1
|
Italiya G, Subramanian S. Leveraging new approach methodologies: ecotoxicological modelling of endocrine disrupting chemicals to Danio rerio through machine learning and toxicity studies. Toxicol Mech Methods 2025; 35:197-213. [PMID: 39223866 DOI: 10.1080/15376516.2024.2400324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
New approach methodologies (NAMs) offer information tailored to the intended application while reducing the use of animals. NAMs aim to develop quantitative structure-activity relationship (QSAR) and quantitive-Read-Across structure-activity relationship (q-RASAR) models to predict and categorize the acute toxicity of known and unknown endocrine-disrupting chemicals (EDCs) against zebrafish. EDCs are a diverse group of toxic substances that disrupt the endocrine system of humans and animals. The q-RASAR model was constructed and verified using validation metrics (R2 = 0.886 and Q2 = 0.814) which found to be more reliable model compare to QSAR model. The substructure fingerprint was well-fitted for the classification model and it was validated using 10-fold average accuracy (Q = 86.88%), specificity (Sp = 88.89%), Matthew's correlation curve (MCC = 0.621) and receiver operating characteristics (ROC = 0.828). The dataset of unknown substances revealed that phenolphthalein (Php) exhibited a significant level of toxicity based on q-RASAR model. The docking and simulation study indicated that the computationally derived important features successfully bound to the target zebrafish sex hormone binding globulin (zfSHBG). The experimental LC50 value of 0.790 mg L-1 was very close to the predicted value of 0.763 mg L-1, which provides high confidence to the developed model.
Collapse
Affiliation(s)
- Gopal Italiya
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sangeetha Subramanian
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Bhattacharjee A, Kar S, Ojha PK. First report on chemometrics-driven multilayered lead prioritization in addressing oxysterol-mediated overexpression of G protein-coupled receptor 183. Mol Divers 2024; 28:4199-4220. [PMID: 38460065 DOI: 10.1007/s11030-024-10811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 03/11/2024]
Abstract
Contemporary research has convincingly demonstrated that upregulation of G protein-coupled receptor 183 (GPR183), orchestrated by its endogenous agonist, 7α,25-dihydroxyxcholesterol (7α,25-OHC), leads to the development of cancer, diabetes, multiple sclerosis, infectious, and inflammatory diseases. A recent study unveiled the cryo-EM structure of 7α,25-OHC bound GPR183 complex, presenting an untapped opportunity for computational exploration of potential GPR183 inhibitors, which served as our inspiration for the current work. A predictive and validated two-dimensional QSAR model using genetic algorithm (GA) and multiple linear regression (MLR) on experimental GPR183 inhibition data was developed. QSAR study highlighted that structural features like dissimilar electronegative atoms, quaternary carbon atoms, and CH2RX fragment (X: heteroatoms) influence positively, while the existence of oxygen atoms with a topological separation of 3, negatively affects GPR183 inhibitory activity. Post assessment of true external set prediction capability, the MLR model was deployed to screen 12,449 DrugBank compounds, followed by a screening pipeline involving molecular docking, druglikeness, ADMET, protein-ligand stability assessment using deep learning algorithm, molecular dynamics, and molecular mechanics. The current findings strongly evidenced DB05790 as a potential lead for prospective interference of oxysterol-mediated GPR183 overexpression, warranting further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Arnab Bhattacharjee
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA
| | - Probir Kumar Ojha
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Baltasar-Marchueta M, Llona L, M-Alicante S, Barbolla I, Ibarluzea MG, Ramis R, Salomon AM, Fundora B, Araujo A, Muguruza-Montero A, Nuñez E, Pérez-Olea S, Villanueva C, Leonardo A, Arrasate S, Sotomayor N, Villarroel A, Bergara A, Lete E, González-Díaz H. Identification of Riluzole derivatives as novel calmodulin inhibitors with neuroprotective activity by a joint synthesis, biosensor, and computational guided strategy. Biomed Pharmacother 2024; 174:116602. [PMID: 38636396 DOI: 10.1016/j.biopha.2024.116602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.
