1
|
Yin Y, Ahmadianfar I, Karim FK, Elmannai H. Advanced forecasting of COVID-19 epidemic: Leveraging ensemble models, advanced optimization, and decomposition techniques. Comput Biol Med 2024; 175:108442. [PMID: 38678939 DOI: 10.1016/j.compbiomed.2024.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
In the global effort to address the outbreak of the new coronavirus pneumonia (COVID-19) pandemic, accurate forecasting of epidemic patterns has become crucial for implementing successful interventions aimed at preventing and controlling the spread of the disease. The correct prediction of the course of COVID-19 outbreaks is a complex and challenging task, mainly because of the significant volatility in the data series related to COVID-19. Previous studies have been limited by the exclusive use of individual forecasting techniques in epidemic modeling, disregarding the integration of diverse prediction procedures. The lack of attention to detail in this situation can yield worse-than-ideal results. Consequently, this study introduces a novel ensemble framework that integrates three machine learning methods (kernel ridge regression (KRidge), Deep random vector functional link (dRVFL), and ridge regression) within a linear relationship (L-KRidge-dRVFL-Ridge). The optimization of this framework is accomplished through a distinctive approach, specifically adaptive differential evolution and particle swarm optimization (A-DEPSO). Moreover, an effective decomposition method, known as time-varying filter empirical mode decomposition (TVF-EMD), is employed to decompose the input variables. A feature selection technique, specifically using the light gradient boosting machine (LGBM), is also implemented to extract the most influential input variables. The daily datasets of COVID-19 collected from two countries, namely Italy and Poland, were used as the experimental examples. Additionally, all models are implemented to forecast COVID-19 at two-time horizons: 10- and 14-day ahead (t+10 and t+14). According to the results, the proposed model can yield higher correlation coefficient (R) for both case studies: Italy (t+10 = 0.965, t+14 = 0.961) and Poland (t+10 = 0.952, t+14 = 0.940) than the other models. The experimental results demonstrate that the model suggested in this paper has outstanding results in various kinds of complex epidemic prediction situations. The proposed ensemble model demonstrates exceptional accuracy and resilience, outperforming all similar models in terms of efficacy.
Collapse
Affiliation(s)
- Yingyu Yin
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China.
| | - Iman Ahmadianfar
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Faten Khalid Karim
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.BOX 84428, Riyadh 11671, Saudi Arabia.
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.BOX 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
2
|
Arji G, Ahmadi H, Avazpoor P, Hemmat M. Identifying resilience strategies for disruption management in the healthcare supply chain during COVID-19 by digital innovations: A systematic literature review. INFORMATICS IN MEDICINE UNLOCKED 2023; 38:101199. [PMID: 36873583 PMCID: PMC9957975 DOI: 10.1016/j.imu.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
The worldwide spread of the COVID-19 disease has had a catastrophic effect on healthcare supply chains. The current manuscript systematically analyzes existing studies mitigating strategies for disruption management in the healthcare supply chain during COVID-19. Using a systematic approach, we recognized 35 related papers. Artificial intelligence (AI), block chain, big data analytics, and simulation are the most important technologies employed in supply chain management in healthcare. The findings reveal that the published research has concentrated mainly on generating resilience plans for the management of COVID-19 impacts. Furthermore, the vulnerability of healthcare supply chains and the necessity of establishing better resilience methods are emphasized in most of the research. However, the practical application of these emerging tools for managing disturbance and warranting resilience in the supply chain has been examined only rarely. This article provides directions for additional research, which can guide researchers to develop and conduct impressive studies related to the healthcare supply chain for different disasters.
