1
|
Pasteur M, Arsouze G, Ilango G, Le Pennec D, Kulker D, Heyraud A, Cottier JP, Aussedat C, Heuzé-Vourc'h N, Hervé V, Le Guellec S. Characterization of anatomical variations of the nasal cavity in a subset of European patients and their impact on intranasal drug delivery. Int J Pharm 2024; 667:124851. [PMID: 39490788 DOI: 10.1016/j.ijpharm.2024.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Anatomical 3D-printed nasal casts are valuable models to investigate intranasal drug deposition, providing preclinical data that cannot be obtained in animal models. However, these models are limited since they are often derived from a single patient or represent a mean of several groups. The present study aimed to better characterize the anatomical differences of the nasal cavity in a European sub-population and to assess the potential impact of anatomical variations on intranasal deposition by medical devices. Ninety-eight cranial computed tomography scans of patients were selected and analyzed in 2D and 3D conformations. They showed symmetry of cavities and a high level of heterogeneity of measurements, especially volume and area, in the population. Three anatomical groups with distinct nasal geometry were identified and 3D nasal casts of the most representative patient of each group were printed. Fluorescein was administered using three medical devices: a nasal spray, a sonic jet nebulizer and a prototype mesh-nebulizer. The deposition profiles were compared with the Aeronose® as a reference. Our results show that anatomical variations influenced the deposition profiles depending on the device, with a higher variation with spray and the mesh-nebulizer. This work emphasises the importance of anatomical parameters on drug intranasal deposition and the need to evaluate inhaled drugs on different 3D nasal casts reflecting the target population.
Collapse
Affiliation(s)
- Mike Pasteur
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Université de Tours, Faculté de Médecine, 37032 Tours, France
| | | | - Guy Ilango
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Université de Tours, Faculté de Médecine, 37032 Tours, France
| | - Déborah Le Pennec
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Université de Tours, Faculté de Médecine, 37032 Tours, France
| | - Dimitri Kulker
- Department of Maxillofacial and Plastic Surgery, Burn Unit, Trousseau Hospital, CHRU, 37044 Tours, France
| | - Anaïs Heyraud
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Université de Tours, Faculté de Médecine, 37032 Tours, France
| | | | - Charles Aussedat
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Department of Otorhinolaryngology, Head & Neck Surgery, CHRU Tours, 37044 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Université de Tours, Faculté de Médecine, 37032 Tours, France
| | - Virginie Hervé
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Université de Tours, Faculté de Médecine, 37032 Tours, France.
| | - Sandrine Le Guellec
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37032 Tours, France; Université de Tours, Faculté de Médecine, 37032 Tours, France; DTF-aerodrug, Faculté de Médecine, 37032 Tours, France; Department of DTFmedical, 42003 Saint Etienne, France.
| |
Collapse
|
2
|
Lo Russo GV, Alarouri HS, Al‐Abcha A, Vogl B, Mahayni A, Sularz A, Hatoum H, Collins J, Crestanello JA, Alkhouli M. Association of Bovine Arch Anatomy With Incident Stroke After Transcatheter Aortic Valve Replacement. J Am Heart Assoc 2024; 13:e032963. [PMID: 38348804 PMCID: PMC11010090 DOI: 10.1161/jaha.123.032963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Acute ischemic stroke complicates 2% to 3% of transcatheter aortic valve replacements (TAVRs). This study aimed to identify the aortic anatomic correlates in patients after TAVR stroke. METHODS AND RESULTS This is a single-center, retrospective study of patients who underwent TAVR at the Mayo Clinic between 2012 and 2022. The aortic arch morphology was determined via a manual review of the pre-TAVR computed tomography images. An "a priori" approach was used to select the covariates for the following: (1) the logistic regression model assessing the association between a bovine arch and periprocedural stroke (defined as stroke within 7 days after TAVR); and (2) the Cox proportional hazards regression model assessing the association between a bovine arch and long-term stroke after TAVR. A total of 2775 patients were included (59.6% men; 97.8% White race; mean±SD age, 79.3±8.4 years), of whom 495 (17.8%) had a bovine arch morphology. Fifty-seven patients (1.7%) experienced a periprocedural stroke. The incidence of acute stroke was significantly higher among patients with a bovine arch compared with those with a nonbovine arch (3.6% versus 1.7%; P=0.01). After adjustment, a bovine arch was independently associated with increased periprocedural strokes (adjusted odds ratio, 2.16 [95% CI, 1.22-3.83]). At a median follow-up of 2.7 years, the overall incidence of post-TAVR stroke was 6.0% and was significantly higher in patients with a bovine arch even after adjusting for potential confounders (10.5% versus 5.0%; adjusted hazard ratio, 2.11 [95% CI, 1.51-2.93]; P<0.001). CONCLUSIONS A bovine arch anatomy is associated with a significantly higher risk of periprocedural and long-term stroke after TAVR.
