1
|
Chuang CC, Liu YC, Ou YY. DeepEpiIL13: Deep Learning for Rapid and Accurate Prediction of IL-13-Inducing Epitopes Using Pretrained Language Models and Multiwindow Convolutional Neural Networks. ACS OMEGA 2025; 10:9675-9683. [PMID: 40092768 PMCID: PMC11904640 DOI: 10.1021/acsomega.4c10960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Accurate prediction of interleukin-13 (IL-13)-inducing epitopes is crucial for advancing targeted therapies against allergic inflammation, the cytokine storm associated with severe COVID-19, and related disorders. Current epitope prediction methods, however, often exhibit limitations in efficiency and accuracy. To address this, we introduce DeepEpilL13, a novel deep learning framework that uniquely synergizes pretrained language models with multiwindow convolutional neural networks (CNNs) for the rapid and accurate identification of IL-13-inducing epitopes from protein sequences. DeepEpilL13 leverages high-dimensional embeddings generated by the pretrained language model, which capture rich contextual information from protein sequences. These embeddings are then processed by a multiwindow CNN architecture, enabling the effective exploration of both local and global sequence patterns pertinent to IL-13 induction. The proposed DeepEpilL13 approach underwent rigorous evaluation using both benchmark data sets and an independent SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) data set. Results demonstrate that DeepEpilL13 achieves superior performance compared with traditional methods. On the benchmark data set, DeepEpilL13 attained a Matthews correlation coefficient (MCC) of 0.52 and an area under the receiver operating characteristic curve (AUC) of 0.86. Notably, when assessed on the independent SARS-CoV-2 data set, DeepEpilL13 exhibited remarkable robustness, achieving an MCC of 0.63 and an AUC of 0.92. These metrics underscore the enhanced predictive capability and robust applicability of DeepEpilL13, particularly within the context of the COVID-19 research and related viral infections. This study presents DeepEpilL13 as a powerful and efficient deep learning framework for accurate epitope prediction. By offering significant improvement in performance and robustness, DeepEpilL13 provides new and promising avenues for the development of epitope-based vaccines and immunotherapies specifically targeting IL-13-mediated disorders. The successful and rapid identification of IL-13-inducing epitopes using DeepEpilL13 paves the way for novel therapeutic interventions against a range of conditions, including allergic diseases, inflammatory conditions, and severe viral infections such as COVID-19, with potential for a significant impact on public health outcomes.
Collapse
Affiliation(s)
- Cheng-Che Chuang
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
| | - Yu-Chen Liu
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
| | - Yu-Yen Ou
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
- Graduate
Program in Biomedical Informatics, Yuan
Ze University, Chung-Li 32003, Taiwan
| |
Collapse
|
2
|
Marques PH, Rodrigues TCV, Santos EH, Bleicher L, Aburjaile FF, Martins FS, Oliveira CJF, Azevedo V, Tiwari S, Soares S. Design of a multi-epitope vaccine (vme-VAC/MST-1) against cholera and vibriosis based on reverse vaccinology and immunoinformatics approaches. J Biomol Struct Dyn 2025; 43:1788-1803. [PMID: 38112302 DOI: 10.1080/07391102.2023.2293256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Vibriosis and cholera are serious diseases distributed worldwide and caused by six marine bacteria of the Vibrio genus. Thousands of deaths occur each year due to these illnesses, necessitating the development of new preventive measures. Presently, the existing cholera vaccine demonstrates an effectiveness of approximately 60%. Here we describe a new multi-epitope vaccine, 'vme-VAC/MST-1' based on vaccine targets identified by reverse vaccinology and epitopes predicted by immunoinformatics, two currently effective tools for predicting new vaccines for bacterial pathogens. The vaccine was designed to combat vibriosis and cholera by incorporating epitopes predicted for CTL, HTL, and B cells. These epitopes were identified from six vaccine targets revealed through subtractive genomics, combined with reverse vaccinology, and were further filtered using immunoinformatics approaches based on their predicted immunogenicity. To construct the vaccine, 28 epitopes (24 CTL/B and 4 HTL/B) were linked to the sequence of the cholera toxin B subunit adjuvant. In silico analyses indicate that the resulting immunogen is stable, soluble, non-toxic, and non-allergenic. Furthermore, it exhibits no homology to the host and demonstrates a strong capacity to elicit innate, B-cell, and T-cell immune responses. Our analysis suggests that it is likely to elicit immune reactions mediated through the TLR5 pathway, as evidenced by the molecular docking of the vaccine with the receptor, which revealed high affinity and a favorable reaction. Thus, vme-VAC/MST-1 is predicted to be a safe and effective solution against pathogenic Vibrio spp. However, further experimental analyses are required to measure the vaccine's effects In vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Institute of Biological Sciences, Post-graduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thais Cristina Vilela Rodrigues
