1
|
Cabaniss TL, Bodlak R, Liu Y, Colby GP, Lee H, Bohnstedt BN, Garziera R, Holzapfel GA, Lee CH. CFD investigations of a shape-memory polymer foam-based endovascular embolization device for the treatment of intracranial aneurysms. Biomech Model Mechanobiol 2025; 24:281-296. [PMID: 39585527 DOI: 10.1007/s10237-024-01910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The hemodynamic and convective heat transfer effects of a patient-specific endovascular therapeutic agent based on shape-memory polymer foam (SMPf) are evaluated using computational fluid dynamics studies for six patient-specific aneurysm geometries. The SMPf device is modeled as a continuous porous medium with full expansion for the flow studies and with various degrees of expansion for the heat transfer studies. The flow simulation parameters were qualitatively validated based on the existing literature. Further, a mesh independence study was conducted to verify an optimal cell size and reduce the computational costs. For convective heat transfer, a worst-case scenario is evaluated where the minimum volumetric flow rate is applied alongside the zero-flux boundary conditions. In the flow simulations, we found a reduction of the average intra-aneurysmal flow of > 85% and a reduction of the maximum intra-aneurysmal flow of > 45% for all presented geometries. These findings were compared with the literature on numerical simulations of hemodynamic and heat transfer of SMPf devices. The results obtained from this study provide a novel and practical framework for optimizing the design of patient-specific SMPf devices, integrating advanced computational models of hemodynamics and heat transfer. This framework could guide the future development of personalized endovascular embolization solutions for intracranial aneurysms with improved therapeutic outcome.
Collapse
Affiliation(s)
- Tanner L Cabaniss
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Ryan Bodlak
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Yingtao Liu
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Geoffrey P Colby
- Department of Neurosurgery, UCLA Health, Los Angeles, CA, 90095, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bradley N Bohnstedt
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rinaldo Garziera
- Department of Engineering for Industrial Systems and Technologies, University of Parma, Parma, Italy
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), Department of Bioengineering, University of California Riverside, Materials Science and Engineering (MS & E) Building, Room 207, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Moghadasi K, Ghayesh MH, Li J, Hu E, Amabili M, Żur KK, Fitridge R. Nonlinear biomechanical behaviour of extracranial carotid artery aneurysms in the framework of Windkessel effect via FSI technique. J Mech Behav Biomed Mater 2024; 160:106760. [PMID: 39366083 DOI: 10.1016/j.jmbbm.2024.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Extracranial carotid artery aneurysms (ECCA) lead to rupture and neurologic symptoms from embolisation, with potentially fatal outcomes. Investigating the biomechanical behaviour of EECA with blood flow dynamics is crucial for identifying regions more susceptible to rupture. A coupled three-dimensional (3D) Windkessel-framework and hyperelastic fluid-structure interaction (FSI) analysis of ECCAs with patient-specific geometries, was developed in this paper with a particular focus on hemodynamic parameters and the arterial wall's biomechanical response. The blood flow has been modelled as non-Newtonian, pulsatile, and turbulent. The biomechanical characteristics of the aneurysm and artery are characterised employing a 5-parameter Mooney-Rivlin hyperelasticity model. The Windkessel effect is also considered to efficiently simulate pressure profile of the outlets and to capture the dynamic changes over the cardiac cycle. The study found the aneurysm carotid artery exhibited the high levels of pressure, wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) compared to the healthy one. The deformation of the arterial wall and the corresponding von Mises (VM) stress were found significantly increased in aneurysm cases, in comparison to that of no aneurysm cases, which strongly correlated with the hemodynamic characteristics of the blood flow and the geometric features of the aneurysms. This escalation would intensify the risk of aneurysm wall rupture. These findings have critical implications for enhancing treatment strategies for patients with extracranial aneurysms.
Collapse
Affiliation(s)
- Kaveh Moghadasi
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Jiawen Li
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Eric Hu
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- School of Engineering, Westlake University, Zhejiang province, PR China; Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Krzysztof Kamil Żur
- Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Robert Fitridge
- Vascular and Endovascular Service, Royal Adelaide Hospital, Adelaide, Australia; Discipline of Surgery, University of Adelaide, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, Australia
| |
Collapse
|
3
|
Cabaniss T, Bodlak R, Liu Y, Colby G, Lee H, Bohnstedt B, Garziera R, Holzapfel G, Lee CH. CFD investigations of a shape-memory polymer foam-based endovascular embolization device for the treatment of intracranial aneurysms. RESEARCH SQUARE 2024:rs.3.rs-5014601. [PMID: 39483886 PMCID: PMC11527223 DOI: 10.21203/rs.3.rs-5014601/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The hemodynamic and convective heat transfer effects of a patient-specific endovascular therapeutic agent based on shape memory polymer foam (SMPf) are evaluated using computational fluid dynamics studies for six patient-specific aneurysm geometries. The SMPf device is modeled as a continuous porous medium with full expansion for the flow studies and with various degrees of expansion for the heat transfer studies. The flow simulation parameters were qualitatively validated based on the existing literature. Further, a mesh independence study was conducted to verify an optimal cell size and reduce the computational costs. For convective heat transfer, a worst-case scenario is evaluated where the minimum volumetric flow rate is applied alongside the zero-flux boundary conditions. In the flow simulations, we found a reduction of the average intra-aneurysmal flow of > 85% and a reduction of the maximum intra-aneurysmal flow of > 45% for all presented geometries. These findings were compared with the literature on numerical simulations of hemodynamic and heat transfer of SMPf devices. The results obtained from this study can serve as a guide for optimizing the design and development of patient-specific SMPf devices aimed at personalized endovascular embolization of intracranial aneurysms.