Collapse
Affiliation(s)
| | | | | | - Brennan Vogl
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI
| | | | - Agata Sularz
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | - Hoda Hatoum
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI
| | | | | | | |
Collapse
|
3
|
Williams J, Ahlqvist H, Cunningham A, Kirby A, Katz I, Fleming J, Conway J, Cunningham S, Ozel A, Wolfram U. Validated respiratory drug deposition predictions from 2D and 3D medical images with statistical shape models and convolutional neural networks. PLoS One 2024; 19:e0297437. [PMID: 38277381 PMCID: PMC10817191 DOI: 10.1371/journal.pone.0297437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
For the one billion sufferers of respiratory disease, managing their disease with inhalers crucially influences their quality of life. Generic treatment plans could be improved with the aid of computational models that account for patient-specific features such as breathing pattern, lung pathology and morphology. Therefore, we aim to develop and validate an automated computational framework for patient-specific deposition modelling. To that end, an image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images. We evaluated the airway and lung morphology produced by our image processing framework, and assessed deposition compared to in vivo data. The 2D-to-3D image processing reproduces airway diameter to 9% median error compared to ground truth segmentations, but is sensitive to outliers of up to 33% due to lung outline noise. Predicted regional deposition gave 5% median error compared to in vivo measurements. The proposed framework is capable of providing patient-specific deposition measurements for varying treatments, to determine which treatment would best satisfy the needs imposed by each patient (such as disease and lung/airway morphology). Integration of patient-specific modelling into clinical practice as an additional decision-making tool could optimise treatment plans and lower the burden of respiratory diseases.
Collapse
Affiliation(s)
- Josh Williams
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Hartree Centre, STFC Daresbury Laboratory, Daresbury, United Kingdom
| | - Haavard Ahlqvist
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Alexander Cunningham
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Andrew Kirby
- Royal Hospital for Children and Young People, NHS Lothian, Edinburgh, United Kingdom
| | | | - John Fleming
- National Institute of Health Research Biomedical Research Centre in Respiratory Disease, Southampton, United Kingdom
- Department of Medical Physics and Bioengineering, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joy Conway
- National Institute of Health Research Biomedical Research Centre in Respiratory Disease, Southampton, United Kingdom
- Respiratory Sciences, Centre for Health and Life Sciences, Brunel University, London, United Kingdom
| | - Steve Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ali Ozel
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Institute for Material Science and Engineering, TU Clausthal, Clausthal-Zellerfeld, Germany
| |
Collapse
|
4
|
Wang X, Liu P, Zhao S, Wang F, Li X, Wang L, Yan Y, Zou GA, Xu G. Dynamic simulation and analysis of the influence of urethral morphological changes on urodynamics after benign prostatic hyperplasia surgery: A computational fluid dynamics study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107915. [PMID: 37995487 DOI: 10.1016/j.cmpb.2023.107915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Computational fluid dynamics (CFD) technology has been widely used in medicine to simulate and analyse urine flow characteristics in urology. In previous studies, researchers have modelled the analysis with a simple circular urethra, ignoring the effect of the patient's true urethral morphology on the urinary flow rate. Moreover, the studies tended to be steady-state simulations rather than dynamic simulations. Therefore, this study is established a relatively realistic model of the posterior urethra based on MRI data combined with the urodynamic data of patients and analysed the urodynamic characteristics of the posterior urethra model after benign prostatic hyperplasia (BPH) surgery using a CFD dynamic simulation. METHODS Based on clinical MRI data, a three-dimensional real urethral model was established for two patients with BPH after surgery. The boundary conditions were set according to the patients' real urodynamic data, and a Reynolds averaged Navier‒Stokes model was used for transient simulations. The dynamic simulation depicted the entire urination process, and the urine flow characteristics were studied under real urethral morphology after surgery. RESULTS 1. By comparing the three-dimensional trajectory of urine and the vortex identification cloud map based on the Q criterion, we intuitively observed the distribution of the vortex in the model, and a 'gourd-shaped' urethra was more likely to generate a vortex than a 'funnel-shaped' urethra. 2. After surgery for BPH, the changes in the posterior urethral pressure were mainly concentrated in the urethral membrane, and the velocity increased while the pressure decreased. The curve of the posterior urethral pressure changes during urination was simulated and calculated. The posterior urethral pressure gradients of the two patients were 6.6 cmH2O and 5.26 cmH2O. CONCLUSIONS The complete urinary discharge process can be dynamically simulated using CFD techniques. By comparing the simulation results, the posterior urethral morphology can have an important impact on the urinary flow characteristics. Determining the location of vortex generation can lay a foundation for personalized surgical plans for patients in the future. Furthermore, numerical simulations can provide a new method for the study of non-invasive posterior urethral pressure gradients.
