1
|
Sahoo M, Behera DU, Gaur M, Subudhi E. Molecular docking, molecular dynamics simulation, and MM/PBSA analysis of ginger phytocompounds as a potential inhibitor of AcrB for treating multidrug-resistant Klebsiella pneumoniae infections. J Biomol Struct Dyn 2025; 43:3585-3601. [PMID: 38165647 DOI: 10.1080/07391102.2023.2299741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
The emergence of Multidrug resistance (MDR) in human pathogens has defected the existing antibiotics and compelled us to understand more about the basic science behind alternate anti-infective drug discovery. Soon, proteome analysis identified AcrB efflux pump protein as a promising drug target using plant-driven phytocompounds used in traditional medicine systems with lesser side effects. Thus, the present study aims to explore the novel, less toxic, and natural inhibitors of Klebsiella pneumoniae AcrB pump protein from 69 Zingiber officinale phyto-molecules available in the SpiceRx database through computational-biology approaches. AcrB protein's homology-modelling was carried out to get a 3D structure. The multistep-docking (HTVS, SP, and XP) were employed to eliminate less-suitable compounds in each step based on the docking score. The chosen hit-compounds underwent induced-fit docking (IFD). Based on the XP GScore, the top three compounds, epicatechin (-10.78), 6-gingerol (-9.71), and quercetin (-9.09) kcal/mol, were selected for further calculation of binding free energy (MM/GBSA). Furthermore, the short-listed compounds were assessed for their drug-like properties based on in silico ADMET properties and Pa, Pi values. In addition, the molecular dynamics simulation (MDS) studies for 250 ns elucidated the binding mechanism of epicatechin, 6-gingerol, and quercetin to AcrB. From the dynamic binding free energy calculations using MM/PBSA, 6-gingerol exhibited a strong binding affinity towards AcrB. Further, the 6-gingerol complex's energy fluctuation was observed from the free energy landscape. In conclusion, 6-gingerol has a promising inhibiting potential against the AcrB efflux pump and thus necessitates further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Maheswata Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Mahendra Gaur
- Drug Development, and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
- Department of Biotechnology, Punjabi University, Patiala, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Wagih N, Abdel-Rahman IM, El-Koussi NA, El-Din A Abuo-Rahma G. Anticancer benzimidazole derivatives as inhibitors of epigenetic targets: a review article. RSC Adv 2025; 15:966-1010. [PMID: 39807197 PMCID: PMC11726184 DOI: 10.1039/d4ra05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy. Benzimidazole derivatives have gained attention for their potent epigenetic modulatory effects as they interact with various epigenetic targets, including DNA methyltransferases, histone deacetylases and histone methyltransferases. This review provides a comprehensive overview of benzimidazole derivatives that inhibit different acetylation and methylation reader, writer and eraser epigenetic targets. Herein, we emphasize the therapeutic potential of these compounds in developing targeted, less toxic cancer therapies. Presently, some promising benzimidazole derivatives have entered clinical trials and shown great advancements in the fields of hematological and solid malignancy therapies. Accordingly, we highlight the recent advancements in benzimidazole research as epigenetic agents that could pave the way for designing new multi-target drugs to overcome resistance and improve clinical outcomes for cancer patients. This review can help researchers in designing new anticancer benzimidazole derivatives with better properties.
Collapse
Affiliation(s)
- Nardin Wagih
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Islam M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Nawal A El-Koussi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
| | - Gamal El-Din A Abuo-Rahma
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| |
Collapse
|
3
|
Lanka G, Banerjee S, Regula S, Adhikari N, Ghosh B. Pharmacophore modeling, 3D-QSAR, and MD simulation-based overture for the discovery of new potential HDAC1 inhibitors. J Biomol Struct Dyn 2024:1-24. [PMID: 39587443 DOI: 10.1080/07391102.2024.2429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/15/2024] [Indexed: 11/27/2024]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators that modulate the activity of histone and non-histone proteins leading to various cancers. Histone deacetylase 1 (HDAC1) is a member of class 1 HDAC family related to different cancers. However, the nonselective profile of existing HDAC1 inhibitors restricted their clinical utility. Therefore, the identification of new HDAC1 selective inhibitors may be fruitful against cancer therapy. In this present work, a pharmacophore model was built using 60 benzamide-based known HDAC1 selective inhibitors and it was used further to filter the large epigenetic molecular database of small molecules. Further, the 3D-QSAR model was built using the best common pharmacophore hypothesis consisting of higher PLS statistics of R2 of 0.89, Q2 of 0.83, variance ratio (F) of 65.7 and Pearson-r value of 0.94 revealing the model reliability and its high predictive power. The screened hits of the pharmacophore model were then subjected to molecular docking against HDAC1 to identify high-affinity lead molecules. The top 10 hits were ranked from the docking studies using docking scores for lead optimization. The potential hit molecules M1 and M2 identified from the study showed promising interaction during HDAC1 docking and MD simulation studies with acceptable ADME properties. Also, the newly designed lead compounds M11 and M12 may be considered highly potential inhibitors against HDAC1. The 3D-QSAR analysis, conformational requirements, and observations noticed in the MD simulations study will enable the optimization of lead molecules and to design of novel effective, and selective HDAC1 inhibitors in the future.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Sanjeev Regula