Collapse
|
4
|
Tian Y, Li X, Zhang J, Zhao B, Liang F. Identifying hemodynamic factors associated with the rupture of anterior communicating artery aneurysms based on global modeling of blood flow in the cerebral artery network. Front Bioeng Biotechnol 2024; 12:1419519. [PMID: 38938980 PMCID: PMC11208462 DOI: 10.3389/fbioe.2024.1419519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Anterior communicating artery (ACoA) aneurysms are more prone to rupture compared to aneurysms present in other cerebral arteries. We hypothesize that systemic blood flow in the cerebral artery network plays an important role in shaping intra-aneurysmal hemodynamic environment thereby affecting the rupture risk of ACoA aneurysms. The majority of existing numerical studies in this field employed local modeling methods where the physical boundaries of a model are confined to the aneurysm region, which, though having the benefit of reducing computational cost, may compromise the physiological fidelity of numerical results due to insufficient account of systemic cerebral arterial hemodynamics. In the present study, we firstly carried out numerical experiments to address the difference between the outcomes of local and global modeling methods, demonstrating that local modeling confined to the aneurysm region results in inaccurate predictions of hemodynamic parameters compared with global modeling of the ACoA aneurysm as part of the cerebral artery network. Motivated by this finding, we built global hemodynamic models for 40 ACoA aneurysms (including 20 ruptured and 20 unruptured ones) based on medical image data. Statistical analysis of the computed hemodynamic data revealed that maximum wall shear stress (WSS), minimum WSS divergence, and maximum WSS gradient differed significantly between the ruptured and unruptured ACoA aneurysms. Optimal threshold values of high/low WSS metrics were determined through a series of statistical tests. In the meantime, some morphological parameters of aneurysms, such as large nonsphericity index, aspect ratio, and bottleneck factor, were found to be associated closely with aneurysm rupture. Furthermore, multivariate logistic regression analyses were performed to derive models combining hemodynamic and morphological parameters for discriminating the rupture status of aneurysms. The capability of the models in rupture status discrimination was high, with the area under the receiver operating characteristic curve reaching up to 0.9. The findings of the study suggest that global modeling of the cerebral artery network is essential for reliable quantification of hemodynamics in ACoA aneurysms, disturbed WSS and irregular aneurysm morphology are associated closely with aneurysm rupture, and multivariate models integrating hemodynamic and morphological parameters have high potential for assessing the rupture risk of ACoA aneurysms.
Collapse
Affiliation(s)
- Yuqing Tian
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Li
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjian Zhang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Hydrodynamics (MOE), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
5
|
Yi H, Yang Z, Bramlage L, Ludwig B. Using DFT on ultrasound measurements to determine patient-specific blood flow boundary conditions for computational hemodynamics of intracranial aneurysms. Comput Biol Med 2024; 176:108563. [PMID: 38761498 DOI: 10.1016/j.compbiomed.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Boundary conditions (BCs) is one pivotal factor influencing the accuracy of hemodynamic predictions on intracranial aneurysms (IAs) using computational fluid dynamics (CFD) modeling. Unfortunately, a standard procedure to secure accurate BCs for hemodynamic modeling does not exist. To bridge such a knowledge gap, two representative patient-specific IA models (Case-I and Case-II) were reconstructed and their blood flow velocity waveforms in the internal carotid artery (ICA) were measured by ultrasonic techniques and modeled by discrete Fourier transform (DFT). Then, numerical investigations were conducted to explore the appropriate number of samples (N) for DFT modeling to secure the accurate BC by comparing a series of hemodynamic parameters using in-vitro validated CFD modeling. Subsequently, a comprehensive comparison in hemodynamic characteristics under patient-specific BCs and a generalized BC based on a one-dimensional (1D) model was conducted to reinforce the understanding that a patient-specific BC is pivotal for accurate hemodynamic risk evaluations on IA pathophysiology. In addition, the influence of the variance of heart rate/cardiac pulsatile period on hemodynamic characteristics in IA models was studied preliminarily. The results showed that N ≥ 16 for DFT model is a decent choice to secure the proper BC profile to calculate time-averaged hemodynamic parameters, while more data points such as N ≥ 36 can ensure the accuracy of instantaneous hemodynamic predictions. In addition, results revealed the generalized BC could overestimate or underestimate the hemodynamic risks on IAs significantly; thus, patient-specific BCs are highly recommended for hemodynamic modeling for IA risk evaluation. Furthermore, this study discovered the variance of heart rate has rare influences on hemodynamic characteristics in both instantaneous and time-averaged parameters under the assumption of an identical blood flow rate.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA.
