1
|
Darban MA, Lock SSM, Ilyas SU, Kang DY, Othman MHD, Yiin CL, Waqas S, Bashir Z. Molecular simulation of [P8883][Tf 2N] ionic liquid decorated silica in 6FDA-ODA based mixed matrix membrane for enhanced CO 2/CH 4 separation. RSC Adv 2024; 14:22894-22915. [PMID: 39040689 PMCID: PMC11261340 DOI: 10.1039/d4ra02851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 07/24/2024] Open
Abstract
Mixed-matrix membranes (MMMs) have been reported to have considerable scope in gas separation applications because of their merged inherent strength of a durable polymer matrix and the exceptional performance capabilities of inorganic fillers. The selection of comparatively suitable polymers with fillers that can match each other and boost interfacial compatibility while ensuring uniform dispersion of filler within the polymer is still intensively demanding and is challenging at the experimental scale. Ionic liquids (ILs) are effective in promoting better dispersion and compatibility, leading to improved separation performance. A computational molecular simulation approach is employed in current work to design a hybrid membrane having Trioctapropyl phosphonium bis(trifluoromethylsulfonyl)imide [P8883][Tf2N] IL decorated silica as a filler and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-4,4'-oxydianiline (6FDA-ODA) polymer for carbon dioxide (CO2) separation from methane (CH4). Thermophysical and gas transport properties under pure and mixed gas condition (30, 50, and 70% CO2/CH4) within the MMMs with varying filler loadings (5, 10, and 15 wt% IL-silica) are examined via Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) simulations. Membrane characteristics like glass transition temperature (T g), Fractional Free Volume (v f), X-Ray Diffraction (XRD), solubility, diffusivity, permeability, and selectivity for neat and IL-silica filled 6FDA-ODA are computed. The results show that the T g of the composite membrane with 5 wt% IL-silica is found to be considerably higher (with 305 °C) than that of the pure 6FDA-ODA polymer having 298 °C. A higher T g value highlights the effective dispersion and higher adhesion between the filler and polymer membrane. Additionally, CO2 permeability for 5 wt% IL-silica/6FDA-ODA MMM is significantly improved, measuring 319.0 barrer while maintaining a CO2/CH4 selectivity of 16.2. These values are 89% and 56% respectively, greater than the corresponding values of neat 6FDA-ODA membrane. Published data from the literature review is used to validate the findings and guarantee their reliability. The obtained results exhibited an error in the range of 0.7-9%. Hence, it is concluded from the study that molecular simulation can be used to design IL decorated silica incorporated within 6FDA-ODA matrix, which is able to boost the interfacial compatibility, with elevated CO2/CH4 selectivity and CO2 permeability.
Collapse
Affiliation(s)
- Mehtab Ali Darban
- Centre of Carbon Capture, Utilisation and Storage (CCCUS), Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| | - Serene Sow Mun Lock
- Centre of Carbon Capture, Utilisation and Storage (CCCUS), Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| | - Suhaib Umer Ilyas
- Chemical Engineering Department, University of Jeddah Jeddah 23890 Kingdom of Saudi Arabia
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM) 81310, Skudai Johor Bahru Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak Malaysia
- Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak Malaysia
| | - Sharjeel Waqas
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| | - Zunara Bashir
- Centre of Carbon Capture, Utilisation and Storage (CCCUS), Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| |
Collapse
|
2
|
Zhang C, Hu K, Liu X, Qu Y, Luo L, Sun X, Zhuang Z, Li H. Unraveling the Influence of Nafion Content on the Performance of Proton-Exchange Membrane Fuel Cells from the Perspective of Triple-Phase Boundary. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39014533 DOI: 10.1021/acs.langmuir.4c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
By combining molecular simulations and experimental measurements, the effect of the Nafion content on the performance of proton-exchange membrane fuel cells (PEMFCs) is explained from the perspective of the triple-phase boundary (TPB). The evaporation process of Nafion solvent is simulated on a triple-phase model to mimic the formation of the TPB, and the influence of the Nafion content on the TPB structure is investigated. When the Nafion content is 1.415 mg/m2, the coverages of Nafion on both Pt particles and the carbon carrier are saturated at 42.1% and 32.7%, respectively. With the increase of Nafion content, the amount of water molecules around Pt particles is increased, and the surrounding O2 content is decreased. The experimental PEMFC performance has confirmed such simulation results, which demonstrates a trend of enhancing first and then weakening with the increase of Nafion content and reaches a maximum with the Nafion content of 2.96 mg/m2. Therefore, the correlation between the structure of the TPB and the cell's efficiency has been established at a molecular level, enabling enhancements in the design of the TPB morphology and an increase in PEMFC efficiency.