Collapse
Affiliation(s)
- Maider Baltasar-Marchueta
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Leire Llona
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | | | - Iratxe Barbolla
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Markel Garcia Ibarluzea
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Rafael Ramis
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Ane Miren Salomon
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Brenda Fundora
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Ariane Araujo
- Biofisika Institute, CSIC-UPV/EHU, Leioa 48940, Spain
| | | | - Eider Nuñez
- Biofisika Institute, CSIC-UPV/EHU, Leioa 48940, Spain
| | - Scarlett Pérez-Olea
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Christian Villanueva
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Aritz Leonardo
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Nuria Sotomayor
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | | | - Aitor Bergara
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain.
| | - Esther Lete
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Biofisika Institute, CSIC-UPV/EHU, Leioa 48940, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain.
| |
Collapse
|
4
|
Şeker M, Özbek Y, Yener G, Özerdem MS. Complexity of EEG Dynamics for Early Diagnosis of Alzheimer's Disease Using Permutation Entropy Neuromarker. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106116. [PMID: 33957376 DOI: 10.1016/j.cmpb.2021.106116] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Electroencephalogram (EEG) is one of the most demanded screening tools that investigates the effects of Alzheimer's Disease (AD) on human brain. Identification of AD in early stage gives rise to efficient treatment in dementia. Mild Cognitive Impairment (MCI) is considered as a conversion stage. Reducing EEG complexity can be used as a marker to detect AD. The aim of this study is to develop a 3-way diagnostic classification using EEG complexity in the detection of MCI/AD in clinical practice. This study also investigates the effects of different eyes states, i.e. eyes-open, eyes-closed on classification performance. METHODS EEG recordings from 85 AD, 85 MCI subjects, and 85 Healthy Controls with eyes-open and eyes- closed are analyzed. Permutation Entropy (PE) values are computed from frontal, central, parietal, temporal, and occipital regions for each EEG epoch. Distribution of PE values are visualized to observe discrimination of MCI/AD with HC. Visual investigations are combined with statistical analysis using ANOVA to determine whether groups are significant or not. Multinomial Logistic Regression model is applied to feature sets in order to classify participants individually. RESULTS Distribution of measured PE shows that EEG complexity is lower in AD and higher in HC group. MCI group is observed as an intermediate form due to heterogeneous values. Results from 3-way classification indicate that F1-scores and rates of sensitivity and specificity achieve the highest overall discrimination rates reaching up to 100% for at TP8 for eyes-closed condition; and C3, C4, T8, O2 electrodes for eyes-open condition. Classification of HC from both patient groups is achieved best. Eyes-open state increases discrimination of MCI and AD. CONCLUSIONS This nonlinear EEG methodology study contributes to literature with high discrimination rates for identification of AD. PE is recommended as a practical diagnostic neuro-marker for AD studies. Resting state EEG at eyes-open condition can be more advantageous over eyes-closed EEG recordings for diagnosis of AD.
Collapse
Affiliation(s)
- Mesut Şeker
- Department of Electrical and Electronics Engineering, Dicle University, Diyarbakir, Turkey.
| | - Yağmur Özbek
- Department of Neurosciences, Health Science Institute, Dokuz Eylül University, Izmir
| | - Görsev Yener
- Department of Neurosciences, Health Science Institute, Dokuz Eylül University, Izmir; Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Neurology, Faculty of Medicine, Izmir Ekonomi University, Izmir, Turkey; Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Mehmet Siraç Özerdem
- Department of Electrical and Electronics Engineering, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
5
|
Kumar V, Saha A, Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer's disease. Comput Biol Chem 2020; 88:107355. [PMID: 32801088 DOI: 10.1016/j.compbiolchem.2020.107355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/11/2023]
Abstract
In this research, we have implemented two-dimensional quantitative structure-activity relationship (2D-QSAR) modeling using two different datasets, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzyme inhibitors. A third dataset has been derived based on their selectivity and used for the development of partial least squares (PLS) based regression models. The developed models were extensively validated using various internal and external validation parameters. The features appearing in the model against AChE enzyme suggest that a small ring size, higher number of -CH2- groups, higher number of secondary aromatic amines and higher number of aromatic ketone groups may contribute to the inhibitory activity. The features obtained from the model against BuChE enzyme suggest that the sum of topological distances between two nitrogen atoms, higher number of fragments X-C(=X)-X, higher number of secondary aromatic amides, fragment R--CR-X may be more favorable for inhibition. The features obtained from selectivity based model suggest that the number of aromatic ethers, unsaturation content relative to the molecular size and molecular shape may be more specific for the inhibition of the AChE enzyme in comparison to the BuChE enzyme. Moreover, we have implemented the molecular docking studies using the most and least active molecules from the datasets in order to identify the binding pattern between ligand and target enzyme. The obtained information is then correlated with the essential structural features associated with the 2D-QSAR models.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|