligence in coronary computed tomography angiography. Artif Intell Med Imaging 2021; 2:73-85. [DOI: 10.35711/aimi.v2.i3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zhe-Zhe Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Guo
- GE Healthcare, Beijing 100176, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
7
|
Jia D, Zhuang X. Learning-based algorithms for vessel tracking: A review. Comput Med Imaging Graph 2021; 89:101840. [PMID: 33548822 DOI: 10.1016/j.compmedimag.2020.101840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Developing efficient vessel-tracking algorithms is crucial for imaging-based diagnosis and treatment of vascular diseases. Vessel tracking aims to solve recognition problems such as key (seed) point detection, centerline extraction, and vascular segmentation. Extensive image-processing techniques have been developed to overcome the problems of vessel tracking that are mainly attributed to the complex morphologies of vessels and image characteristics of angiography. This paper presents a literature review on vessel-tracking methods, focusing on machine-learning-based methods. First, the conventional machine-learning-based algorithms are reviewed, and then, a general survey of deep-learning-based frameworks is provided. On the basis of the reviewed methods, the evaluation issues are introduced. The paper is concluded with discussions about the remaining exigencies and future research.
Collapse
Affiliation(s)
- Dengqiang Jia
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Ischemia and outcome prediction by cardiac CT based machine learning. Int J Cardiovasc Imaging 2020; 36:2429-2439. [DOI: 10.1007/s10554-020-01929-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022]
|
9
|
Zhao FJ, Fan SQ, Ren JF, von Deneen KM, He XW, Chen XL. Machine learning for diagnosis of coronary artery disease in computed tomography angiography: A survey. Artif Intell Med Imaging 2020; 1:31-39. [DOI: 10.35711/aimi.v1.i1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary artery disease (CAD) has become a major illness endangering human health. It mainly manifests as atherosclerotic plaques, especially vulnerable plaques without obvious symptoms in the early stage. Once a rupture occurs, it will lead to severe coronary stenosis, which in turn may trigger a major adverse cardiovascular event. Computed tomography angiography (CTA) has become a standard diagnostic tool for early screening of coronary plaque and stenosis due to its advantages in high resolution, noninvasiveness, and three-dimensional imaging. However, manual examination of CTA images by radiologists has been proven to be tedious and time-consuming, which might also lead to intra- and interobserver errors. Nowadays, many machine learning algorithms have enabled the (semi-)automatic diagnosis of CAD by extracting quantitative features from CTA images. This paper provides a survey of these machine learning algorithms for the diagnosis of CAD in CTA images, including coronary artery extraction, coronary plaque detection, vulnerable plaque identification, and coronary stenosis assessment. Most included articles were published within this decade and are found in the Web of Science. We wish to give readers a glimpse of the current status, challenges, and perspectives of these machine learning-based analysis methods for automatic CAD diagnosis.
Collapse
Affiliation(s)
- Feng-Jun Zhao
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Si-Qi Fan
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Jing-Fang Ren
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Karen M von Deneen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| | - Xiao-Wei He
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Xue-Li Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| |
Collapse
|
10
|
Hampe N, Wolterink JM, van Velzen SGM, Leiner T, Išgum I. Machine Learning for Assessment of Coronary Artery Disease in Cardiac CT: A Survey. Front Cardiovasc Med 2019; 6:172. [PMID: 32039237 PMCID: PMC6988816 DOI: 10.3389/fcvm.2019.00172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023] Open
Abstract
Cardiac computed tomography (CT) allows rapid visualization of the heart and coronary arteries with high spatial resolution. However, analysis of cardiac CT scans for manifestation of coronary artery disease is time-consuming and challenging. Machine learning (ML) approaches have the potential to address these challenges with high accuracy and consistent performance. In this mini review, we present a survey of the literature on ML-based analysis of coronary artery disease in cardiac CT. We summarize ML methods for detection and characterization of atherosclerotic plaque as well as anatomically and functionally significant coronary artery stenosis.