| | - Luke Bramlage
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E. Apple St., Dayton, OH, 45409, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Bryan Ludwig
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E. Apple St., Dayton, OH, 45409, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| |
Collapse
|
6
|
Fattahi M, Abdollahi SA, Alibak AH, Hosseini S, Dang P. Usage of computational method for hemodynamic analysis of intracranial aneurysm rupture risk in different geometrical aspects. Sci Rep 2023; 13:20749. [PMID: 38007602 PMCID: PMC10676356 DOI: 10.1038/s41598-023-48246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023] Open
Abstract
The importance of the parent vessel geometrical feature on the risk of cerebral aneurysm rupture is unavoidable. This study presents inclusive details on the hemodynamics of Internal carotid artery (ICA) aneurysms with different parent vessel mean diameters. Different aspects of blood hemodynamics are compared to find a reasonable connection between parent vessel mean diameter and significant hemodynamic factors of wall shear stress (WSS), oscillatory shear index (OSI), and pressure distribution. To access hemodynamic data, computational fluid dynamics is used to model the blood stream inside the cerebral aneurysms. A hemodynamic comparison of the selected cerebral aneurysm shows that the minimum WSS is reduced by about 71% as the parent vessel's mean diameter is increased from 3.18 to 4.48 mm.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Ali Hosin Alibak
- Petroleum Engineering Department, Faculty of Engineering, Soran University, Soran, Kurdistan Region, 44008, Iraq
| | - Saleh Hosseini
- Department of Chemical Engineering, University of Larestan, Larestan, Iran.
| | - Phuyen Dang
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
7
|
Jiang H, Lu Z, Gerdroodbary MB, Sabernaeemi A, Salavatidezfouli S. The influence of sac centreline on saccular aneurysm rupture: computational study. Sci Rep 2023; 13:11288. [PMID: 37438607 DOI: 10.1038/s41598-023-38466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023] Open
Abstract
The geometric characteristics of a saccular aneurysm play a crucial role in its rupturing. This article thoroughly investigates the impact of the sac centerline on aneurysm rupture, with a focus on identifying significant factors related to rupture at different time intervals. The study employs comprehensive computational simulations of six models of the ICA with varying coiling porosities and blood HCTs, using CFD analysis to examine WSS, OSI, pressure, and velocity within the saccular aneurysm for different sac centerlines. The results indicate that higher blood HCT levels lead to increased WSS and pressure values on the aneurysm wall, while OSI and mean velocity decrease. The study also reveals that coiling techniques can significantly reduce the risk of rupture, as decreasing coil porosity (increasing coil permeability) increases OSI and pressure while decreasing WSS and blood velocity within the aneurysm sac.
Collapse
Affiliation(s)
- Hao Jiang
- Dept. Neurosurg, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, Zhejiang, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, 310000, Zhejiang, China.
| | - M Barzegar Gerdroodbary
- Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Amir Sabernaeemi
- Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Sajad Salavatidezfouli
- Mathematics Area, MathLab, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
8
|
Li X, Simakov S, Liu Y, Liu T, Wang Y, Liang F. The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering (Basel) 2023; 10:709. [PMID: 37370640 DOI: 10.3390/bioengineering10060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Aortic valve disease (AVD) often coexists with coronary artery disease (CAD), but whether and how the two diseases are correlated remains poorly understood. In this study, a zero-three dimensional (0-3D) multi-scale modeling method was developed to integrate coronary artery hemodynamics, aortic valve dynamics, coronary flow autoregulation mechanism, and systemic hemodynamics into a unique model system, thereby yielding a mathematical tool for quantifying the influences of aortic valve stenosis (AS) and aortic valve regurgitation (AR) on hemodynamics in large coronary arteries. The model was applied to simulate blood flows in six patient-specific left anterior descending coronary arteries (LADs) under various aortic valve conditions (i.e., control (free of AVD), AS, and AR). Obtained results showed that the space-averaged oscillatory shear index (SA-OSI) was significantly higher under the AS condition but lower under the AR condition in comparison with the control condition. Relatively, the overall magnitude of wall shear stress was less affected by AVD. Further data analysis revealed that AS induced the increase in OSI in LADs mainly through its role in augmenting the low-frequency components of coronary flow waveform. These findings imply that AS might increase the risk or progression of CAD by deteriorating the hemodynamic environment in coronary arteries.
Collapse
Affiliation(s)
- Xuanyu Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sergey Simakov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Youjun Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Sabernaeemi A, Barzegar Gerdroodbary M, Salavatidezfouli S, Valipour P. Influence of stent-induced vessel deformation on hemodynamic feature of bloodstream inside ICA aneurysms. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01710-9. [PMID: 36947349 PMCID: PMC10366311 DOI: 10.1007/s10237-023-01710-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
One of the effective treatment options for intracranial aneurysms is stent-assisted coiling. Though, previous works have demonstrated that stent usage would result in the deformation of the local vasculature. The effect of simple stent on the blood hemodynamics is still uncertain. In this work, hemodynamic features of the blood stream on four different ICA aneurysm with/without interventional are investigated. To estimate the relative impacts of vessel deformation, four distinctive ICA aneurysm is simulated by the one-way FSI technique. Four hemodynamic factors of aneurysm blood velocity, wall pressure and WSS are compared in the peak systolic stage to disclose the impact of defamation by the stent in two conditions. The stent usage would decrease almost all of the mentioned parameters, except for OSI. Stenting reduces neck inflow rate, while the effect of interventional was not consistent among the aneurysms. The deformation of an aneurysm has a strong influence on the hemodynamics of an aneurysm. This outcome is ignored by most of the preceding investigations, which focused on the pre-interventional state for studying the relationship between hemodynamics and stents. Present results show that the application of stent without coiling would improve most hemodynamic factors, especially when the deformation of the aneurysm is high enough.