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo Horta Santos
- Institute of Biological Sciences, Post-graduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Bleicher
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flavia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlo Jose Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Siomar Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
3
|
Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse. Sci Rep 2024; 14:26859. [PMID: 39501025 PMCID: PMC11538504 DOI: 10.1038/s41598-024-77957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Interferon-gamma (IFN-γ) is a versatile pleiotropic cytokine essential for both innate and adaptive immune responses. It exhibits both pro-inflammatory and anti-inflammatory properties, making it a promising therapeutic candidate for treating various infectious diseases and cancers. We present IFNepitope2, a host-specific technique to annotate IFN-γ inducing peptides, it is an updated version of IFNepitope introduced by Dhanda et al. In this study, dataset used for developing prediction method contain experimentally validated 25,492 and 7983 IFN-γ inducing peptides in human and mouse host, respectively. In initial phase, machine learning techniques have been exploited to develop classification model using wide range of peptide features. Further, to improve machine learning based models or alignment free models, we explore potential of similarity-based technique BLAST. Finally, a hybrid model has been developed that combine best machine learning based model with BLAST. In most of the case, models based on extra tree perform better than other machine learning techniques. In case of peptide features, compositional feature particularly dipeptide composition performs better than one-hot encoding or binary profile. Our best machine learning based models achieved AUROC 0.89 and 0.83 for human and mouse host, respectively. The hybrid model achieved the AUROC 0.90 and 0.85 for human and mouse host, respectively. All models have been evaluated on an independent/validation dataset not used for training or testing these models. Newly developed method performs better than existing method on independent dataset. The major objective of this study is to predict, design and scan IFN-γ inducing peptides, thus server/software have been developed ( https://webs.iiitd.edu.in/raghava/ifnepitope2/ ). This method is also available as standalone at https://github.com/raghavagps/ifnepitope2 and python package index at https://pypi.org/project/ifnepitope2/ .
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India.
| |
Collapse
|
4
|
Douradinha B. Computational strategies in Klebsiella pneumoniae vaccine design: navigating the landscape of in silico insights. Biotechnol Adv 2024; 76:108437. [PMID: 39216613 DOI: 10.1016/j.biotechadv.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae poses a grave threat to global public health, necessitating urgent strategies for vaccine development. In this context, computational tools have emerged as indispensable assets, offering unprecedented insights into klebsiellal biology and facilitating the design of effective vaccines. Here, a review of the application of computational methods in the development of K. pneumoniae vaccines is presented, elucidating the transformative impact of in silico approaches. Through a systematic exploration of bioinformatics, structural biology, and immunoinformatics techniques, the complex landscape of K. pneumoniae pathogenesis and antigenicity was unravelled. Key insights into virulence factors, antigen discovery, and immune response mechanisms are discussed, highlighting the pivotal role of computational tools in accelerating vaccine development efforts. Advancements in epitope prediction, antigen selection, and vaccine design optimisation are examined, highlighting the potential of in silico approaches to update vaccine development pipelines. Furthermore, challenges and future directions in leveraging computational tools to combat K. pneumoniae are discussed, emphasizing the importance of multidisciplinary collaboration and data integration. This review provides a comprehensive overview of the current state of computational contributions to K. pneumoniae vaccine development, offering insights into innovative strategies for addressing this urgent global health challenge.