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| |
Collapse
|
4
|
Dhiman S, Gupta S, Kashaw SK, Chtita S, Kaya S, Almehizia AA, Asati V. Discovery of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agents: virtual screening and molecular dynamic studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:993-1025. [PMID: 39607421 DOI: 10.1080/1062936x.2024.2432009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
CDK/Cyclins are dysregulated in several human cancers. Recent studies showed inhibition of CDK4/6 was responsible for controlling cell cycle progression and cancer cell growth. In the present study, atom-based and field-based 3D-QSAR, virtual screening, molecular docking and molecular dynamics studies were done for the development of novel pyrrolo[2,3-d]pyrimidine (P2P) derivatives as anticancer agents. The developed models showed good Q2 and r2 values for atom-based 3D-QSAR, which were equal to 0.7327 and 0.8939, whereas for field-based 3D-QSAR the values were 0.8552 and 0.6255, respectively. Molecular docking study showed good-binding interactions with amino acid residues such as VAL-101, HIE-100, ASP-104, ILE-19, LYS-147 and GLU-99, important for CDK4/6 inhibitory activity by using PDB ID: 5L2S. Pharmacophore hypothesis (HHHRR_1) was used in the screening of ZINC database. The top scored ZINC compound ZINC91325512 showed binding interactions with amino acid residues VAL-101, ILE-19, and LYS-147. Enumeration study revealed that the screened compound R1 showed binding interactions with VAL 101 and GLN 149 residues. Furthermore, the Molecular dynamic study showed compound R1, ZINC91325512 and ZINC04000264 having RMSD values of 1.649, 1.733 and 1.610 Å, respectively. These ZINC and enumerated compounds may be used for the development of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agent.
Collapse
Affiliation(s)
- S Dhiman
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
- Department of Pharmaceutical Analysis, NIPER, Hajipur, India
| | - S Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - S K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harassing Gour Central University, Sagar, India
| | - S Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - S Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - A A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - V Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| |
Collapse
|
5
|
Guo W, Zhang B, Liu M, Zhang J, Feng Y. Based on Virtual Screening and Simulation Exploring the Mechanism of Plant-Derived Compounds with PINK1 to Postherpetic Neuralgia. Mol Neurobiol 2024; 61:9184-9203. [PMID: 38602654 DOI: 10.1007/s12035-024-04098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
Accumulating evidence strongly supports that PINK1 mutation can mediate mitochondrial autophagy dysfunction in dopaminergic neurons. This study was conducted to determine the role of PINK1 in the pathogenesis of postherpetic neuralgia (PHN) and find new targets for its treatment. A rigorous literature review was conducted to identify 2801 compounds from more than 200 plants in Asia. Virtual screening was used to shortlist the compounds into 20 groups based on their binding energies. MM/PBSA was used to further screen the compound dataset, and vitexin, luteoloside, and 2'-deoxyadenosine-5'-monophosphate were found to have a score of - 59.439, - 52.421, and - 47.544 kcal/mol, respectively. Pain behavioral quantification, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blotting, and transmission electron microscopy were used to confirm the effective mechanism. Vitexin had the most significant therapeutic effect on rats with PHN followed by luteoloside; 2'-deoxyadenosine-5'-monophosphate had no significant effect. Our findings suggested that vitexin could alleviate PHN by regulating mitochondrial autophagy through PINK1.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Bo Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
6
|
Bharadwaj KK, Ahmad I, Pati S, Ghosh A, Rabha B, Sarkar T, Bhattacharjya D, Patel H, Baishya D. Screening of Phytocompounds for Identification of Prospective Histone Deacetylase 1 (HDAC1) Inhibitor: An In Silico Molecular Docking, Molecular Dynamics Simulation, and MM-GBSA Approach. Appl Biochem Biotechnol 2024; 196:3747-3764. [PMID: 37776441 DOI: 10.1007/s12010-023-04731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The upregulation of HDAC1 facilitate the induction of epigenetic repression of genes responsible for suppressing tumourigenesis, thereby triggering the development of cancer. HDAC1 inhibitors have thus emerged as possible therapeutic approaches against a variety of human malignancies, as they can inhibit the activity of certain HDACs, repair the overexpression of tumour suppressor genes, and induce cell differentiation, cell cycle arrest, and apoptosis. In this study, among 810 virtually screened compounds, Pinocembrin (PHUB000396) had a significant binding affinity (-7.99 kcal/mol). In molecular dynamics simulation (MD) studies for 200 ns time scale, the compound Pinocembrin effectively undergoes conformational optimization, thereby enabling its accommodation within the active site of the receptor. This outcome serves as a rational for the observed binding affinity. The optimal binding free energy calculations using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (-35.86 ± 7.52 kcal/mol) showed the significant role of van der Waals forces and Coulomb interactions in the stability of the respective complex. The pharmacokinetic study showed its potential as a lead compound. The in-silico cytotoxicity prediction also confirmed its potential as an active anticancer phytocompound in lung and brain cancer. Therefore, it can be predicted that Pinocembrin could be a useful bioactive compound as an HDAC1 inhibitor and could be used in developing epigenetic therapy in cancer such as brain cancer and lung cancer to regulate gene expression.