Collapse
Affiliation(s)
- Xihao Wang
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Pengyue Liu
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Sen Zhao
- Department of Medical Imageology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Fei Wang
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiaodong Li
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Lianqu Wang
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yongjun Yan
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Guang-An Zou
- School of Mathematics and Statistics Henan University, Kaifeng, China
| | - Guoliang Xu
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China.
| |
Collapse
|
5
|
Yang Y, Ma Z, Zhuang Y, Long X, Yu Y. Development of multi-generation lower respiratory tract model and insights into the transport and deposition characteristics of inhalable particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166725. [PMID: 37657539 DOI: 10.1016/j.scitotenv.2023.166725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Airborne particles can spread quickly and enter human respiratory system via inhalation, causing chronic diseases, even cancer. Although recent studies have informed of toxicity of various pollutants, understanding the transport and deposition characteristics of particles in lower respiratory tract is still challenging. The current study proposes a novel model to simulate flow field change from the entrance of lower respiratory tract to pulmonary acinus, while studying particle transport and deposition characteristics. This model for lower respiratory tract with several bronchial extensions containing virtual pulmonary acinus is calculated using computational fluid dynamics and dynamics mesh. The results showed that in the first 10 generations of the lower respiratory tract, vortices and gravity interfered with particles' trajectory, affecting particle deposition distribution. For the first to the tenth-generation respiratory tract, coarse particles were deposited throughout almost the whole respiratory tract model. In contrast, ultrafine particles did not deposit in the higher-generation respiratory tract. The particle enrichment ability of various lobes was uneven with three particle deposition fraction variation patterns. Virtual pulmonary acinus influenced particle deposition and distribution because of vortex ring's trapped ability during expansion and contraction. This new attempt to build a virtual pulmonary acinus model to simulate particle deposition effects in human respiratory system may provide a reference for studying the toxicities of inhalable particles in the exposed human body.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| | - Zijian Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yijie Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiaoao Long
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China.
| |
Collapse
|
6
|
Tiwari B, Usmani AY, Bodduluri S, Bhatt SP, Raghav V. Influence of Pulsatility and Inflow Waveforms on Tracheal Airflow Dynamics in Healthy Older Adults. J Biomech Eng 2023; 145:101009. [PMID: 37382648 PMCID: PMC10405280 DOI: 10.1115/1.4062851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Tracheal collapsibility is a dynamic process altering local airflow dynamics. Patient-specific simulation is a powerful technique to explore the physiological and pathological characteristics of human airways. One of the key considerations in implementing airway computations is choosing the right inlet boundary conditions that can act as a surrogate model for understanding realistic airflow simulations. To this end, we numerically examine airflow patterns under the influence of different profiles, i.e., flat, parabolic, and Womersley, and compare these with a realistic inlet obtained from experiments. Simulations are performed in ten patient-specific cases with normal and rapid breathing rates during the inhalation phase of the respiration cycle. At normal breathing, velocity and vorticity contours reveal primary flow structures on the sagittal plane that impart strength to cross-plane vortices. Rapid breathing, however, encounters small recirculation zones. Quantitative flow metrics are evaluated using time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Overall, the flow metrics encountered in a real velocity profile are in close agreement with parabolic and Womersley profiles for normal conditions, however, the Womersley inlet alone conforms to a realistic profile under rapid breathing conditions.