Collapse
|
5
|
Kurata H, Harun-Or-Roshid M, Tsukiyama S, Maeda K. PredIL13: Stacking a variety of machine and deep learning methods with ESM-2 language model for identifying IL13-inducing peptides. PLoS One 2024; 19:e0309078. [PMID: 39172871 PMCID: PMC11340954 DOI: 10.1371/journal.pone.0309078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Interleukin (IL)-13 has emerged as one of the recently identified cytokine. Since IL-13 causes the severity of COVID-19 and alters crucial biological processes, it is urgent to explore novel molecules or peptides capable of including IL-13. Computational prediction has received attention as a complementary method to in-vivo and in-vitro experimental identification of IL-13 inducing peptides, because experimental identification is time-consuming, laborious, and expensive. A few computational tools have been presented, including the IL13Pred and iIL13Pred. To increase prediction capability, we have developed PredIL13, a cutting-edge ensemble learning method with the latest ESM-2 protein language model. This method stacked the probability scores outputted by 168 single-feature machine/deep learning models, and then trained a logistic regression-based meta-classifier with the stacked probability score vectors. The key technology was to implement ESM-2 and to select the optimal single-feature models according to their absolute weight coefficient for logistic regression (AWCLR), an indicator of the importance of each single-feature model. Especially, the sequential deletion of single-feature models based on the iterative AWCLR ranking (SDIWC) method constructed the meta-classifier consisting of the top 16 single-feature models, named PredIL13, while considering the model's accuracy. The PredIL13 greatly outperformed the-state-of-the-art predictors, thus is an invaluable tool for accelerating the detection of IL13-inducing peptide within the human genome.
Collapse
Affiliation(s)
- Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu, Iizuka, Fukuoka, Japan
| | - Md. Harun-Or-Roshid
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu, Iizuka, Fukuoka, Japan
| | - Sho Tsukiyama
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu, Iizuka, Fukuoka, Japan
| | - Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu, Iizuka, Fukuoka, Japan
| |
Collapse
|
6
|
Singh L, Singh S, Singh DD. A Machine Learning Approach to Identify C Type Lectin Domain (CTLD) Containing Proteins. Protein J 2024; 43:718-725. [PMID: 39068630 DOI: 10.1007/s10930-024-10224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Lectins are sugar interacting proteins which bind specific glycans reversibly and have ubiquitous presence in all forms of life. They have diverse biological functions such as cell signaling, molecular recognition, etc. C-type lectins (CTL) are a group of proteins from the lectin family which have been studied extensively in animals and are reported to be involved in immune functions, carcinogenesis, cell signaling, etc. The carbohydrate recognition domain (CRD) in CTL has a highly variable protein sequence and proteins carrying this domain are also referred to as C-type lectin domain containing proteins (CTLD). Because of this low sequence homology, identification of CTLD from hypothetical proteins in the sequenced genomes using homology based programs has limitations. Machine learning (ML) tools use characteristic features to identify homologous sequences and it has been used to develop a tool for identification of CTLD. Initially 500 sequences of well annotated CTLD and 500 sequences of non CTLD were used in developing the machine learning model. The classifier program Linear SVC from sci kit library of python was used and characteristic features in CTLD sequences like dipeptide and tripeptide composition were used as training attributes in various classifiers. A precision, recall and multiple correlation coefficient (MCC) value of 0.92, 0.91 and 0.82 respectively were obtained when tested on external test set. On fine tuning of the parameters like kernel, C value, gamma, degree and increasing number of non CTLD sequences there was improvement in precision, recall and MCC and the corresponding values were 0.99, 0.99 and 0.96. New CTLD have also been identified in the hypothetical segment of human genome using the trained model. The tool is available on our local server for interested users.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Sukhwinder Singh
- University Institute of Engineering & Technology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Desh Deepak Singh
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Kumar N, Tripathi S, Sharma N, Patiyal S, Devi NL, Raghava GPS. A method for predicting linear and conformational B-cell epitopes in an antigen from its primary sequence. Comput Biol Med 2024; 170:108083. [PMID: 38295479 DOI: 10.1016/j.compbiomed.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
B-cell is an essential component of the immune system that plays a vital role in providing the immune response against any pathogenic infection by producing antibodies. Existing methods either predict linear or conformational B-cell epitopes in an antigen. In this study, a single method was developed for predicting both types (linear/conformational) of B-cell epitopes. The dataset used in this study contains 3875 B-cell epitopes and 3996 non-B-cell epitopes, where B-cell epitopes consist of both linear and conformational B-cell epitopes. Our primary analysis indicates that certain residues (like Asp, Glu, Lys, and Asn) are more prominent in B-cell epitopes. We developed machine-learning based methods using different types of sequence composition and achieved the highest AUROC of 0.80 using dipeptide composition. In addition, models were developed on selected features, but no further improvement was observed. Our similarity-based method implemented using BLAST shows a high probability of correct prediction with poor sensitivity. Finally, we developed a hybrid model that combines alignment-free (dipeptide based random forest model) and alignment-based (BLAST-based similarity) models. Our hybrid model attained a maximum AUROC of 0.83 with an MCC of 0.49 on the independent dataset. Our hybrid model performs better than existing methods on an independent dataset used in this study. All models were trained and tested on 80 % of the data using a cross-validation technique, and the final model was evaluated on 20 % of the data, called an independent or validation dataset. A webserver and standalone package named "CLBTope" has been developed for predicting, designing, and scanning B-cell epitopes in an antigen sequence available at (https://webs.iiitd.edu.in/raghava/clbtope/).