Collapse
Affiliation(s)
- Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-ABC, Balasore, 756001, Odisha, India
- NatNov Bioscience Private Limited, 756001, Balasore, Odisha, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India, 781014
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Dorothy Bhattacharjya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
7
|
Yazdani B, Sirous H, Enguita FJ, Brogi S, Wing PAC, Fassihi A. Discovery of novel direct small-molecule inhibitors targeting HIF-2α using structure-based virtual screening, molecular dynamics simulation, and MM-GBSA calculations. Mol Divers 2024; 28:1203-1224. [PMID: 37120484 DOI: 10.1007/s11030-023-10650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Hypoxia-inducible factors (HIFs) are the main regulatory factors implicated in the adaptation of cancer cells to hypoxic stress, which has provoked much interest as an attractive target for the design of promising chemotherapeutic agents. Since indirect HIF inhibitors (HIFIs) lead to the occurrence of various side effects, the need of the hour is to develop direct HIFIs, physically interacting with important functional domains within the HIF protein structure. Accordingly, in the present study, it was attempted to develop an exhaustive structure-based virtual screening (VS) process coupled with molecular docking, molecular dynamic (MD) simulation, and MM-GBSA calculations for the identification of novel direct inhibitors against the HIF-2α subunit. For this purpose, a focused library of over 200,000 compounds from the NCI database was used for VS against the PAS-B domain of the target protein, HIF-2α. This domain was suggested to be a possible ligand-binding site, which is characterized by a large internal hydrophobic cavity, unique to the HIF-2α subunit. The top-ranked compounds, NSC106416, NSC217021, NSC217026, NSC215639, and NSC277811 with the best docking scores were taken up for the subsequent in silico ADME properties and PAINS filtration. The selected drug-like hits were employed for carrying out MD simulation which was followed by MM-GBSA calculations to retrieve the candidates showing the highest in silico binding affinity towards the PAS-B domain of HIF-2α. The analysis of results indicated that all molecules, except the NSC277811, fulfilled necessary drug-likeness properties. Four selected drug-like candidates, NSC106416, NSC217021, NSC217026, and NSC215639 were found to expose the stability profiles within the cavity located inside the PAS-B domain of HIF-2α over simulation time. Finally, the results of the MM-GBSA rescoring method were indicative of the highest binding affinity of NSC217026 for the binding site of the HIF-2α PAS-B domain among selected final hits. Consequently, the hit NSC217026 could serve as a promising scaffold for further optimization toward the design of direct HIF-2α inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Behnaz Yazdani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Francisco J Enguita
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Simone Brogi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Afshin Fassihi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
8
|
Jana A, Naga R, Saha S, Griñán-Ferré C, Banerjee DR. Integration of ligand and structure-based pharmacophore screening for the identification of novel natural leads against Euchromatic histone lysine methyltransferase 2 (EHMT2/G9a). J Biomol Struct Dyn 2024; 42:3535-3562. [PMID: 37216299 DOI: 10.1080/07391102.2023.2213346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Herein, we report a blended ligand and structure-based pharmacophore screening approach to identify new natural leads against the Protein Lysine Methyltransferase 2 (EHMT2/G9a). The EHMT2/G9a has been associated with Cancer, Alzheimer's, and aging and is considered an emerging drug target having no clinically passed inhibitor. Purposefully, we developed the ligand-based pharmacophore (Pharmacophore-L) based on the common features of known inhibitors and the structure-based pharmacophore (Pharmacophore-S) based on the interaction profile of available crystal structures. The Pharmacophore-L and Pharmacophore-S were subjected to multiple tiers of validations and utilized in combination for the screening of total 741543 compounds coming from multiple databases. Additional layers of stringency were applied in the screening process to test drug-likeness (using Lipinski's rule, Veber's rule, SMARTS and ADMET filtration), to rule out any toxicity (TOPKAT analysis). The interaction profiles, stabilities, and comparative analysis against the reference were carried out by flexible docking, MD simulation, and MM-GBSA analysis, which finally led to three leads as potential inhibitors of G9a.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhisek Jana
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, India
| | - Rahul Naga
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
9
|
Ahmad B, Saeed A, Al-Amery A, Celik I, Ahmed I, Yaseen M, Khan IA, Al-Fahad D, Bhat MA. Investigating Potential Cancer Therapeutics: Insight into Histone Deacetylases (HDACs) Inhibitions. Pharmaceuticals (Basel) 2024; 17:444. [PMID: 38675404 PMCID: PMC11054547 DOI: 10.3390/ph17040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Histone deacetylases (HDACs) are enzymes that remove acetyl groups from ɛ-amino of histone, and their involvement in the development and progression of cancer disorders makes them an interesting therapeutic target. This study seeks to discover new inhibitors that selectively inhibit HDAC enzymes which are linked to deadly disorders like T-cell lymphoma, childhood neuroblastoma, and colon cancer. MOE was used to dock libraries of ZINC database molecules within the catalytic active pocket of target HDACs. The top three hits were submitted to MD simulations ranked on binding affinities and well-occupied interaction mechanisms determined from molecular docking studies. Inside the catalytic active site of HDACs, the two stable inhibitors LIG1 and LIG2 affect the protein flexibility, as evidenced by RMSD, RMSF, Rg, and PCA. MD simulations of HDACs complexes revealed an alteration from extended to bent motional changes within loop regions. The structural deviation following superimposition shows flexibility via a visual inspection of movable loops at different timeframes. According to PCA, the activity of HDACs inhibitors induces structural dynamics that might potentially be utilized to define the nature of protein inhibition. The findings suggest that this study offers solid proof to investigate LIG1 and LIG2 as potential HDAC inhibitors.