Collapse
Affiliation(s)
- Bipin Tiwari
- Department of Aerospace Engineering, Auburn University, Auburn, AL 36849
| | - Abdullah Y. Usmani
- Department of Aerospace Engineering, Auburn University, Auburn, AL 36849
| | - Sandeep Bodduluri
- Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233; UAB Lung Imaging Lab, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233; UAB Lung Imaging Lab, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Vrishank Raghav
- Department of Aerospace Engineering, Auburn University, 211 Davis Hall, Auburn, AL 36849
| |
Collapse
|
7
|
Liu H, Ma S, Hu T, Ma D. Computational investigation of flow characteristics and particle deposition patterns in a realistic human airway model under different breathing conditions. Respir Physiol Neurobiol 2023:104085. [PMID: 37276915 DOI: 10.1016/j.resp.2023.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Airborne particle pollution causes a range of respiratory and cardiovascular disorders by entering the human respiratory system through the breathing process. The administration of pharmaceutical particles by inhalation is another effective way to treat pulmonary illnesses. Studying particle deposition in the respiratory system during human breathing is crucial to maintaining human health. This necessity served as the impetus for this work, which aims to investigate how the airflow and particles' deposition are influenced by constant inhalation and circulatory breathing, particle diameter, and changes in airflow rate. The focus of this paper is to compare the particle deposition results of circulatory respiration with constant respiration. Based on computed tomography (CT) scan pictures, a precise human airway model from the mouth cavity to the fifth-generation bronchi was created. Flow fields and particle deposition inside the respiratory tract were examined at varied breathing rates (30, 60, and 90L/min of constant and circulatory breathing) and varying haled particle sizes (5 and 10 μm). The results showed that the oropharyngeal area is often where the majority of particles are deposited. The particle distribution fraction is more significant in the bronchial area than the oropharyngeal region due to lower inhalation velocities and smaller particle sizes. For particles with a diameter of 5µm, constant respiration and circulatory respiration have virtually identical particle distribution fractions in each region. For particles with a diameter of 10µm, the particle distribution fraction for circulatory respiration is slightly higher than for constant respiration in the bronchial region as the flow rate increases. For both constant and circulatory respiration, particles are deposited more in the right lung and less in the left. These results contribute to further research on respiratory diseases caused by inhaled particles and guide inhalation therapy for better treatment outcomes.
Collapse
Affiliation(s)
- Huanxi Liu
- School of Mechanical Engineering, Shandong University, Jinan, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan, PR China; National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, Jinan, PR China
| | - Songhua Ma
- School of Mechanical Engineering, Shandong University, Jinan, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan, PR China; National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, Jinan, PR China.
| | - Tianliang Hu
- School of Mechanical Engineering, Shandong University, Jinan, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan, PR China; National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, Jinan, PR China
| | - Dedong Ma
- Qilu Hospital of Shandong University, Jinan, PR China; Key Laboratory of Otorhinolaryngology, National Health Commission - Shandong University, Jinan, PR China
| |
Collapse
|
8
|
Alsaad H, Schälte G, Schneeweiß M, Becher L, Pollack M, Gena AW, Schweiker M, Hartmann M, Voelker C, Rossaint R, Irrgang M. The Spread of Exhaled Air and Aerosols during Physical Exercise. J Clin Med 2023; 12:jcm12041300. [PMID: 36835835 PMCID: PMC9961458 DOI: 10.3390/jcm12041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Physical exercise demonstrates a special case of aerosol emission due to its associated elevated breathing rate. This can lead to a faster spread of airborne viruses and respiratory diseases. Therefore, this study investigates cross-infection risk during training. Twelve human subjects exercised on a cycle ergometer under three mask scenarios: no mask, surgical mask, and FFP2 mask. The emitted aerosols were measured in a grey room with a measurement setup equipped with an optical particle sensor. The spread of expired air was qualitatively and quantitatively assessed using schlieren imaging. Moreover, user satisfaction surveys were conducted to evaluate the comfort of wearing face masks during training. The results indicated that both surgical and FFP2 masks significantly reduced particles emission with a reduction efficiency of 87.1% and 91.3% of all particle sizes, respectively. However, compared to surgical masks, FFP2 masks provided a nearly tenfold greater reduction of the particle size range with long residence time in the air (0.3-0.5 μm). Furthermore, the investigated masks reduced exhalation spreading distances to less than 0.15 m and 0.1 m in the case of the surgical mask and FFP2 mask, respectively. User satisfaction solely differed with respect to perceived dyspnea between no mask and FFP2 mask conditions.