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sadhana Tripathi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
8
|
Arora A, Patiyal S, Sharma N, Devi NL, Kaur D, Raghava GPS. A random forest model for predicting exosomal proteins using evolutionary information and motifs. Proteomics 2024; 24:e2300231. [PMID: 37525341 DOI: 10.1002/pmic.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Non-invasive diagnostics and therapies are crucial to prevent patients from undergoing painful procedures. Exosomal proteins can serve as important biomarkers for such advancements. In this study, we attempted to build a model to predict exosomal proteins. All models are trained, tested, and evaluated on a non-redundant dataset comprising 2831 exosomal and 2831 non-exosomal proteins, where no two proteins have more than 40% similarity. Initially, the standard similarity-based method Basic Local Alignment Search Tool (BLAST) was used to predict exosomal proteins, which failed due to low-level similarity in the dataset. To overcome this challenge, machine learning (ML) based models were developed using compositional and evolutionary features of proteins achieving an area under the receiver operating characteristics (AUROC) of 0.73. Our analysis also indicated that exosomal proteins have a variety of sequence-based motifs which can be used to predict exosomal proteins. Hence, we developed a hybrid method combining motif-based and ML-based approaches for predicting exosomal proteins, achieving a maximum AUROC of 0.85 and MCC of 0.56 on an independent dataset. This hybrid model performs better than presently available methods when assessed on an independent dataset. A web server and a standalone software ExoProPred (https://webs.iiitd.edu.in/raghava/exopropred/) have been created to help scientists predict and discover exosomal proteins and find functional motifs present in them.
Collapse
Affiliation(s)
- Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dashleen Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
9
|
Hemmati S, Saeidikia Z, Seradj H, Mohagheghzadeh A. Immunomodulatory Peptides as Vaccine Adjuvants and Antimicrobial Agents. Pharmaceuticals (Basel) 2024; 17:201. [PMID: 38399416 PMCID: PMC10892805 DOI: 10.3390/ph17020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
The underdevelopment of adjuvant discovery and diversity, compared to core vaccine technology, is evident. On the other hand, antibiotic resistance is on the list of the top ten threats to global health. Immunomodulatory peptides that target a pathogen and modulate the immune system simultaneously are promising for the development of preventive and therapeutic molecules. Since investigating innate immunity in insects has led to prominent achievements in human immunology, such as toll-like receptor (TLR) discovery, we used the capacity of the immunomodulatory peptides of arthropods with concomitant antimicrobial or antitumor activity. An SVM-based machine learning classifier identified short immunomodulatory sequences encrypted in 643 antimicrobial peptides from 55 foe-to-friend arthropods. The critical features involved in efficacy and safety were calculated. Finally, 76 safe immunomodulators were identified. Then, molecular docking and simulation studies defined the target of the most optimal peptide ligands among all human cell-surface TLRs. SPalf2-453 from a crab is a cell-penetrating immunoadjuvant with antiviral properties. The peptide interacts with the TLR1/2 heterodimer. SBsib-711 from a blackfly is a TLR4/MD2 ligand used as a cancer vaccine immunoadjuvant. In addition, SBsib-711 binds CD47 and PD-L1 on tumor cells, which is applicable in cancer immunotherapy as a checkpoint inhibitor. MRh4-679 from a shrimp is a broad-spectrum or universal immunoadjuvant with a putative Th1/Th2-balanced response. We also implemented a pathway enrichment analysis to define fingerprints or immunological signatures for further in vitro and in vivo immunogenicity and reactogenicity measurements. Conclusively, combinatorial machine learning, molecular docking, and simulation studies, as well as systems biology, open a new opportunity for the discovery and development of multifunctional prophylactic and therapeutic lead peptides.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Zahra Saeidikia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Hassan Seradj
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| |
Collapse
|
10
|