Collapse
Affiliation(s)
- Basharat Ahmad
- School of Life Science and Technology, Center for Informational Biology, University of Electronics Science and Technology of China, Chengdu 610056, China
| | - Aamir Saeed
- Department of Bioinformatics, Hazara University Mansehra, Mansehra 21120, Pakistan
| | - Ahmed Al-Amery
- Department of Physiology and Medical Physics, College of Medicine, University of Thi-Qar, Nasiriyah 64001, Iraq
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Turkey;
| | - Iraj Ahmed
- Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad 44000, Pakistan;
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Charbagh 19130, Pakistan;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Nasiriyah 64001, Iraq;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
10
|
Du C, Yin H, Xie A, Yu J, Wang Y, Yao F, Zhang S, Zhang Y, Liu L, Wang P, Dong J, Xu X. Virtual screening and biological evaluation of natural products as urate transporter 1 (URAT1) inhibitors. J Biomol Struct Dyn 2024:1-14. [PMID: 38553409 DOI: 10.1080/07391102.2024.2331101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 04/02/2025]
Abstract
Hyperuricemia is mainly caused by insufficient renal urate excretion. Urate transporter 1 (URAT1), an organic anion transporter, is the main protein responsible for urate reabsorption. In this study, we utilized artificial intelligence-based AlphaFold2 program to construct URAT1 structural model. After molecular docking and conformational evaluation, four e-pharmacophoric models were constructed based on the complex structures of probenecid-URAT1, benzbromarone-URAT1, lesinurad-URAT1, and verinurad-URAT1. Combining pharmacophore modeling, molecular docking, MM/GBSA calculation and ADME prediction, 25 flavonoids were selected from the natural products database containing 10,968 molecules. Then, a model of HEK-293T cells overexpressing URAT1 was constructed, and the inhibitory activity to URAT1 of 25 flavonoids was evaluated by measuring their effect on cellular uptake of 6-carboxyfluorescein (6-CFL). Fisetin, baicalein, and acacetin showed the best activity with IC50 values of 12.77, 26.71, and 57.30 µM, respectively. Finally, the structure-activity relationship of these three flavonoids was analyzed by molecular docking and molecular dynamics simulations. The results showed that the carbonyl group on C-4 and hydroxyl group on C-7, C-4', and C-5' in flavonoids were conducive for URAT1 inhibitory effects. This study facilitates the application of flavonoids in the development of URAT1 inhibitors.
Collapse
Affiliation(s)
- Chunying Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Hua Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Aowei Xie
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fengli Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Siyu Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lu Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Chen D, Lin S, Zeng Z, An J, Yan W, Gu Z, Chen L, He B. Serendipitous discovery of Class I HDAC inhibitors from rational design of molecular glue degraders targeting HDAC. Eur J Med Chem 2024; 263:115926. [PMID: 37995564 DOI: 10.1016/j.ejmech.2023.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Zinc-dependent histone deacetylases (HDACs) play an essential role as epigenetic regulators and are becoming increasingly important drug targets for the treatment of cancer. Although five HDAC inhibitors have been approved for treating several cancers, only one of them is a Class I HDAC inhibitor, which may have advantages over pan-HDAC inhibitors due to the various side effects associated with the latter. On the other hand, the emerging strategy of molecular glue degraders offers a unique advantage for targeting therapeutic proteins. In this study, we synthesized a series of candidate compounds based on the molecule glue, pomalidomide, using a "merger principle", initially aiming to obtain molecular glue degraders that can target HDAC degradation. However, we serendipitously discovered that compounds 2f and 3f may be potent Class I HDAC selective inhibitors. After further evaluation, we found that compounds 2f and 3f exhibit selective inhibitory effects on Class I HDAC in cancer cells. Moreover, they showed the robust antiproliferative activities against various hematological tumor cells, comparable to that of the approved Class I HDAC inhibitor, Chidamide. These results suggest that pomalidomide-derivatized compounds have promising potential as Class I HDAC inhibitors with therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ziwei Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
12
|
Shamsi A, Furkan M, Khan MS, Yadav DK, Shahwan M. Computational Screening of Repurposed Drugs for HMG-CoA Synthase 2 in Alzheimer's Disease. J Alzheimers Dis 2024; 100:475-485. [PMID: 38875044 DOI: 10.3233/jad-240376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background HMGCS2 (mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2) plays a pivotal role as a control enzyme in ketogenesis, and its association with the amyloid-β protein precursor (AβPP) in mitochondria implicates a potential involvement in Alzheimer's disease (AD) pathophysiology. Objective Our study aimed at identifying repurposed drugs using the DrugBank database capable of inhibiting HMGCS2 activity. Methods Exploiting the power of drug repurposing in conjunction with virtual screening and molecular dynamic (MD) simulations against 'HMGCS2', we present new in-silico insight into structure-based drug repurposing. Results The initial molecules were screened for their binding affinity to HMGCS2. Subsequent interaction analyses and extensive 300 ns MD simulations were conducted to explore the conformational dynamics and stability of HMGCS2 in complex with the screened molecules, particularly Penfluridol and Lurasidone. Conclusions The study revealed that HMGCS2 forms stable protein-ligand complexes with Penfluridol and Lurasidone. Our findings indicate that Penfluridol and Lurasidone competitively bind to HMGCS2 and warrant their further exploration as potential repurposed molecules for anti-Alzheimer's drug development.