Collapse
Affiliation(s)
- Chanyu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kadi Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yixin Qu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
3
|
Salahshoori I, Vaziri A, Jahanmardi R, Mohseni MM, Khonakdar HA. Molecular Simulation Studies of Pharmaceutical Pollutant Removal (Rosuvastatin and Simvastatin) Using Novel Modified-MOF Nanostructures (UIO-66, UIO-66/Chitosan, and UIO-66/Oxidized Chitosan). ACS APPLIED MATERIALS & INTERFACES 2024; 16:26685-26712. [PMID: 38722359 DOI: 10.1021/acsami.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Ali Vaziri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Reza Jahanmardi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Mehdi Moayed Mohseni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran 14977-13115, Iran
| |
Collapse
|
4
|
Soleimani R, Saeedi Dehaghani AH. A theoretical probe into the separation of CO 2/CH 4/N 2 mixtures with polysulfone/polydimethylsiloxane-nano zinc oxide MMM. Sci Rep 2023; 13:9543. [PMID: 37308483 DOI: 10.1038/s41598-023-36051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
In the current investigation, molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation as remarkable and competent approaches have been employed for understanding structural and transport properties of MMMs in the realm of gas separation. The two commonly used polymers i.e. polysulfone (Psf) and polydimethylsiloxane (PDMS) as well as zinc oxide (ZnO) nanoparticle (NP) were used to carefully examine the transport properties of three light gasses (CO2, N2 and CH4) through simple Psf, Psf/PDMS composite loaded by different amounts of ZnO NP. Also, the fractional free volume (FFV), X-ray diffraction (XRD), glass transition temperature (Tg), and Equilibrium density were calculated to scrutinize the structural characterizations of the membranes. Moreover, the effect of feed pressure (4-16 bar) on gas separation performance of simulated MMMs was investigated. Results obtained in different experiments showed a clear improvement in the performance of simulated membranes by adding PDMS to PSf matrix. The selectivity of studied MMMs was in the range from 50.91 to 63.05 at pressures varying from 4 to 16 bar for the CO2/N2 gas pair, whereas the corresponding value for CO2/CH4 system was found to be in the range 27.27-46.24. For 6 wt% ZnO in 80%PSf + 20%PDMS membrane, high permeabilities of 78.02, 2.86 and 1.33 barrers were observed for CO2, CH4 and N2 gases, respectively. The 90%PSf + 10%PDMS membrane with 2% ZnO had a highest CO2/N2 selectivity value of 63.05 and its CO2 permeability at 8 bar was 57 barrer.
Collapse
Affiliation(s)
- Reza Soleimani
- Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Amir Hossein Saeedi Dehaghani
- Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| |
Collapse
|
5
|
Unraveling the influence of the topological structure and protonation of zeolites on the adsorption of nitrogen-containing waste gas. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Asif K, Lock SSM, Taqvi SAA, Jusoh N, Yiin CL, Chin BLF. A molecular simulation study on amine-functionalized silica/polysulfone mixed matrix membrane for mixed gas separation. CHEMOSPHERE 2023; 311:136936. [PMID: 36273613 DOI: 10.1016/j.chemosphere.2022.136936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Polysulfone (PSF) based mixed matrix membranes (MMMs) are one of the most broadly studied polymeric materials used for CO2/CH4 separation. The performance of existing PSF membranes encounters a bottleneck for widespread expansion in industrial applications due to the trade-off amongst permeability and selectivity. Membrane performance has been postulated to be enhanced via functionalization of filler at different weight percentages. Nonetheless, the preparation of functionalized MMMs without defects and its empirical study that exhibits improved CO2/CH4 separation performance is challenging at an experimental scale that needs prior knowledge of the compatibility between the filler and polymer. Molecular simulation approaches can be used to explore the effect of functionalization on MMM's gas transport properties at an atomic level without the challenges in the experimental study, however, they have received less scrutiny to date. In addition, most of the research has focused on pure gas studies while mixed gas transport properties that reflect real separation in functionalized silica/PSF MMMs are scarcely available. In this work, a molecular simulation computational framework has been developed to investigate the structural, physical properties and gas transport behavior of amine-functionalized silica/PSF-based MMMs. The effect of varying weight percentages (i.e., 15-30 wt.%) of amine-functionalized silica and gas concentrations (i.e., 30% CH4/CO2, 50% CH4/CO2, and 70% CH4/CO2) on physical and gas transport characteristics in amine-functionalized silica/PSF MMMs at 308.15 K and 1 atm has been investigated. Functionalization of silica nanoparticles was found to increase the diffusion and solubility coefficients, leading to an increase in the percentage enhancement of permeability and selectivity for amine-functionalized silica/PSF MMM by 566% and 56%, respectively, compared to silica/PSF-based MMMs at optimal weight percentage of 20 wt.%. The model's permeability differed by 7.1% under mixed gas conditions. The findings of this study could help to improve real CO2/CH4 separation in the future design and concept of functionalized MMMs using molecular simulation and empirical modeling strategies.