Arora P, Periwal N, Goyal Y, Sood V, Kaur B. iIL13Pred: improved prediction of IL-13 inducing peptides using popular machine learning classifiers. BMC Bioinformatics 2023; 24:141. [PMID: 37041520 PMCID: PMC10088697 DOI: 10.1186/s12859-023-05248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Inflammatory mediators play havoc in several diseases including the novel Coronavirus disease 2019 (COVID-19) and generally correlate with the severity of the disease. Interleukin-13 (IL-13), is a pleiotropic cytokine that is known to be associated with airway inflammation in asthma and reactive airway diseases, in neoplastic and autoimmune diseases. Interestingly, the recent association of IL-13 with COVID-19 severity has sparked interest in this cytokine. Therefore characterization of new molecules which can regulate IL-13 induction might lead to novel therapeutics. RESULTS Here, we present an improved prediction of IL-13-inducing peptides. The positive and negative datasets were obtained from a recent study (IL13Pred) and the Pfeature algorithm was used to compute features for the peptides. As compared to the state-of-the-art which used the regularization based feature selection technique (linear support vector classifier with the L1 penalty), we used a multivariate feature selection technique (minimum redundancy maximum relevance) to obtain non-redundant and highly relevant features. In the proposed study (improved IL-13 prediction (iIL13Pred)), the use of the mRMR feature selection method is instrumental in choosing the most discriminatory features of IL-13-inducing peptides with improved performance. We investigated seven common machine learning classifiers including Decision Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random Forest, and extreme gradient boosting to efficiently classify IL-13-inducing peptides. We report improved AUC, and MCC scores of 0.83 and 0.33 on validation data as compared to the current method. CONCLUSIONS Extensive benchmarking experiments suggest that the proposed method (iIL13Pred) could provide improved performance metrics in terms of sensitivity, specificity, accuracy, the area under the curve - receiver operating characteristics (AUCROC) and Matthews correlation coefficient (MCC) than the existing state-of-the-art approach (IL13Pred) on the validation dataset and an external dataset comprising of experimentally validated IL-13-inducing peptides. Additionally, the experiments were performed with an increased number of experimentally validated training datasets to obtain a more robust model. A user-friendly web server ( www.soodlab.com/iil13pred ) is also designed to facilitate rapid screening of IL-13-inducing peptides.
Collapse
Affiliation(s)
- Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India.
| | - Neha Periwal
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Yash Goyal
- Department of Computer Science, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, Delhi, India.
| |
Collapse
|
11
|
Naorem LD, Sharma N, Raghava GPS. A web server for predicting and scanning of IL-5 inducing peptides using alignment-free and alignment-based method. Comput Biol Med 2023; 158:106864. [PMID: 37058758 DOI: 10.1016/j.compbiomed.2023.106864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Interleukin-5 (IL-5) can act as an enticing therapeutic target due to its pivotal role in several eosinophil-mediated diseases. The aim of this study is to develop a model for predicting IL-5 inducing antigenic regions in a protein with high precision. All models in this study have been trained, tested and validated on experimentally validated 1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from IEDB. Our primary analysis indicates that IL-5 inducing peptides are dominated by certain residues like Ile, Asn, and Tyr. It was also observed that binders of a wide range of HLA alleles can induce IL-5. Initially, alignment-based methods have been developed using similarity and motif search. These alignment-based methods provide high precision but poor coverage. In order to overcome this limitation, we explore alignment-free methods which are mainly machine learning-based models. Firstly, models have been developed using binary profiles and eXtreme Gradient Boosting-based model achieved a maximum AUC of 0.59. Secondly, composition-based models have been developed and our dipeptide-based random forest model achieved a maximum AUC of 0.74. Thirdly, random forest model developed using selected 250 dipeptides and achieved AUC 0.75 and MCC 0.29 on validation dataset; best among alignment-free models. In order to improve the performance, we developed an ensemble or hybrid method that combined alignment-based and alignment-free methods. Our hybrid method achieved AUC 0.94 with MCC 0.60 on a validation/independent dataset. The best hybrid model developed in this study has been incorporated into the user-friendly web server and a standalone package named 'IL5pred' (https://webs.iiitd.edu.in/raghava/il5pred/).