Collapse
Affiliation(s)
- Hayder Alsaad
- Department of Building Physics, Faculty of Civil Engineering, Bauhaus-University Weimar, 99423 Weimar, Germany
- Correspondence: (H.A.); (M.I.)
| | - Gereon Schälte
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Mario Schneeweiß
- Department of Building Physics, Faculty of Civil Engineering, Bauhaus-University Weimar, 99423 Weimar, Germany
| | - Lia Becher
- Department of Building Physics, Faculty of Civil Engineering, Bauhaus-University Weimar, 99423 Weimar, Germany
| | - Moritz Pollack
- Department of Building Physics, Faculty of Civil Engineering, Bauhaus-University Weimar, 99423 Weimar, Germany
| | - Amayu Wakoya Gena
- Department of Building Physics, Faculty of Civil Engineering, Bauhaus-University Weimar, 99423 Weimar, Germany
| | - Marcel Schweiker
- Healthy Living Spaces Lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Maria Hartmann
- Department of Building Physics, Faculty of Civil Engineering, Bauhaus-University Weimar, 99423 Weimar, Germany
| | - Conrad Voelker
- Department of Building Physics, Faculty of Civil Engineering, Bauhaus-University Weimar, 99423 Weimar, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Matthias Irrgang
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Correspondence: (H.A.); (M.I.)
| |
Collapse
|
9
|
Rahman MM, Zhao M, Islam MS, Dong K, Saha SC. Nanoparticle transport and deposition in a heterogeneous human lung airway tree: An efficient one path model for CFD simulations. Eur J Pharm Sci 2022; 177:106279. [PMID: 35985443 DOI: 10.1016/j.ejps.2022.106279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Understanding nano-particle inhalation in human lung airways helps targeted drug delivery for treating lung diseases. A wide range of numerical models have been developed to analyse nano-particle transport and deposition (TD) in different parts of airways. However, a precise understanding of nano-particle TD in large-scale airways is still unavailable in the literature. This study developed an efficient one-path numerical model for simulating nano-particle TD in large-scale lung airway models. This first-ever one-path numerical approach simulates airflow and nano-particle TD in generations 0-11 of the human lung, accounting for 93% of the whole airway length. The one-path model enables the simulation of particle TD in many generations of airways with an affordable time. The particle TD of 5 nm, 10 nm and 20 nm particles is simulated at inhalation flow rates for two different physical activities: resting and moderate activity. It is found that particle deposition efficiency of 5 nm particles is 28.94% higher than 20 nm particles because of the higher dispersion capacity. It is further proved that the diffusion mechanism dominates the particle TD in generations 0-11. The deposition efficiency decreases with the increase of generation number irrespective of the flow rate and particle size. The effects of the particle size and flow rate on the escaping rate of each generation are opposite to the corresponding effects on the deposition rate. The quantified deposition and escaping rates at generations 0-11 provide valuable guidelines for drug delivery in human lungs.
