1
|
Ning G, Sun Y, Ling J, Chen J, He J. BDN-DDI: A bilinear dual-view representation learning framework for drug-drug interaction prediction. Comput Biol Med 2023; 165:107340. [PMID: 37603959 DOI: 10.1016/j.compbiomed.2023.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Drug-drug interactions (DDIs) refer to the potential effects of two or more drugs interacting with each other when used simultaneously, which may lead to adverse reactions or reduced drug efficacy. Accurate prediction of DDIs is a significant concern in recent years. Currently, the drug chemical substructure-based learning method has substantially improved DDIs prediction. However, we notice that most related works ignore the detailed interaction among atoms when extracting the substructure information of drugs. This problem results in incomplete information extraction and may limit the model's predictive ability. In this work, we proposed a novel framework named BDN-DDI (a bilinear dual-view representation learning framework for drug-drug interaction prediction) to infer potential DDIs. In the proposed framework, the encoder consists of six stacked BDN blocks, each of which extracts the feature representation of drug molecules through a bilinear representation extraction layer. The extracted feature is then used to learn embeddings of drug substructures from the single drug learning layer (intra-layer) and the drug-pair learning layer (inter-layer). Finally, the learned embeddings are fed into a decoder to predict DDI events. Based on our experiments, BDN-DDI has an AUROC value of over 99% for the warm-start task. Additionally, it outperformed the state-of-the-art methods by an average of 3.4% for the cold-start tasks. Finally, our method's effectiveness is further validated by visualizing several case studies.
Collapse
Affiliation(s)
- Guoquan Ning
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuping Sun
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jie Ling
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Jijia Chen
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxi He
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Feng R, Li S, Zhang Y. A knowledge-integrated deep learning framework for cellular image analysis in parasite microbiology. STAR Protoc 2023; 4:102452. [PMID: 37537845 PMCID: PMC10410587 DOI: 10.1016/j.xpro.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 06/20/2023] [Indexed: 08/05/2023] Open
Abstract
Cellular image analysis is an important method for microbiologists to identify and study microbes. Here, we present a knowledge-integrated deep learning framework for cellular image analysis, using three tasks as examples: classification, detection, and reconstruction. Alongside thorough descriptions of different models and datasets, we describe steps for computing environment setup, knowledge representation, data pre-processing, and training and tuning. We then detail evaluation and visualization. For complete details on the use and execution of this protocol, please refer to Li et al. (2021),1 Jiang et al. (2020),2 and Zhang et al. (2022).3.
Collapse
Affiliation(s)
- Ruijun Feng
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Sen Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Hu W, Zhang W, Zhou Y, Luo Y, Sun X, Xu H, Shi S, Li T, Xu Y, Yang Q, Qiu Y, Zhu F, Dai H. MecDDI: Clarified Drug-Drug Interaction Mechanism Facilitating Rational Drug Use and Potential Drug-Drug Interaction Prediction. J Chem Inf Model 2023; 63:1626-1636. [PMID: 36802582 DOI: 10.1021/acs.jcim.2c01656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Drug-drug interactions (DDIs) are a major concern in clinical practice and have been recognized as one of the key threats to public health. To address such a critical threat, many studies have been conducted to clarify the mechanism underlying each DDI, based on which alternative therapeutic strategies are successfully proposed. Moreover, artificial intelligence-based models for predicting DDIs, especially multilabel classification models, are highly dependent on a reliable DDI data set with clear mechanistic information. These successes highlight the imminent necessity to have a platform providing mechanistic clarifications for a large number of existing DDIs. However, no such platform is available yet. In this study, a platform entitled "MecDDI" was therefore introduced to systematically clarify the mechanisms underlying the existing DDIs. This platform is unique in (a) clarifying the mechanisms underlying over 1,78,000 DDIs by explicit descriptions and graphic illustrations and (b) providing a systematic classification for all collected DDIs based on the clarified mechanisms. Due to the long-lasting threats of DDIs to public health, MecDDI could offer medical scientists a clear clarification of DDI mechanisms, support healthcare professionals to identify alternative therapeutics, and prepare data for algorithm scientists to predict new DDIs. MecDDI is now expected as an indispensable complement to the available pharmaceutical platforms and is freely accessible at: https://idrblab.org/mecddi/.
Collapse
Affiliation(s)
- Wei Hu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Huimin Xu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Teng Li
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yichao Xu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qianqian Yang
- Department of Pharmacy, Affiliated Hangzhou First Peoples Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Clinical Pharmacy Research Center, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Feng Zhu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Haibin Dai
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Clinical Pharmacy Research Center, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
4
|
Vo TH, Nguyen NTK, Kha QH, Le NQK. On the road to explainable AI in drug-drug interactions prediction: A systematic review. Comput Struct Biotechnol J 2022; 20:2112-2123. [PMID: 35832629 PMCID: PMC9092071 DOI: 10.1016/j.csbj.2022.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022] Open
Abstract
Over the past decade, polypharmacy instances have been common in multi-diseases treatment. However, unwanted drug-drug interactions (DDIs) that might cause unexpected adverse drug events (ADEs) in multiple regimens therapy remain a significant issue. Since artificial intelligence (AI) is ubiquitous today, many AI prediction models have been developed to predict DDIs to support clinicians in pharmacotherapy-related decisions. However, even though DDI prediction models have great potential for assisting physicians in polypharmacy decisions, there are still concerns regarding the reliability of AI models due to their black-box nature. Building AI models with explainable mechanisms can augment their transparency to address the above issue. Explainable AI (XAI) promotes safety and clarity by showing how decisions are made in AI models, especially in critical tasks like DDI predictions. In this review, a comprehensive overview of AI-based DDI prediction, including the publicly available source for AI-DDIs studies, the methods used in data manipulation and feature preprocessing, the XAI mechanisms to promote trust of AI, especially for critical tasks as DDIs prediction, the modeling methods, is provided. Limitations and the future directions of XAI in DDIs are also discussed.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Ngan Thi Kim Nguyen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Quang Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
5
|
A novel graph mining approach to predict and evaluate food-drug interactions. Sci Rep 2022; 12:1061. [PMID: 35058561 PMCID: PMC8776972 DOI: 10.1038/s41598-022-05132-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 12/26/2022] Open
Abstract
Food-drug interactions (FDIs) arise when nutritional dietary consumption regulates biochemical mechanisms involved in drug metabolism. This study proposes FDMine, a novel systematic framework that models the FDI problem as a homogenous graph. Our dataset consists of 788 unique approved small molecule drugs with metabolism-related drug-drug interactions and 320 unique food items, composed of 563 unique compounds. The potential number of interactions is 87,192 and 92,143 for disjoint and joint versions of the graph. We defined several similarity subnetworks comprising food-drug similarity, drug-drug similarity, and food-food similarity networks. A unique part of the graph involves encoding the food composition as a set of nodes and calculating a content contribution score. To predict new FDIs, we considered several link prediction algorithms and various performance metrics, including the precision@top (top 1%, 2%, and 5%) of the newly predicted links. The shortest path-based method has achieved a precision of 84%, 60% and 40% for the top 1%, 2% and 5% of FDIs identified, respectively. We validated the top FDIs predicted using FDMine to demonstrate its applicability, and we relate therapeutic anti-inflammatory effects of food items informed by FDIs. FDMine is publicly available to support clinicians and researchers.
Collapse
|