Collapse
Affiliation(s)
- Amir Sabernaeemi
- Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden.
| | - M Barzegar Gerdroodbary
- Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Sajad Salavatidezfouli
- Mathematics Area, MathLab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Peiman Valipour
- Department of Textile Engineering, Clothing and Fashion, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| |
Collapse
|
10
|
Wang S, Wu D, Li G, Zhang Z, Xiao W, Li R, Qiao A, Jin L, Liu H. Deep learning-based hemodynamic prediction of carotid artery stenosis before and after surgical treatments. Front Physiol 2023; 13:1094743. [PMID: 36703930 PMCID: PMC9872942 DOI: 10.3389/fphys.2022.1094743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Hemodynamic prediction of carotid artery stenosis (CAS) is of great clinical significance in the diagnosis, prevention, and treatment prognosis of ischemic strokes. While computational fluid dynamics (CFD) is recognized as a useful tool, it shows a crucial issue that the high computational costs are usually required for real-time simulations of complex blood flows. Given the powerful feature-extraction capabilities, the deep learning (DL) methodology has a high potential to implement the mapping of anatomic geometries and CFD-driven flow fields, which enables accomplishing fast and accurate hemodynamic prediction for clinical applications. Based on a brain/neck CT angiography database of 280 subjects, image based three-dimensional CFD models of CAS were constructed through blood vessel extraction, computational domain meshing and setting of the pulsatile flow boundary conditions; a series of CFD simulations were undertaken. A DL strategy was proposed and accomplished in terms of point cloud datasets and a DL network with dual sampling-analysis channels. This enables multimode mapping to construct the image-based geometries of CAS while predicting CFD-based hemodynamics based on training and testing datasets. The CFD simulation was validated with the mass flow rates at two outlets reasonably agreed with the published results. Comprehensive analysis and error evaluation revealed that the DL strategy enables uncovering the association between transient blood flow characteristics and artery cavity geometric information before and after surgical treatments of CAS. Compared with other methods, our DL-based model trained with more clinical data can reduce the computational cost by 7,200 times, while still demonstrating good accuracy (error<12.5%) and flow visualization in predicting the two hemodynamic parameters. In addition, the DL-based predictions were in good agreement with CFD simulations in terms of mean velocity in the stenotic region for both the preoperative and postoperative datasets. This study points to the capability and significance of the DL-based fast and accurate hemodynamic prediction of preoperative and postoperative CAS. For accomplishing real-time monitoring of surgical treatments, further improvements in the prediction accuracy and flexibility may be conducted by utilizing larger datasets with specific real surgical events such as stent intervention, adopting personalized boundary conditions, and optimizing the DL network.
Collapse
Affiliation(s)
- Sirui Wang
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Dandan Wu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Gaoyang Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Zhiyuan Zhang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weizhong Xiao
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruichen Li
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Aike Qiao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Long Jin
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Hao Liu, ; Long Jin,
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan,*Correspondence: Hao Liu, ; Long Jin,
| |
Collapse
|
11
|
Sheidani A, Barzegar Gerdroodbary M, Poozesh A, Sabernaeemi A, Salavatidezfouli S, Hajisharifi A. Influence of the coiling porosity on the risk reduction of the cerebral aneurysm rupture: computational study. Sci Rep 2022; 12:19082. [PMID: 36352253 PMCID: PMC9646831 DOI: 10.1038/s41598-022-23745-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The formation and progress of cerebral aneurysm is highly associated with hemodynamic factors and blood flow feature. In this study, comprehensive efforts are done to investigate the blood hemodynamic effects on the creation and growth of the Internal Carotid Artery. The computational fluid dynamic method is used for the visualization of the bloodstream inside the aneurysm. Transitional, non-Newtonian and incompressible conditions are considered for solving the Navier-Stokes equation to achieve the high-risk region on the aneurysm wall. OSI and WSS of the aneurysm wall are compared within different blood flow stages. The effects of blood viscosity and coiling treatment on these factors are presented in this work. Our study shows that in male patients (HCT = 0.45), changing the porosity of coiling from 0.89 with 0.79 would decreases maximum OSI up to 75% (in maximum acceleration). However, this effect is limited to about 45% for female patients (HCT = 0.35).
Collapse
Affiliation(s)
- Armin Sheidani
- grid.4643.50000 0004 1937 0327Mechanical Engineering Department, Politecnico di Milano, Milan, Italy
| | - M. Barzegar Gerdroodbary
- grid.411496.f0000 0004 0382 4574Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Amin Poozesh
- grid.411976.c0000 0004 0369 2065Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Amir Sabernaeemi
- grid.5371.00000 0001 0775 6028Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Sajad Salavatidezfouli
- grid.5970.b0000 0004 1762 9868Mathematics Area, MathLab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Arash Hajisharifi
- grid.5970.b0000 0004 1762 9868Mathematics Area, MathLab, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
12
|
Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo. Proc Natl Acad Sci U S A 2022; 119:e2117346119. [PMID: 35648820 PMCID: PMC9191662 DOI: 10.1073/pnas.2117346119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SignificanceCharacterizing blood flow by tracking individual red blood cells as they move through vessels is essential for understanding vascular function. With high spatial resolution, two-photon fluorescence microscopy is the method of choice for imaging blood flow at the cellular level. However, its application is limited to a low flow speed regimen in anesthetized animals by its slow focus scanning mechanism. Using an ultrafast scanning module, we demonstrated two-photon fluorescence imaging of blood flow at 1,000 two-dimensional frames and 1,000,000 one-dimensional line scans per second in the brains of awake mice. These ultrafast measurements enabled us to study hemodynamic and fluid mechanical regimens beyond the reach of conventional methods.