Collapse
Affiliation(s)
- Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
12
|
Pande A, Patiyal S, Lathwal A, Arora C, Kaur D, Dhall A, Mishra G, Kaur H, Sharma N, Jain S, Usmani SS, Agrawal P, Kumar R, Kumar V, Raghava GPS. Pfeature: A Tool for Computing Wide Range of Protein Features and Building Prediction Models. J Comput Biol 2023; 30:204-222. [PMID: 36251780 DOI: 10.1089/cmb.2022.0241] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the last three decades, a wide range of protein features have been discovered to annotate a protein. Numerous attempts have been made to integrate these features in a software package/platform so that the user may compute a wide range of features from a single source. To complement the existing methods, we developed a method, Pfeature, for computing a wide range of protein features. Pfeature allows to compute more than 200,000 features required for predicting the overall function of a protein, residue-level annotation of a protein, and function of chemically modified peptides. It has six major modules, namely, composition, binary profiles, evolutionary information, structural features, patterns, and model building. Composition module facilitates to compute most of the existing compositional features, plus novel features. The binary profile of amino acid sequences allows to compute the fraction of each type of residue as well as its position. The evolutionary information module allows to compute evolutionary information of a protein in the form of a position-specific scoring matrix profile generated using Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST); fit for annotation of a protein and its residues. A structural module was developed for computing of structural features/descriptors from a tertiary structure of a protein. These features are suitable to predict the therapeutic potential of a protein containing non-natural or chemically modified residues. The model-building module allows to implement various machine learning techniques for developing classification and regression models as well as feature selection. Pfeature also allows the generation of overlapping patterns and features from a protein. A user-friendly Pfeature is available as a web server python library and stand-alone package.
Collapse
Affiliation(s)
- Akshara Pande
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Anjali Lathwal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gaurav Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.,Department of Electrical Engineering, Shiv Nadar University, Greater Noida, India
| | - Harpreet Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Salman Sadullah Usmani
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Piyush Agrawal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rajesh Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Vinod Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
13
|
Kumar N, Patiyal S, Choudhury S, Tomer R, Dhall A, Raghava GPS. DMPPred: a tool for identification of antigenic regions responsible for inducing type 1 diabetes mellitus. Brief Bioinform 2023; 24:6911429. [PMID: 36524996 DOI: 10.1093/bib/bbac525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
There are a number of antigens that induce autoimmune response against β-cells, leading to type 1 diabetes mellitus (T1DM). Recently, several antigen-specific immunotherapies have been developed to treat T1DM. Thus, identification of T1DM associated peptides with antigenic regions or epitopes is important for peptide based-therapeutics (e.g. immunotherapeutic). In this study, for the first time, an attempt has been made to develop a method for predicting, designing, and scanning of T1DM associated peptides with high precision. We analysed 815 T1DM associated peptides and observed that these peptides are not associated with a specific class of HLA alleles. Thus, HLA binder prediction methods are not suitable for predicting T1DM associated peptides. First, we developed a similarity/alignment based method using Basic Local Alignment Search Tool and achieved a high probability of correct hits with poor coverage. Second, we developed an alignment-free method using machine learning techniques and got a maximum AUROC of 0.89 using dipeptide composition. Finally, we developed a hybrid method that combines the strength of both alignment free and alignment-based methods and achieves maximum area under the receiver operating characteristic of 0.95 with Matthew's correlation coefficient of 0.81 on an independent dataset. We developed a web server 'DMPPred' and stand-alone server for predicting, designing and scanning T1DM associated peptides (https://webs.iiitd.edu.in/raghava/dmppred/).