Collapse
Affiliation(s)
- Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Korea
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
13
|
Falbo F, Gemma S, Koch A, Mazzotta S, Carullo G, Ramunno A, Butini S, Schneider-Stock R, Campiani G, Aiello F. Synthetic derivatives of natural cinnamic acids as potential anti-colorectal cancer agents. Chem Biol Drug Des 2024; 103:e14415. [PMID: 38230797 DOI: 10.1111/cbdd.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 01/18/2024]
Abstract
Cinnamic acid and its derivatives represent attractive building blocks for the development of pharmacological tools. A series of piperoniloyl and cinnamoyl-based amides (6-9 a-f) have been synthesized and assayed against a wide panel of colorectal cancer (CRC) cells, with the aim of finding promising anticancer agents. Among all twenty-four synthesized molecules, 7a, 7e-f, 9c, and 9f displayed the best antiproliferative activity. The induced G1 cell cycle arrest and the increase in apoptotic cell death was seen in FACS analysis and western Blotting in the colon tumor cell lines HCT116, SW480, LoVo, and HT29, but not in the nontumor cell line HCEC. In particular, 9f overcame the resistance of HT29 cells, which have a mutant p53 and BRAF. Furthermore, 9f, amide of piperonilic acid with the 3,4-dichlorobenzyl substituent upregulated p21, which is involved in cell cycle arrest as well as in apoptosis induction. Cinnamic acid derivatives might be potential anticancer compounds, useful for the development of promising anti-CRC agents.
Collapse
Affiliation(s)
- Federica Falbo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende, Cosenza, Italy
| | - Sandra Gemma
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Adrian Koch
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah Mazzotta
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Gabriele Carullo
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Anna Ramunno
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Salerno, Italy
| | - Stefania Butini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Giuseppe Campiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende, Cosenza, Italy
| |
Collapse
|
14
|
Patel P, Shrivastava SK, Sharma P, Kurmi BD, Shirbhate E, Rajak H. Hydroxamic acid derivatives as selective HDAC3 inhibitors: computer-aided drug design strategies. J Biomol Struct Dyn 2024; 42:362-383. [PMID: 36995068 DOI: 10.1080/07391102.2023.2192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Histone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies. The ten pharmacophore hypotheses were established, and their reliability was validated by different ROC (receiving operator curve) analysis. Among them, the best model (Hypothesis 9 or RRRA) was employed for searching SCHEMBL, ZINC and MolPort database to screen out hit molecules as selective HDAC3 inhibitors, followed by different docking stages. MD simulation (50 ns) and MMGBSA study were performed to study the stability of ligand binding modes and with the help of trajectory analysis, to calculate the ligand-receptor complex RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation) and H-bond distance, etc. Finally, in-silico toxicity studies were performed on top screened molecules and compared with reference drug SAHA and established structure-activity relationship (SAR). The results indicated that compound 31, with high inhibitory potency and less toxicity (probability value 0.418), is suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Patel
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Piyoosh Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Ekta Shirbhate
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Harish Rajak
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
15
|
Antony A, Veerappapillai S, Karuppasamy R. In-silico bioprospecting of secondary metabolites from endophytic Streptomyces spp. against Magnaporthe oryzae, a cereal killer fungus. 3 Biotech 2024; 14:15. [PMID: 38125652 PMCID: PMC10728396 DOI: 10.1007/s13205-023-03859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Rice blast disease, caused by Magnaporthe oryzae, is the most devastating cereal killer worldwide. Note that melanin pigment is an essential factor of M. oryzae virulence, thus fungicides interfering with melanin biosynthesizing enzymes would reduce the pathogenicity. Scytalone dehydratase (SDH) is the key target for commercial fungicides, like carpropamid, due to its role in the dehydration reaction of the fungal melanin pathway. However, a single-point mutation (V75M) in SDH elicits resistance to carpropamid. A lack of effective fungicides against this resistant strain expedited the quest for novel bioactive inhibitors. Currently, bacterial endophytes like Streptomyces have been heralded for synthesizing bioactive metabolites to protect plants from phytopathogens. The literature search led to the identification of 21 Streptomyces spp. symbionts of paddy that can suppress M. oryzae growth. An antiSMASH server was used to explore Streptomyces spp. gene clusters and found 4463 putative metabolites. Besides, 745 unique metabolites were subjected to a series of virtual screening techniques. Ideally, this process identified five potential SDH inhibitors. The docking result highlights that the metabolite pseudopyronine A interacted hydrophobically with both Val75 of SDHWT and Met75 of SDHV75M targets. Moreover, pseudopyronine A has a higher binding free energy with SDHWT (- 89.94 kcal/mol) and SDHV75M (- 71.95 kcal/mol). Interestingly, the pyranones scaffold of pseudopyronine A was reported for antifungal activity against phytopathogens. Dynamic behavior confirms that pseudopyronine A has excellent conformational states with both SDHWT and SDHV75M. Altogether, we hope that this study creates a new avenue for the discovery of novel phytopathogen inhibitors from endophytes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03859-7.