Collapse
Affiliation(s)
- Goli Arji
- Health Information Management, School of Nursing and Midwifery, Saveh University of Medical Sciences, Iran
| | - Hossein Ahmadi
- Centre for Health Technology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Pejman Avazpoor
- Department of Agriculture Economics, Ferdowsi University of Mashhad, Iran
| | - Morteza Hemmat
- Health Information Management, School of Nursing and Midwifery, Saveh University of Medical Sciences, Iran
| |
Collapse
|
3
|
Zhou Y, Cheng J, Wu C, Teo KL. Multi-objective two-stage emergent blood transshipment-allocation in COVID-19 epidemic. COMPLEX INTELL SYST 2023; 9:1-19. [PMID: 36855682 PMCID: PMC9950024 DOI: 10.1007/s40747-023-00976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023]
Abstract
The problem of blood transshipment and allocation in the context of the COVID-19 epidemic has many new characteristics, such as two-stage, trans-regional, and multi-modal transportation. Considering these new characteristics, we propose a novel multi-objective optimization model for the two-stage emergent blood transshipment-allocation. The objectives considered are to optimize the quality of transshipped blood, the satisfaction of blood demand, and the overall cost including shortage penalty. An improved integer encoded hybrid multi-objective whale optimization algorithm (MOWOA) with greedy rules is then designed to solve the model. Numerical experiments demonstrate that our two-stage model is superior to one-stage optimization methods on all objectives. The degree of improvement ranges from 0.69 to 66.26%.
Collapse
Affiliation(s)
- Yufeng Zhou
- Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Jiahao Cheng
- School of Business Administration, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Changzhi Wu
- School of Management, Guangzhou University, Guangzhou, 510006 China
| | - Kok Lay Teo
- School of Mathematics, Sunway University, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Espinosa O, Bejarano V, Ramos J, Martínez B. Statistical actuarial estimation of the Capitation Payment Unit from copula functions and deep learning: historical comparability analysis for the Colombian health system, 2015-2021. HEALTH ECONOMICS REVIEW 2023; 13:15. [PMID: 36826699 PMCID: PMC9951521 DOI: 10.1186/s13561-022-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The Capitation Payment Unit (CPU) financing mechanism constitutes more than 70% of health spending in Colombia, with a budget allocation of close to 60 trillion Colombian pesos for the year 2022 (approximately 15.7 billion US dollars). This article estimates actuarially, using modern techniques, the CPU for the contributory regime of the General System of Social Security in Health in Colombia, and compares it with what is estimated by the Ministry of Health and Social Protection. Using freely available information systems, by means of statistical copulas functions and artificial neural networks, pure risk premiums are calculated between 2015 and 2021. The study concludes that the weights by risk category are systematically different, showing historical pure premiums surpluses in the group of 0-1 years and deficits (for the regions normal and cities) in the groups over 54 years of age.
Collapse
Affiliation(s)
- Oscar Espinosa
- Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Valeria Bejarano
- Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jeferson Ramos
- Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Boris Martínez
- Department of Mathematics, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| |
Collapse
|
5
|
Iparraguirre-Villanueva O, Alvarez-Risco A, Herrera Salazar JL, Beltozar-Clemente S, Zapata-Paulini J, Yáñez JA, Cabanillas-Carbonell M. The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model. Vaccines (Basel) 2023; 11:vaccines11020312. [PMID: 36851190 PMCID: PMC9966732 DOI: 10.3390/vaccines11020312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the positive, negative, and neutral feelings of people who publish their opinions on Twitter with the hashtag #Monkeypox. To find out what people think about this disease, a hybrid-based model architecture built on CNN and LSTM was used to determine the prediction accuracy. The prediction result obtained from the total monkeypox data was 83% accurate. Other performance metrics were also used to evaluate the model, such as specificity, recall level, and F1 score, representing 99%, 85%, and 88%, respectively. The results also showed the polarity of feelings through the CNN-LSTM confusion matrix, where 45.42% of people expressed neither positive nor negative opinions, while 19.45% expressed negative and fearful feelings about this infectious disease. The results of this work contribute to raising public awareness about the monkeypox virus.