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Ritu Tomer
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
14
|
Gouda AM, Soltan MA, Abd-Elghany K, Sileem AE, Elnahas HM, Ateya MAM, Elbatreek MH, Darwish KM, Bogari HA, Lashkar MO, Aldurdunji MM, Elhady SS, Ahmad TA, Said AM. Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Front Mol Biosci 2023; 10:1123411. [PMID: 36911530 PMCID: PMC9999731 DOI: 10.3389/fmolb.2023.1123411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Klebsiella pneumoniae (K. pneumoniae) and Pseudomonas aeruginosa (P. aeruginosa) are the most common Gram-negative bacteria associated with pneumonia and coinfecting the same patient. Despite their high virulence, there is no effective vaccine against them. Methods: In the current study, the screening of several proteins from both pathogens highlighted FepA and OmpK35 for K. pneumonia in addition to HasR and OprF from P. aeruginosa as promising candidates for epitope mapping. Those four proteins were linked to form a multitope vaccine, that was formulated with a suitable adjuvant, and PADRE peptides to finalize the multitope vaccine construct. The final vaccine's physicochemical features, antigenicity, toxicity, allergenicity, and solubility were evaluated for use in humans. Results: The output of the computational analysis revealed that the designed multitope construct has passed these assessments with satisfactory scores where, as the last stage, we performed a molecular docking study between the potential vaccine construct and K. pneumonia associated immune receptors, TLR4 and TLR2, showing affinitive to both targets with preferentiality for the TLR4 receptor protein. Validation of the docking studies has proceeded through molecular dynamics simulation, which estimated a strong binding and supported the nomination of the designed vaccine as a putative solution for K. pneumoniae and P. aeruginosa coinfection. Here, we describe the approach for the design and assessment of our potential vaccine.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Khalid Abd-Elghany
- Department of Microbiology-Microbial Biotechnology, Egyptian Drug Authority, Giza, Egypt
| | - Ashraf E Sileem
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanan M Elnahas
- Department of Pharmaceutical and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Mahmoud H Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Hanin A Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar O Lashkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek A Ahmad
- Library Sector, Bibliotheca Alexandrina, Alexandria, Egypt
| | - Ahmed Mohamed Said
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Dhall A, Patiyal S, Sharma N, Usmani SS, Raghava GPS. A Web-Based Method for the Identification of IL6-Based Immunotoxicity in Vaccine Candidates. Methods Mol Biol 2023; 2673:317-327. [PMID: 37258924 DOI: 10.1007/978-1-0716-3239-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interleukin 6 (IL6) is a major pro-inflammatory cytokine that plays a pivotal role in both innate and adaptive immune responses. In the past, a number of studies reported that high level of IL6 promotes the proliferation of cancer, autoimmune disorders, and cytokine storm in COVID-19 patients. Thus, it is extremely important to identify and remove the antigenic regions from a therapeutic protein or vaccine candidate that may induce IL6-associated immunotoxicity. In order to overcome this challenge, our group has developed a computational tool, IL6pred, for discovering IL6-inducing peptides in a vaccine candidate. The aim of this chapter is to describe the potential applications and methodology of IL6pred. It sheds light on the prediction, designing, and scanning modules of IL6pred webserver and standalone package ( https://webs.iiitd.edu.in/raghava/il6pred/ ).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Salman Sadullah Usmani
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
16
|
Jain S, Dhall A, Patiyal S, Raghava GPS. In Silico Tool for Identification, Designing, and Searching of IL13-Inducing Peptides in Antigens. Methods Mol Biol 2023; 2673:329-338. [PMID: 37258925 DOI: 10.1007/978-1-0716-3239-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interleukins are a distinctive class of molecules exhibiting various immune signaling functions. Immunoregulatory cytokine, Interleukin 13 (IL13), is primarily synthesized by activated T-helper 2 cells, mast cells, and basophils. IL13, is known to stimulate many allergic and autoimmune diseases, such as asthma, rheumatoid arthritis, systemic sclerosis, ulcerative colitis, airway hyperresponsiveness, glycoprotein hypersecretion, and goblet cell hyperplasia. In addition to such disorders, IL13 also leads to carcinogenesis by inhibiting tumor immunosurveillance. Due to its role in various diseases, predicting IL13-inducing peptides or regions in a protein is vital to designing safe protein vaccines and therapeutics. IL13pred is an in silico tool which aids in identifying, predicting, and designing IL13-inducing peptides. The IL13pred web server and standalone package is easily accessible at ( https://webs.iiitd.edu.in/raghava/il13pred/ ).
Collapse
Affiliation(s)
- Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|