Collapse
Affiliation(s)
- Ajitha Antony
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
16
|
Uba AI, Zengin G. In the quest for histone deacetylase inhibitors: current trends in the application of multilayered computational methods. Amino Acids 2023; 55:1709-1726. [PMID: 37367966 DOI: 10.1007/s00726-023-03297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
17
|
Thirunavukkarasu MK, Veerappapillai S, Karuppasamy R. Computational biophysics approach towards the discovery of multi-kinase blockers for the management of MAPK pathway dysregulation. Mol Divers 2023; 27:2093-2110. [PMID: 36260173 DOI: 10.1007/s11030-022-10545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2022]
Abstract
The MAPK pathway is important in human lung cancer and is improperly activated in a substantial proportion through number of ways. Strategies on dual-targeting RAF and MEK are an alternative option to diminish the limitations in this pathway inhibition. Hence, we implemented parallel pharmacophore screening of 11,808 DrugBank compounds against RAF and MEK. ADHRR and DHHRR were modeled as a pharmacophore hypothesis for RAF and MEK respectively. Importantly, these hypotheses resulted an AUC value of > 0.90 with the external data set. As a result of phase screening, glide docking, and prime-MM/GBSA scoring, it is determined that DB08424 and DB08907 have the best chances of acting as multi-kinase inhibitors. The pi-cation interaction with key amino acid residues of both target receptors may responsible for the stronger binding with these kinases. Cumulative 600 ns MD simulation studies validate the binding ability of these compounds. Significantly, the hit compounds resulted higher number of stable conformational state with less atomic movements than the reference compound against both targets. The anti-cancer efficacy of the lead compounds was validated through machine learning-based approaches. These findings suggest that DB08424 and DB08907 might be novel molecules to be explored further experimentally to block the MAPK signaling in lung cancer patients.
Collapse
Affiliation(s)
- Muthu Kumar Thirunavukkarasu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
18
|
Linani A, Serseg T, Benarous K, Bou-Salah L, Yousfi M, Alama MN, Ashraf GM. Cupressus sempervirens L. flavonoids as potent inhibitors to xanthine oxidase: in vitro, molecular docking, ADMET and PASS studies. J Biomol Struct Dyn 2023; 41:7055-7068. [PMID: 36001586 DOI: 10.1080/07391102.2022.2114943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Excessive intake of purine-rich foods such as seafood and red meat leads to excess xanthine oxidase activity and provokes gout attacks. The aim of this paper is to evaluate in vitro and in silico, the inhibition effect of Cupressus sempervirens plant extracts (flavonoids (Cae) and alkaloids (CaK)) and its six derivative compounds on bovine xanthine oxidase (BXO). The in silico study consists of molecular docking with GOLD v4.0 based on the best PLPchem score (PLP) and prediction of biological activity with the PASS server tool. The inhibitors used were lignan (cp1), Amentoflavone (cp2), Cupressuflavone (cp3), Isocryptomerin (cp4), Hinokiflavone (cp5), and Neolignan (cp6). The in vitro results showed that CaK gives an IC50 of 3.52 ± 0.04 μg/ml. Similarly, Cae saved an IC50 of 8.46 ± 1.98 μg/ml compared with the control (2.82 ± 0.10 μg/ml). The in silico results show that cp1 was the best inhibitor model (PLP of 88.09) with approved pharmacokinetics. These findings suggest that cp1 and cp2 may offer good alternatives for the treatment of hyperuricemia; cp3 was moderate, while the others (cp4 to cp6) were considered weak inhibitors according to their PLP.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abderahmane Linani
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
- Biology department, Amar Telidji University, Laghouat, Algeria
| | - Leila Bou-Salah
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Mohamed Yousfi
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Mohammed Nabil Alama
- Department of Cardiology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Yang Y, Chen S, Wang Q, Niu MM, Qu Y, Zhou Y. Identification of novel and potent dual-targeting HDAC1/SPOP inhibitors using structure-based virtual screening, molecular dynamics simulation and evaluation of in vitro and in vivo antitumor activity. Front Pharmacol 2023; 14:1208740. [PMID: 37492092 PMCID: PMC10363607 DOI: 10.3389/fphar.2023.1208740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Cancer is one of the important factors threatening human health. Hence, it is essential to create novel potent drugs to treat it. Due to the strong correlation among histone deacetylase1 (HDAC1), speckle-type POZ protein (SPOP) and cancers, dual inhibition of HDAC1 and SPOP may be a promising strategy for cancer treatment. In this study, we successfully identified four potential dual-targeting HDAC1/SPOP candidate compounds with structure-based virtual screening. In vitro inhibition experiments confirmed that the four compounds had dual inhibitory effects on HDAC1 and SPOP. Among them, compound HS-2 had a stronger inhibitory effect on HDAC1 and SPOP than the positive controls. Further molecular dynamics simulations indicated that HS-2 could stably bind to HDAC1 and SPOP. In addition, MTT assay indicated that HS-2 inhibited the growth of tumor cells in the micromolar range. In vivo evaluation showed that HS-2 could obviously inhibit the growth of tumor in nude mice without obvious toxicity. These findings suggest that HS-2 is a novel and potent dual-targeting HDAC1/SPOP inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Yingxue Yang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qinghua Wang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yuanqian Qu