Collapse
Affiliation(s)
- Md M Rahman
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia; Department of Mathematics, Faculty of Science, Islamic University, Kushtia 7003, Bangladesh
| | - Ming Zhao
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Mohammad S Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kejun Dong
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Rahman M, Zhao M, Islam MS, Dong K, Saha SC. Numerical study of nano and micro pollutant particle transport and deposition in realistic human lung airways. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Rahman M, Zhao M, Islam MS, Dong K, Saha SC. Aging effects on airflow distribution and micron-particle transport and deposition in a human lung using CFD-DPM approach. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Taebi A, Berk S, Roncali E. Realistic boundary conditions in SimVascular through inlet catheter modeling. BMC Res Notes 2021; 14:215. [PMID: 34103097 PMCID: PMC8186195 DOI: 10.1186/s13104-021-05631-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/22/2021] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE This study aims at developing a pipeline that provides the capability to include the catheter effect in the computational fluid dynamics (CFD) simulations of the cardiovascular system and other human vascular flows carried out with the open-source software SimVascular. This tool is particularly useful for CFD simulation of interventional radiology procedures such as tumor embolization where estimation of a therapeutic agent distribution is of interest. RESULTS A pipeline is developed that generates boundary condition files which can be used in SimVascular CFD simulations. The boundary condition files are modified such that they simulate the effect of catheter presence on the flow field downstream of the inlet. Using this pipeline, the catheter flow, velocity profile, radius, wall thickness, and deviation from the vessel center can be defined. Since our method relies on the manipulation of the boundary condition that is imposed on the inlet, it is sensitive to the mesh density. The finer the mesh is (especially around the catheter wall), the more accurate the velocity estimations are. In this study, we also utilized this pipeline to qualitatively investigate the effect of catheter presence on the flow field in a truncated right hepatic arterial tree of a liver cancer patient.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616-5270, USA.
| | - Selin Berk
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-1597, USA
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616-5270, USA.,Department of Radiology, University of California, Davis, 4860 Y Street, Suite 3100, Sacramento, CA, 95817, USA
| |
Collapse
|
13
|
A whole lung in silico model to estimate age dependent particle dosimetry. Sci Rep 2021; 11:11180. [PMID: 34045500 PMCID: PMC8159973 DOI: 10.1038/s41598-021-90509-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/12/2021] [Indexed: 11/08/2022] Open
Abstract
Anatomical and physiological changes alter airflow characteristics and aerosol distribution in the developing lung. Correlation between age and aerosol dosimetry is needed, specifically because youth are more susceptible to medication side effects. In this study, we estimate aerosol dosages (particle diameters of 1, 3, and 5 [Formula: see text]m) in a 3 month-old infant, a 6 year-old child, and a 36 year-old adult by performing whole lung subject-specific particle simulations throughout respiration. For 3 [Formula: see text]m diameter particles we estimate total deposition as 88, 73, and [Formula: see text] and the conducting versus respiratory deposition ratios as 4.0, 0.5, and 0.4 for the infant, child, and adult, respectively. Due to their lower tidal volumes and functional residual capacities the deposited mass is smaller while the tissue concentrations are larger in the infant and child subjects, compared to the adult. Furthermore, we find that dose cannot be predicted by simply scaling by tidal volumes. These results highlight the need for additional clinical and computational studies that investigate the efficiency of treatment, while optimizing dosage levels in order to alleviate side effects, in youth.
Collapse
|
14
|
Selvaggio AZ, Lisbôa S, Vianna SSV. The effect of the volumetric flow rate and endotracheal tube diameter on the pressure distribution in human airways. Med Eng Phys 2021; 92:71-79. [PMID: 34167714 DOI: 10.1016/j.medengphy.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
The comprehension of the fluid flow in the upper airways is of paramount importance when treating patients under clinical conditions that demand mechanical ventilation. Barotrauma and overdistension are related to undesirable pressures and might be responsible for morbidity and mortality. In the current work we use computational fluid dynamics to investigate the pressure field in the upper respiratory airways. We performed a set of simulations varying the volumetric flow rate of mechanical ventilators and we have shown that the pressure profile can be calculated by means of the volumetric flow rate in accordance with a mathematical expression given by Pav=aV˙2, where Pav is the average pressure at selected sections of the upper airways and V˙ is the volumetric flow rate. Numerical findings provide evidence that the constant a varies with the location of the plane in the upper airways. We also show that some particular diameters of endotracheal tubes (ETT) must be used with care for a given range of volumetric flow rates. Overall, we document an important relationship among pressure, volumetric flow rate and selected internal diameters from ETT.