Collapse
|
13
|
Xin S, Chen Y, Zhao B, Liang F. Combination of Morphological and Hemodynamic Parameters for Assessing the Rupture Risk of Intracranial Aneurysms: a Retrospective Study On Mirror Middle Cerebral Artery Aneurysms. J Biomech Eng 2022; 144:1135619. [PMID: 35147191 DOI: 10.1115/1.4053793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/08/2022]
Abstract
Discordant findings were frequently reported by studies dedicated to exploring the association of morphological/hemodynamic factors with the rupture of intracranial aneurysms (IAs), probably owing to insufficient control of confounding factors. In this study, we aimed to minimize the influences of confounding factors by focusing IAs of interest on mirror aneurysms and, meanwhile, modeling IAs together with the cerebral arterial network to improve the physiological fidelity of hemodynamic simulation. 52 mirror aneurysms located at the middle cerebral artery (MCA) in 26 patients were retrospectively investigated. Numerical tests performed on two randomly selected patients demonstrated that over truncation of cerebral arteries proximal to the MCA during image-based model reconstruction led to uncertain changes in computed values of intra-aneurysmal hemodynamic parameters, which justified the minimal truncation strategy adopted in our study. Five morphological parameters (i.e., volume (V), height (H), dome area (DA), non-sphericity index (NSI), and size ratio (SR)) and two hemodynamic parameters (i.e., peak WSS (peakWSS), and pressure loss coefficient (PLc)) were found to differ significantly between the ruptured and unruptured aneurysms and proved by receiver operating characteristic (ROC) analysis to have potential value for differentiating the rupture status of aneurysm with the areas under curve (AUCs) ranging from 0.681 to 0.763. Integrating V, SR, peakWSS and PLc or some of them into regression models considerably improved the classification of aneurysms, elevating AUC up to 0.864, which indicates that morphological and hemodynamic parameters have complementary roles in assessing the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Shangzhe Xin
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongchun Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fuyou Liang
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Wu Q, Vassilevski Y, Simakov S, Liang F. Comparison of algorithms for estimating blood flow velocities in cerebral arteries based on the transport information of contrast agent: An in silico study. Comput Biol Med 2021; 141:105040. [PMID: 34809965 DOI: 10.1016/j.compbiomed.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022]
Abstract
While many algorithms have been proposed to estimate blood flow velocities based on the transport information of contrast agent acquired by digital subtraction angiography (DSA), most relevant studies focused on a single vessel, leaving a question open as to whether the algorithms would be suitable for estimating blood flow velocities in arterial systems with complex topological structures. In this study, a one-dimensional (1-D) modeling method was developed to simulate the transport of contrast agent in cerebral arterial networks with various anatomical variations or having occlusive disease, thereby generating an in silico database for examining the accuracies of some typical algorithms (i.e., time-of-center of gravity (TCG), shifted least-squares (SLS), and cross correlation (CC) algorithms) that estimate blood flow velocity based on the concentration-time curves (CTCs) of contrast agent. The results showed that the TCG algorithm had the best performance in estimating blood flow velocities in most cerebral arteries, with the accuracy being only mildly affected by anatomical variations of the cerebral arterial network. Nevertheless, the presence of a stenosis of moderate to high severity in the internal carotid artery could considerably impair the accuracy of the TCG algorithm in estimating blood flow velocities in some cerebral arteries where the transport of contrast agent was disturbed by strong collateral flows. In summary, the study suggests that the TCG algorithm may offer a promising means for estimating blood flow velocities based on CTCs of contrast agent monitored in cerebral arteries, provided that the shapes of CTCs are not highly distorted by collateral flows.
Collapse
Affiliation(s)
- Qiyuan Wu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuri Vassilevski
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, 19991, Russia; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Sergey Simakov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, 19991, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, 19991, Russia.
| |
Collapse
|
15
|
Najafi M, Cancelliere NM, Brina O, Bouillot P, Vargas MI, Delattre BM, Pereira VM, Steinman DA. How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms? J Neurointerv Surg 2020; 13:459-464. [PMID: 32732256 DOI: 10.1136/neurintsurg-2020-015993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Computational fluid dynamics (CFD) has become a popular tool for studying 'patient-specific' blood flow dynamics in cerebral aneurysms; however, rarely are the inflow boundary conditions patient-specific. We aimed to test the impact of widespread reliance on generalized inflow rates. METHODS Internal carotid artery (ICA) flow rates were measured via 2D cine phase-contrast MRI for 24 patients scheduled for endovascular therapy of an ICA aneurysm. CFD models were constructed from 3D rotational angiography, and pulsatile inflow rates imposed as measured by MRI or estimated using an average older-adult ICA flow waveform shape scaled by a cycle-average flow rate (Qavg) derived from the patient's ICA cross-sectional area via an assumed inlet velocity. RESULTS There was good overall qualitative agreement in the magnitudes and spatial distributions of time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and spectral power index (SPI) using generalized versus patient-specific inflows. Sac-averaged quantities showed moderate to good correlations: R2=0.54 (TAWSS), 0.80 (OSI), and 0.68 (SPI). Using patient-specific Qavg to scale the generalized waveform shape resulted in near-perfect agreement for TAWSS, and reduced bias, but not scatter, for SPI. Patient-specific waveform had an impact only on OSI correlations, which improved to R2=0.93. CONCLUSIONS Aneurysm CFD demonstrates the ability to stratify cases by nominal hemodynamic 'risk' factors when employing an age- and vascular-territory-specific recipe for generalized inflow rates. Qavg has a greater influence than waveform shape, suggesting some improvement could be achieved by including measurement of patient-specific Qavg into aneurysm imaging protocols.