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yang Zhou
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
20
|
Flori L, Brogi S, Sirous H, Calderone V. Disruption of Irisin Dimerization by FDA-Approved Drugs: A Computational Repurposing Approach for the Potential Treatment of Lipodystrophy Syndromes. Int J Mol Sci 2023; 24:ijms24087578. [PMID: 37108741 PMCID: PMC10145865 DOI: 10.3390/ijms24087578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, we present the development of a computer-based repurposing approach to identify FDA-approved drugs that are potentially able to interfere with irisin dimerization. It has been established that altered levels of irisin dimers are a pure hallmark of lipodystrophy (LD) syndromes. Accordingly, the identification of compounds capable of slowing down or precluding the irisin dimers' formation could represent a valuable therapeutic strategy in LD. Combining several computational techniques, we identified five FDA-approved drugs with satisfactory computational scores (iohexol, XP score = -7.70 kcal/mol, SP score = -5.5 kcal/mol, ΔGbind = -61.47 kcal/mol, ΔGbind (average) = -60.71 kcal/mol; paromomycin, XP score = -7.23 kcal/mol, SP score = -6.18 kcal/mol, ΔGbind = -50.14 kcal/mol, ΔGbind (average) = -49.13 kcal/mol; zoledronate, XP score = -6.33 kcal/mol, SP score = -5.53 kcal/mol, ΔGbind = -32.38 kcal/mol, ΔGbind (average) = -29.42 kcal/mol; setmelanotide, XP score = -6.10 kcal/mol, SP score = -7.24 kcal/mol, ΔGbind = -56.87 kcal/mol, ΔGbind (average) = -62.41 kcal/mol; and theophylline, XP score = -5.17 kcal/mol, SP score = -5.55 kcal/mol, ΔGbind = -33.25 kcal/mol, ΔGbind (average) = -35.29 kcal/mol) that are potentially able to disrupt the dimerization of irisin. For this reason, they deserve further investigation to characterize them as irisin disruptors. Remarkably, the identification of drugs targeting this process can offer novel therapeutic opportunities for the treatment of LD. Furthermore, the identified drugs could provide a starting point for a repositioning approach, synthesizing novel analogs with improved efficacy and selectivity against the irisin dimerization process.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
21
|
Patel S, Patel S, Tulsian K, Kumar P, Vyas VK, Ghate M. Design of 2-amino-6-methyl-pyrimidine benzoic acids as ATP competitive casein kinase-2 (CK2) inhibitors using structure- and fragment-based design, docking and molecular dynamic simulation studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:211-230. [PMID: 37051759 DOI: 10.1080/1062936x.2023.2196091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Overexpression of casein kinase-2 (CK2) has been implicated in several carcinomas, mainly lung, prostate and acute myeloid leukaemia. The smaller nucleotide pocket compared to related kinases provides a great opportunity to discover newer ATP-competitive CK2 inhibitors. In this study, we have employed an integrated structure- and fragment-based design strategy to design 2-amino-6-methyl-pyrimidine benzoic acids as ATP-competitive CK2 inhibitors. A statistically significant four features-based E-pharmacophore (ARRR) model was used to screen 780,092 molecules. Further, the retrieved hits were considered for molecular docking study to identify essential binding interactions. At the same time, fragment-based virtual screening was performed using a dataset of 1,542,397 fragments. The identified hits and fragments were used as structure templates to rationalize the design of 2-amino-6-methyl-pyrimidine benzoic acids as newer CK2 inhibitors. Finally, the binding interactions of the designed hits were identified using an induced fit docking (IFD) study, and their stability was estimated by a molecular dynamics (MD) simulation study of 100 ns.
Collapse
Affiliation(s)
- S Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - S Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - K Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - P Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - V K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - M Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, India
| |
Collapse
|
22
|
Yang Y, Hu Y, Yao F, Yang J, Ge L, Wang P, Xu X. Virtual screening and activity evaluation of human uric acid transporter 1 (hURAT1) inhibitors. RSC Adv 2023; 13:3474-3486. [PMID: 36756549 PMCID: PMC9871872 DOI: 10.1039/d2ra07193b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023] Open
Abstract
Hyperuricemia is a disease caused by disorder of purine metabolism, mainly due to insufficient renal excretion of uric acid. Urate transporter 1 (URAT1) is the most widely studied target of urate transporters, and used for uric acid (UA) reabsorption. This study used the AlphaFold2 algorithm to predict the structure of URAT1. Virtual screening and biological evaluation were used to discover novel URAT1 inhibitors that target the critical amino acids. Seven compounds were screened from the T2220 database and validated as URAT1 inhibitors by cell biology experiments. The IC50 values of benbromarone, NP023335, TN1148, and TN1008 were 6.878, 18.46, 24.64, and 53.04 μM, respectively. Molecular dynamics simulation was used to investigate the binding mechanism of URAT1 to NP023335, which forms stable contact with Ser35, Phe365, and Arg477. These interactions are essential for maintaining the biological activity of NP023335. The three compounds' pharmacokinetic characteristics were predicted, and NP023335's properties matched those of an empirical medication with the benefits of high solubility, low cardiotoxicity, good membrane permeability, and oral absorption. The natural product NP023335 will serve as a promising hit compound for facilitating the further design of novel URAT1 inhibitors.