Collapse
Affiliation(s)
- Nils Hampe
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jelmer M Wolterink
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sanne G M van Velzen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Mao B, Feng Y, Wang W, Li B, Zhao Z, Zhang X, Jin C, Wu D, Liu Y. The influence of hemodynamics on graft patency prediction model based on support vector machine. J Biomech 2019; 98:109426. [PMID: 31677778 DOI: 10.1016/j.jbiomech.2019.109426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/23/2023]
Abstract
In the existing patency prediction model of coronary artery bypass grafting (CABG), the characteristics are based on graft flow, but no researchers selected hemodynamic factors as the characteristics. The purpose of this paper is to study whether the introduction of hemodynamic factors will affect the performance of the prediction model. Transit time flow-meter (TTFM) waveforms and 1-year postoperative patency results were obtained from 50 internal mammary arterial grafts (LIMA) and 82 saphenous venous grafts (SVG) in 60 patients. Taking TTFM waveforms as the boundary conditions, the CABG ideal models were constructed to obtain hemodynamic factors in grafts. Based on clinical characteristics and combination of clinical and hemodynamic characteristics, patency prediction models based on support vector machine (SVM) were constructed respectively. For LIMA, after the introduction of hemodynamic factors, the accuracy, sensitivity and specificity of the prediction model increased from 70.35%, 50% and 74.17% to 78.02%, 70% and 78.89%, respectively. For SVG, the accuracy, sensitivity and specificity of the prediction model increased from 63.24%, 40% and 76.91% to 74.41%, 60.1% and 82.73%, respectively. The performance of the prediction model can be improved by introducing hemodynamic factors into the characteristics of the model. The accuracy, sensitivity and specificity of the prediction results are higher with the addition of hemodynamic characteristics.
Collapse
Affiliation(s)
- Boyan Mao
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yue Feng
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wenxin Wang
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China; Neusoft Medical System, Neusoft Beijing R&D Center, Zhongguancun Software Park 10, Xibeiwang East Road, Haidian District, Beijing 100194, China
| | - Bao Li
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Zhou Zhao
- Cardiac Surgery Department, PeKing University People's Hospital, 11th South Ave. Xizhimen, Beijing, China
| | - Xiaoyan Zhang
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Chunbo Jin
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Dandan Wu
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Youjun Liu
- College of Life Science and Bio-Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
12
|
Kigka VI, Sakellarios A, Kyriakidis S, Rigas G, Athanasiou L, Siogkas P, Tsompou P, Loggitsi D, Benz DC, Buechel R, Lemos PA, Pelosi G, Michalis LK, Fotiadis DI. A three-dimensional quantification of calcified and non-calcified plaques in coronary arteries based on computed tomography coronary angiography images: Comparison with expert's annotations and virtual histology intravascular ultrasound. Comput Biol Med 2019; 113:103409. [PMID: 31480007 DOI: 10.1016/j.compbiomed.2019.103409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
The detection, quantification and characterization of coronary atherosclerotic plaques has a major effect on the diagnosis and treatment of coronary artery disease (CAD). Different studies have reported and evaluated the noninvasive ability of Computed Tomography Coronary Angiography (CTCA) to identify coronary plaque features. The identification of calcified plaques (CP) and non-calcified plaques (NCP) using CTCA has been extensively studied in cardiovascular research. However, NCP detection remains a challenging problem in CTCA imaging, due to the similar intensity values of NCP compared to the perivascular tissue, which surrounds the vasculature. In this work, we present a novel methodology for the identification of the plaque burden of the coronary artery and the volumetric quantification of CP and NCP utilizing CTCA images and we compare the findings with virtual histology intravascular ultrasound (VH-IVUS) and manual expert's annotations. Bland-Altman analyses were employed to assess the agreement between the presented methodology and VH-IVUS. The assessment of the plaque volume, the lesion length and the plaque area in 18 coronary lesions indicated excellent correlation with VH-IVUS. More specifically, for the CP lesions the correlation of plaque volume, lesion length and plaque area was 0.93, 0.84 and 0.85, respectively, whereas the correlation of plaque volume, lesion length and plaque area for the NCP lesions was 0.92, 0.95 and 0.81, respectively. In addition to this, the segmentation of the lumen, CP and NCP in 1350 CTCA slices indicated that the mean value of DICE coefficient is 0.72, 0.7 and 0.62, whereas the mean HD value is 1.95, 1.74 and 1.95, for the lumen, CP and NCP, respectively.
Collapse
Affiliation(s)
- Vassiliki I Kigka
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Antonis Sakellarios
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Savvas Kyriakidis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - George Rigas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Lambros Athanasiou
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Panagiotis Siogkas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Panagiota Tsompou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece
| | | | - Dominik C Benz
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Ronny Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Pedro A Lemos
- Dept. of Interventional Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo-SP, 05403-000, Brazil; Dept. of Interventional Cardiology, Hospital Israelita Albert Einstein, Sao Paulo-SP, 05652-000, Brazil
| | - Gualtiero Pelosi
- Institute of Clinical Physiology, National Research Council, Pisa, IT 56124, Italy
| | - Lampros K Michalis
- Dept. of Interventional Cardiology, Medical School, University of Ioannina, GR 45110, Ioannina, Greece
| | - Dimitrios I Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece.
| |
Collapse
|