Collapse
Affiliation(s)
- Mehdi Najafi
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nicole M Cancelliere
- Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Olivier Brina
- Department for Diagnostic and Interventional Neuroradiology, Hôpitaux Universitaires de Geneve, Geneva, Switzerland
| | - Pierre Bouillot
- Department for Diagnostic and Interventional Neuroradiology, Hôpitaux Universitaires de Geneve, Geneva, Switzerland
| | - Maria I Vargas
- Department for Diagnostic and Interventional Neuroradiology, Hôpitaux Universitaires de Geneve, Geneva, Switzerland
| | - Benedicte Ma Delattre
- Department for Diagnostic and Interventional Neuroradiology, Hôpitaux Universitaires de Geneve, Geneva, Switzerland
| | - Vitor M Pereira
- Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David A Steinman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Saqr KM. Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic blood viscosity models. Proc Inst Mech Eng H 2020; 234:711-719. [PMID: 32423286 DOI: 10.1177/0954411920917531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebral aneurysm is a fatal neurovascular disorder. Computational fluid dynamics simulation of aneurysm haemodynamics is one of the most important research tools which provide increasing potential for clinical applications. However, computational fluid dynamics modelling of such delicate neurovascular disorder involves physical complexities that cannot be easily simplified. Recently, it was shown that the Newtonian simplification used to close the shear stress tensor of the Navier-Stokes equation is not sufficient to explore aneurysm haemodynamics. This article explores the differences between the latter simplification, non-Newtonian power-law model and a newly proposed quasi-mechanistic model. The modified Krieger model, which treats blood as a suspension of plasma and particles, was implemented in computational fluid dynamics context here for the first time and is made available to the readers in a C# code in the supplementary material of this article. Two middle-cerebral artery and two anterior-communicating artery aneurysms, all ruptured, were utilized here as case studies. It was shown that the modified Krieger model had higher sensitivity for wall shear stress calculations in comparison with the other two models. The modified Krieger model yielded lower wall shear stress values consistently in comparison with the other two models. Moreover, the modified Krieger model has generally predicted higher pressure in the aneurysm models. Based on published aneurysm rupture studies, it is believed that ruptured aneurysms are usually correlated with lower wall shear stress values than unruptured ones. Therefore, this work concludes that the modified Krieger model is a potential candidate for providing better clinical relevance to aneurysm computational fluid dynamics simulations.
Collapse
Affiliation(s)
- Khalid M Saqr
- Mechanical Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt
| |
Collapse
|
17
|
The Hemodynamic Effect of Enhanced External Counterpulsation Treatment on Atherosclerotic Plaque in the Carotid Artery: A Framework of Patient-Specific Computational Fluid Dynamics Analysis. Cardiol Res Pract 2020; 2020:5903790. [PMID: 32411447 PMCID: PMC7210552 DOI: 10.1155/2020/5903790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 01/28/2023] Open
Abstract
Long-term enhanced external counterpulsation (EECP) therapy has been recommended for antiatherogenesis in recent clinical observations and trials. However, the precise mechanism underlying the benefits has not been fully clarified. To quantify the effect of EECP intervention on arterial hemodynamic environment, a framework of numerical assessment was introduced using a parallel computing algorithm. A 3D endothelial surface of the carotid artery with mild atherosclerotic plaque was constructed from images of magnetic resonance angiography (MRA). Physiologic boundary conditions were derived from images of the ultrasound flow velocity spectrum measured at the common carotid artery and before and during EECP intervention. Hemodynamic factors relating to wall shear stress (WSS) and its spatial and temporal fluctuations were calculated and analyzed, which included AWSS, OSI, and AWSSG. Measuring and computational results showed that diastole blood pressure, perfusion, and WSS level in carotid bifurcation were significantly increased during EECP intervention. Mean AWSS level throughout the model increased by 16.9%, while OSI level did not show a significant change during EECP. We thus suggested that long-term EECP treatment might inhibit the initiation and development of atherosclerotic plaque via improving the hemodynamic environment in the carotid artery. Meanwhile, EECP performance induced a 19.6% increase in AWSSG level, and whether it would influence the endothelial functions may need a further study. Moreover, the numerical method proposed in this study was expected to be useful for the instant assessment of clinical application of EECP .