Collapse
Affiliation(s)
- Yacong Yang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Pilot National Laboratory for Marine Science and Technology Qingdao, Center for Innovation Marine Drug Screening & Evaluation Qingdao 266071 China
- Marine Drug Screening and Evaluation Platform (QNLM), Ocean University of China Qingdao 266071 China
| | - Yu Hu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Pilot National Laboratory for Marine Science and Technology Qingdao, Center for Innovation Marine Drug Screening & Evaluation Qingdao 266071 China
- Marine Drug Screening and Evaluation Platform (QNLM), Ocean University of China Qingdao 266071 China
| | - Fengli Yao
- College of Food Science and Engineering, Ocean University of China Qingdao 266071 China
- Pilot National Laboratory for Marine Science and Technology Qingdao, Center for Innovation Marine Drug Screening & Evaluation Qingdao 266071 China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Pilot National Laboratory for Marine Science and Technology Qingdao, Center for Innovation Marine Drug Screening & Evaluation Qingdao 266071 China
- Marine Drug Screening and Evaluation Platform (QNLM), Ocean University of China Qingdao 266071 China
- School of Life Science, Lanzhou University Lanzhou 730000 China
| | - Leilei Ge
- Qingdao Vland Biotech Group Co., Ltd 266102 China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China Qingdao 266071 China
- Pilot National Laboratory for Marine Science and Technology Qingdao, Center for Innovation Marine Drug Screening & Evaluation Qingdao 266071 China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Pilot National Laboratory for Marine Science and Technology Qingdao, Center for Innovation Marine Drug Screening & Evaluation Qingdao 266071 China
- Marine Drug Screening and Evaluation Platform (QNLM), Ocean University of China Qingdao 266071 China
| |
Collapse
|
23
|
Kundu R, Banerjee S, Baidya SK, Adhikari N, Jha T. A quantitative structural analysis of AR-42 derivatives as HDAC1 inhibitors for the identification of promising structural contributors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:861-883. [PMID: 36412121 DOI: 10.1080/1062936x.2022.2145353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Alteration and abnormal epigenetic mechanisms can lead to the aberration of normal biological functions and the occurrence of several diseases. The histone deacetylase (HDAC) family of enzymes is one of the prime regulators of epigenetic functions modifying the histone proteins, and thus, regulating epigenetics directly. HDAC1 is one of those HDACs which have important contributions to cellular epigenetics. The abnormality of HDAC is correlated to the occurrence, progression, and poor prognosis in several disease conditions namely neurodegenerative disorders, cancer cell proliferation, metastasis, chemotherapy resistance, and survival in various cancers. Therefore, the progress of potent and effective HDAC1 inhibitors is one of the prime approaches to combat such diseases. In this study, both regression and classification-based molecular modelling studies were conducted on some AR-42 derivatives as HDAC1 inhibitors to elucidate the crucial structural aspects that are responsible for regulating their biological responses. This study revealed that the molecular polarizability, van der Waals volume, the presence of aromatic rings as well as the higher number of hydrogen bond acceptors might affect prominently their inhibitory activity and might be responsible for proper fitting and interactions at the HDAC1 active site to pertain effective inhibition.
Collapse
Affiliation(s)
- R Kundu
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
24
|
Cheshmazar N, Hemmati S, Hamzeh-Mivehroud M, Sokouti B, Zessin M, Schutkowski M, Sippl W, Nozad Charoudeh H, Dastmalchi S. Development of New Inhibitors of HDAC1-3 Enzymes Aided by In Silico Design Strategies. J Chem Inf Model 2022; 62:2387-2397. [PMID: 35467871 DOI: 10.1021/acs.jcim.1c01557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Histone deacetylases (HDACs) are overexpressed in cancer, and their inhibition shows promising results in cancer therapy. In particular, selective class I HDAC inhibitors such as entinostat are proposed to be more beneficial in breast cancer treatment. Computational drug design is an inevitable part of today's drug discovery projects because of its unequivocal role in saving time and cost. Using three HDAC inhibitors trichostatin, vorinostat, and entinostat as template structures and a diverse fragment library, all synthetically accessible compounds thereof (∼3200) were generated virtually and filtered based on similarity against the templates and PAINS removal. The 298 selected structures were docked into the active site of HDAC I and ranked using a calculated binding affinity. Top-ranking structures were inspected manually, and, considering the ease of synthesis and drug-likeness, two new structures (3a and 3b) were proposed for synthesis and biological evaluation. The synthesized compounds were purified to a degree of more than 95% and structurally verified using various methods. The designed compounds 3a and 3b showed 65-80 and 5% inhibition on HDAC 1, 2, and 3 isoforms at a concentration of 10 μM, respectively. The novel compound 3a may be used as a lead structure for designing new HDAC inhibitors.
Collapse
Affiliation(s)
- Narges Cheshmazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran
| | - Matthes Zessin
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Mike Schutkowski
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | | | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran.,Faculty of Pharmacy, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|