Collapse
Affiliation(s)
| | - Aldo Alvarez-Risco
- Carrera de Negocios Internacionales Facultad de Ciencias Empresariales y Económicas, Universidad de Lima, Lima 15023, Peru
| | - Jose Luis Herrera Salazar
- Facultad de Ingeniería, Ciencias y Administración, Universidad Autónoma de Ica, Chincha Alta 11701, Peru
| | | | | | - Jaime A. Yáñez
- Vicerrectorado de Investigación, Universidad Norbert Wiener, Lima 15046, Peru
- Correspondence: (J.A.Y.); (M.C.-C.)
| | - Michael Cabanillas-Carbonell
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence: (J.A.Y.); (M.C.-C.)
| |
Collapse
|
6
|
Ayyıldız E, Taşkın A, Yıldız A, Özkan C. Artificial neural networks integrated mixed integer mathematical model for multi-fleet heterogeneous time-dependent cash in transit problem with time windows. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Shafiq A, Batur Çolak A, Naz Sindhu T, Ahmad Lone S, Alsubie A, Jarad F. Comparative study of artificial neural network versus parametric method in COVID-19 data analysis. RESULTS IN PHYSICS 2022; 38:105613. [PMID: 35600673 PMCID: PMC9110000 DOI: 10.1016/j.rinp.2022.105613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 05/25/2023]
Abstract
Since the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in the number of deaths. If the survival analysis of active individuals can be predicted, it will help to contain the epidemic significantly in any area. In medical diagnosis, prognosis and survival analysis, neural networks have been found to be as successful as general nonlinear models. In this study, a real application has been developed for estimating the COVID-19 mortality rates in Italy by using two different methods, artificial neural network modeling and maximum likelihood estimation. The predictions obtained from the multilayer artificial neural network model developed with 9 neurons in the hidden layer were compared with the numerical results. The maximum deviation calculated for the artificial neural network model was -0.14% and the R value was 0.99836. The study findings confirmed that the two different statistical models that were developed had high reliability.
Collapse
Affiliation(s)
- Anum Shafiq
- School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Andaç Batur Çolak
- Niğde Ömer Halisdemir University, Mechanical Engineering Department, Niğde, Turkey
| | - Tabassum Naz Sindhu
- Department of Statistics, Quaid-i-Azam University, 45320, Islamabad 44000, Pakistan
| | - Showkat Ahmad Lone
- Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, (Jeddah-M), Riyadh-11673, Saudi Arabia
| | - Abdelaziz Alsubie
- Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, (Jeddah-M), Riyadh-11673, Saudi Arabia
| | - Fahd Jarad
- Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
8
|
Study of Multidimensional and High-Precision Height Model of Youth Based on Multilayer Perceptron. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7843455. [PMID: 35761869 PMCID: PMC9233609 DOI: 10.1155/2022/7843455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Predicting the adult height of children accurately has great social value for the selection of outstanding athlete as well as early detection of children's growth disorders. Currently, the mainstream method used to predict adult height in China has three problems: its standards are not uniform; it is stale for current Chinese children; its accuracy is not satisfactory. This article uses the data collected by the Chinese Children and Adolescents' Physical Fitness and Growth Health Project in Zhejiang primary and secondary schools. We put forward a new multidimensional and high-precision youth growth curve prediction model, which is based on multilayer perceptron. First, this model uses multidimensional growth data of children as predictors and then utilizes multilayer perceptron to predict the children's adult height. Second, we find the Table of Height Standard Deviation of Chinese Children and fit the data of zero standard deviation to obtain the curve. This curve is regarded as Chinese children's mean growth curve. Third, we use the least-squares method and the mean curve to calculate the individual growth curve. Finally, the individual curve can be used to predict children's state height. Experimental results show that this adult height prediction model's accuracy (between 2 cm) of boys and girls reached 90.20% and 88.89% and the state height prediction accuracy reached 77.46% and 74.93%. Compared with Bayley–Pinneau, the adult height prediction is improved 19.61% for boys and 13.33% for girls. Compared with BoneXpert, the adult height prediction is improved 25.49% for boys and 6.67% for girls. Compared with the method based on the bone age growth map, the adult height prediction is improved 15.69% for boys and 24.45% for girls.
Collapse
|