Collapse
|
18
|
Rajabzadeh-Oghaz H, van Ooij P, Veeturi SS, Tutino VM, Zwanenburg JJ, Meng H. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms. Comput Biol Med 2020; 120:103759. [PMID: 32421656 DOI: 10.1016/j.compbiomed.2020.103759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Computational fluid dynamics(CFD) of intracranial aneurysms requires flow boundary conditions(BCs) as inputs. Patient-specific BCs are usually unavailable and substituted by literature-derived generic BCs. Therefore, we investigated inter-patient BC variations and their influence on middle cerebral artery aneurysmal hemodynamics. METHOD We retrospectively collected CT angiography and 7-T Phase-Contrast(PC)-MRI data from eight middle-cerebral-artery bifurcation aneurysms to reconstruct the geometry and measure the arterial flowrates, respectively. The coefficient of variation(CoV) was calculated for the inlet flowrate and the pulsatility index(PI). The outflow split estimated by Murray's law was compared with PC-MRI measurements. For each aneurysm, we performed seven simulations: "baseline" using PC-MRI-derived BCs and the other six with changing BCs to explore the influence of BC variations on hemodynamics. RESULTS From PC-MRI, the inlet flowrate was 1.94 ± 0.71 cm3/s(CoV = 36%) and PI was 0.37 ± 0.13(CoV = 34%). The outflow split estimated by Murray's law deviated by 15.3% compared to PC-MRI. Comparing to "baseline" models, ±36% variations in inlet flowrate caused -61% to +89% changes in time-averaged wall shear stress(WSS), -37% to +32% in normalized WSS(NWSS; by parent-artery), and -42% to +126% in oscillatory shear index(OSI). The ±34% variations in PI caused, -46% to +67% in OSI. Applying ±15% variations in outflow split led to inflow jet deflection and -41% to +52% changes in WSS, -41% to +47% in NWSS, and -44% to +144% in OSI. CONCLUSION Inflow rate and outflow split have a drastic impact on hemodynamics of intracranial aneurysms. Inlet waveform has a negligible impact on WSS and NWSS but major impact on OSI. CFD-based models need to consider such sensitivity.
Collapse
Affiliation(s)
- Hamidreza Rajabzadeh-Oghaz
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Canon Stroke and Vascular Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Neurosurgery, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Pim van Ooij
- Department of Radiology& Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Sricharan S Veeturi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Canon Stroke and Vascular Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Vincent M Tutino
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Canon Stroke and Vascular Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Neurosurgery, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jaco Jm Zwanenburg
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hui Meng
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Canon Stroke and Vascular Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
19
|
Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study. PLoS One 2020; 15:e0227770. [PMID: 31945111 PMCID: PMC6964897 DOI: 10.1371/journal.pone.0227770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/27/2019] [Indexed: 11/19/2022] Open
Abstract
Blood flow in an artery is a fluid-structure interaction problem. It is widely accepted that aneurysm formation, enlargement and failure are associated with wall shear stress (WSS) which is exerted by flowing blood on the aneurysmal wall. To date, the combined effect of aneurysm size and wall elasticity on intra-aneurysm (IA) flow characteristics, particularly in the case of side-wall aneurysms, is poorly understood. Here we propose a model of three-dimensional viscous flow in a compliant artery containing an aneurysm by employing the immersed boundary-lattice Boltzmann-finite element method. This model allows to adequately account for the elastic deformation of both the blood vessel and aneurysm walls. Using this model, we perform a detailed investigation of the flow through aneurysm under different conditions with a focus on the parameters which may influence the wall shear stress. Most importantly, it is shown in this work that the use of flow velocity as a proxy for wall shear stress is well justified only in those sections of the vessel which are close to the ideal cylindrical geometry. Within the aneurysm domain, however, the correlation between wall shear stress and flow velocity is largely lost due to the complexity of the geometry and the resulting flow pattern. Moreover, the correlations weaken further with the phase shift between flow velocity and transmural pressure. These findings have important implications for medical applications since wall shear stress is believed to play a crucial role in aneurysm rupture.
Collapse
|
20
|
Lassila T, Sarrami-Foroushani A, Hejazi S, Frangi AF. Population-specific modelling of between/within-subject flow variability in the carotid arteries of the elderly. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3271. [PMID: 31691518 DOI: 10.1002/cnm.3271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/12/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Computational fluid dynamics models are increasingly proposed for assisting the diagnosis and management of vascular diseases. Ideally, patient-specific flow measurements are used to impose flow boundary conditions. When patient-specific flow measurements are unavailable, mean values of flow measurements across small cohorts are used as normative values. In reality, both the between-subjects and within-subject flow variabilities are large. Consequently, neither one-shot flow measurements nor mean values across a cohort are truly indicative of the flow regime in a given person. We develop models for both the between-subjects and within-subject variability of internal carotid flow. A log-linear mixed effects model is combined with a Gaussian process to model the between-subjects flow variability, while a lumped parameter model of cerebral autoregulation is used to model the within-subject flow variability in response to heart rate and blood pressure changes. The model parameters are identified from carotid ultrasound measurements in a cohort of 103 elderly volunteers. We use the models to study intracranial aneurysm flow in 54 subjects under rest and exercise and conclude that OSI, a common wall shear-stress derived quantity in vascular CFD studies, may be too sensitive to flow fluctuations to be a reliable biomarker.