Collapse
Affiliation(s)
| | - Sérgio Lisbôa
- Medical School. Federal University of Espirito Santo, Vitoria. Espirito Santo. Brazil
| | - Sávio S V Vianna
- School of Chemical Engineering. University of Campinas. Campinas. São Paulo, Brazil.
| |
Collapse
|
15
|
Huang F, Zhu Q, Zhou X, Gou D, Yu J, Li R, Tong Z, Yang R. Role of CFD based in silico modelling in establishing an in vitro-in vivo correlation of aerosol deposition in the respiratory tract. Adv Drug Deliv Rev 2021; 170:369-385. [PMID: 32971228 DOI: 10.1016/j.addr.2020.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Effective evaluation and prediction of aerosol transport deposition in the human respiratory tracts are critical to aerosol drug delivery and evaluation of inhalation products. Establishment of an in vitro-in vivo correlation (IVIVC) requires the understanding of flow and aerosol behaviour and underlying mechanisms at the microscopic scale. The achievement of the aim can be facilitated via computational fluid dynamics (CFD) based in silico modelling which treats the aerosol delivery as a two-phase flow. CFD modelling research, in particular coupling with discrete phase model (DPM) and discrete element method (DEM) approaches, has been rapidly developed in the past two decades. This paper reviews the recent development in this area. The paper covers the following aspects: geometric models of the respiratory tract, CFD turbulence models for gas phase and its coupling with DPM/DEM for aerosols, and CFD investigation of the effects of key factors associated with geometric variations, flow and powder characteristics. The review showed that in silico study based on CFD models can effectively evaluate and predict aerosol deposition pattern in human respiratory tracts. The review concludes with recommendations on future research to improve in silico prediction to achieve better IVIVC.
Collapse
Affiliation(s)
- Fen Huang
- School of Energy and Environment, Southeast University, Nanjing 210096, China; Department of Chemical Engineering, Monash University, Clayton, Vic 3800, Australia
| | - Qixuan Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xudong Zhou
- Department of Chemical Engineering, Monash University, Clayton, Vic 3800, Australia
| | - Dazhao Gou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiaqi Yu
- Institute for Process Modelling and Optimization, JITRI, Suzhou 215000, China
| | - Renjie Li
- Institute for Process Modelling and Optimization, JITRI, Suzhou 215000, China
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Runyu Yang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Cochard M, Ledoux F, Landkocz Y. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the in vitro studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:293-318. [PMID: 32921295 DOI: 10.1080/10937404.2020.1816238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with several diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Mechanisms such as oxidative stress and inflammation are well-documented and are considered as the starting point of some of the pathological responses. However, a number of studies also focused on epithelial-mesenchymal transition (EMT), which is a biological process involved in fibrotic diseases and cancer progression notably via metastasis induction. Up until now, EMT was widely reported in vivo and in vitro in various cell types but investigations dealing with in vitro studies of PM2.5 induced EMT in pulmonary cells are limited. Further, few investigations combined the necessary endpoints for validation of the EMT state in cells: such as expression of several surface, cytoskeleton or extracellular matrix biomarkers and activation of transcription markers and epigenetic factors. Studies explored various cell types, cultured under differing conditions and exposed for various durations to different doses. Such unharmonized protocols (1) might introduce bias, (2) make difficult comparison of results and (3) preclude reaching a definitive conclusion regarding the ability of airborne PM2.5 to induce EMT in pulmonary cells. Some questions remain, in particular the specific PM2.5 components responsible for EMT triggering. The aim of this review is to examine the available PM2.5 induced EMT in vitro studies on pulmonary cells with special emphasis on the critical parameters considered to carry out future research in this field. This clarification appears necessary for production of reliable and comparable results.
Collapse
Affiliation(s)
- Margaux Cochard
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| |
Collapse
|
17
|
Schachner ER, Spieler B. Three-dimensional (3D) lung segmentation for diagnosis of COVID-19 and the communication of disease impact to the public. BMJ Case Rep 2020; 13:e236943. [PMID: 32816940 PMCID: PMC7437944 DOI: 10.1136/bcr-2020-236943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Bradley Spieler
- Department of Radiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|