Collapse
Affiliation(s)
- Toni Lassila
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| | - Ali Sarrami-Foroushani
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| | - SeyedMostafa Hejazi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| |
Collapse
|
21
|
Yu H, Huang GP, Yang Z, Ludwig BR. Numerical studies of hemodynamic alterations in pre- and post-stenting cerebral aneurysms using a multiscale modeling. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3256. [PMID: 31483953 DOI: 10.1002/cnm.3256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to use a multiscale modeling to study the influence of stent deployment, with generic stents, on flow distributions within the vascular network and the hemodynamic alterations within the cerebral aneurysms pre- and post-stenting. To achieve this goal, two image-based anatomical cerebral aneurysm models were reconstructed along with the respective aneurysms post-stenting models after deploying a 16- or 24-wire stent. The investigation results revealed that the stent may increase the local pressure resistance resulting in flow alterations. The hemodynamic parameters demonstrated stent placement can reduce the intra-aneurysmal pressure, decrease wall shear stress (WSS) at the neck region, and increase blood turnover time for aneurysm case I (sidewall aneurysm). These findings are consistent with the trends of hemodynamic changes reported previously. However, aneurysm case II (bifurcation aneurysm) showed gradually increased intra-aneurysmal pressure and the pressure at the neck region, decreased WSS over the sac surface, and enhanced flow vortices within the aneurysm. When simulating the hemodynamics of pre- and post-stenting aneurysms for a patient using measured flow waveforms, the flow alteration induced by the stent deployment may affect the hemodynamic predictions for the post-stenting aneurysm. Thus, the remeasurement of boundary conditions once the morphology of the aneurysm is deformed is needed in follow-up studies with a focus on aneurysm growth and stent deployment.
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435
| | - George P Huang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435
| | - Bryan R Ludwig
- Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435
- Department of Neurology, Division of NeuroInterventional Surgery, Wright State University/Premier Health, Clinical Neuroscience Institute, 30 E. Apple St, Dayton, OH, 45409
| |
Collapse
|
22
|
Charlton PH, Mariscal Harana J, Vennin S, Li Y, Chowienczyk P, Alastruey J. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Am J Physiol Heart Circ Physiol 2019; 317:H1062-H1085. [PMID: 31442381 PMCID: PMC6879924 DOI: 10.1152/ajpheart.00218.2019] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/09/2019] [Accepted: 07/28/2019] [Indexed: 11/22/2022]
Abstract
The arterial pulse wave (PW) is a rich source of information on cardiovascular (CV) health. It is widely measured by both consumer and clinical devices. However, the physical determinants of the PW are not yet fully understood, and the development of PW analysis algorithms is limited by a lack of PW data sets containing reference CV measurements. Our aim was to create a database of PWs simulated by a computer to span a range of CV conditions, representative of a sample of healthy adults. The typical CV properties of 25-75 yr olds were identified through a literature review. These were used as inputs to a computational model to simulate PWs for subjects of each age decade. Pressure, flow velocity, luminal area, and photoplethysmographic PWs were simulated at common measurement sites, and PW indexes were extracted. The database, containing PWs from 4,374 virtual subjects, was verified by comparing the simulated PWs and derived indexes with corresponding in vivo data. Good agreement was observed, with well-reproduced age-related changes in hemodynamic parameters and PW morphology. The utility of the database was demonstrated through case studies providing novel hemodynamic insights, in silico assessment of PW algorithms, and pilot data to inform the design of clinical PW algorithm assessments. In conclusion, the publicly available PW database is a valuable resource for understanding CV determinants of PWs and for the development and preclinical assessment of PW analysis algorithms. It is particularly useful because the exact CV properties that generated each PW are known.NEW & NOTEWORTHY First, a comprehensive literature review of changes in cardiovascular properties with age was performed. Second, an approach for simulating pulse waves (PWs) at different ages was designed and verified against in vivo data. Third, a PW database was created, and its utility was illustrated through three case studies investigating the determinants of PW indexes. Fourth, the database and tools for creating the database, analyzing PWs, and replicating the case studies are freely available.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
| | - Jorge Mariscal Harana
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
| | - Samuel Vennin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Ye Li
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Phil Chowienczyk
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
23
|
Yu H, Huang GP, Ludwig BR, Yang Z. An In-Vitro Flow Study Using an Artificial Circle of Willis Model for Validation of an Existing One-Dimensional Numerical Model. Ann Biomed Eng 2019; 47:1023-1037. [PMID: 30673955 DOI: 10.1007/s10439-019-02211-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/17/2019] [Indexed: 01/05/2023]
Abstract
A one-dimensional (1D) numerical model has been previously developed to investigate the hemodynamics of blood flow in the entire human vascular network. In the current work, an experimental study of water-glycerin mixture flow in a 3D-printed silicone model of an anatomically accurate, complete circle of Willis (CoW) was conducted to investigate the flow characteristics in comparison with the simulated results by the 1D numerical model. In the experiment, the transient flow and pressure waveforms were measured at 13 selected segments within the flow network for comparisons. In the 1D simulation, the initial parameters of the vessel network were obtained by a direct measurement of the tubes in the experimental setup. The results verified that the 1D numerical model is able to capture the main features of the experimental pressure and flow waveforms with good reliability. The mean flow rates measurement results agree with the predictions of the 1D model with an overall difference of less than 1%. Further experiment might be needed to validate the 1D model in capturing pressure waveforms.
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA
| | - George P Huang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Bryan R Ludwig
- Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.,Department of Neurology - Division of NeuroInterventional Surgery, Wright State University/Premier Health - Clinical Neuroscience Institute, 30 E. Apple St, Dayton, OH, 45409, USA
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
24
|
Saqr KM. Wall shear stress in the Navier-Stokes equation: A commentary. Comput Biol Med 2019; 106:82-83. [PMID: 30685635 DOI: 10.1016/j.compbiomed.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Khalid M Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, 980-8577, Miyagi, Japan; College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| |
Collapse
|