Collapse
Affiliation(s)
- Khadija Asif
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Syed Ali Ammar Taqvi
- Department of Chemical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Norwahyu Jusoh
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia
| |
Collapse
|
7
|
Li H, Zhang X, Chu H, Qi G, Ding H, Gao X, Meng J. Molecular Simulation on Permeation Behavior of CH4/CO2/H2S Mixture Gas in PVDF at Service Conditions. Polymers (Basel) 2022; 14:polym14030545. [PMID: 35160533 PMCID: PMC8839053 DOI: 10.3390/polym14030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Reinforced thermoplastic composite pipes (RTPs) have been widely used for oil and gas gathering and transportation. Polyvinylidene fluoride (PVDF) has the greatest potential as a thermoplastic liner of RTPs due to its excellent thermal and mechanical properties. However, permeation of gases is inevitable in the thermoplastic liner, which may lead to blister failure of the liner and damage the safe operation of the RTPs. In order to clarify the permeation behavior and obtain the permeation mechanism of the mixture gas (CH4/CO2/H2S) in PVDF at the normal service conditions, molecular simulations were carried out by combining the Grand Canonical Monte Carlo (GCMC) method and the Molecular Dynamics (MD) method. The simulated results showed that the solubility coefficients of gases increased with the decrease in temperature and the increase in pressure. The adsorption isotherms of all gases were consistent with the Langmuir model. The order of the adsorption concentration for different gases was H2S > CO2> CH4. The isosteric heats of gases at all the actual service conditions were much less than 42 kJ/mol, which indicated that the adsorption for all the gases belonged to the physical adsorption. Both of the diffusion and permeation coefficients increased with the increase in temperature and pressure. The diffusion belonged to Einstein diffusion and the diffusion coefficients of each gas followed the order of CH4 > CO2 > H2S. During the permeation process, the adsorption of gas molecules in PVDF exhibited selective aggregation, and most of them were adsorbed in the low potential energy region of PVDF cell. The mixed-gas molecules vibrated within the hole of PVDF at relatively low temperature and pressure. As the temperature and pressure increase, the gas molecules jumped into the neighboring holes occasionally and then dwelled in the holes, moving around their equilibrium positions.
Collapse
Affiliation(s)
- Houbu Li
- State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China; (H.L.); (G.Q.); (H.D.)
| | - Xuemin Zhang
- School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China;
- Correspondence:
| | - Huifang Chu
- School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China;
| | - Guoquan Qi
- State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China; (H.L.); (G.Q.); (H.D.)
| | - Han Ding
- State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China; (H.L.); (G.Q.); (H.D.)
| | - Xiong Gao
- Shaanxi Yanchang Petroleum Northwest Rubber LLC, Xianyang 712023, China;
| | - Jixing Meng
- Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China;
| |
Collapse
|
8
|
Maghami S, Sadeghi M, Baghersad S, Zornoza B. Influence of solvent, Lewis acid–base complex, and nanoparticles on the morphology and gas separation properties of polysulfone membranes. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saeid Maghami
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Morteza Sadeghi
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Samaneh Baghersad
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Beatriz Zornoza
- Department of Energy and Environment Instituto de Carboquímica‐ICB‐CSIC Zaragoza Spain
| |
Collapse
|
9
|
Asif K, Lock SSM, Taqvi SAA, Jusoh N, Yiin CL, Chin BLF, Loy ACM. A Molecular Simulation Study of Silica/Polysulfone Mixed Matrix Membrane for Mixed Gas Separation. Polymers (Basel) 2021; 13:polym13132199. [PMID: 34279343 PMCID: PMC8271399 DOI: 10.3390/polym13132199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Polysulfone-based mixed matrix membranes (MMMs) incorporated with silica nanoparticles are a new generation material under ongoing research and development for gas separation. However, the attributes of a better-performing MMM cannot be precisely studied under experimental conditions. Thus, it requires an atomistic scale study to elucidate the separation performance of silica/polysulfone MMMs. As most of the research work and empirical models for gas transport properties have been limited to pure gas, a computational framework for molecular simulation is required to study the mixed gas transport properties in silica/polysulfone MMMs to reflect real membrane separation. In this work, Monte Carlo (MC) and molecular dynamics (MD) simulations were employed to study the solubility and diffusivity of CO2/CH4 with varying gas concentrations (i.e., 30% CO2/CH4, 50% CO2/CH4, and 70% CO2/CH4) and silica content (i.e., 15–30 wt.%). The accuracy of the simulated structures was validated with published literature, followed by the study of the gas transport properties at 308.15 K and 1 atm. Simulation results concluded an increase in the free volume with an increasing weight percentage of silica. It was also found that pure gas consistently exhibited higher gas transport properties when compared to mixed gas conditions. The results also showed a competitive gas transport performance for mixed gases, which is more apparent when CO2 increases. In this context, an increment in the permeation was observed for mixed gas with increasing gas concentrations (i.e., 70% CO2/CH4 > 50% CO2/CH4 > 30% CO2/CH4). The diffusivity, solubility, and permeability of the mixed gases were consistently increasing until 25 wt.%, followed by a decrease for 30 wt.% of silica. An empirical model based on a parallel resistance approach was developed by incorporating mathematical formulations for solubility and permeability. The model results were compared with simulation results to quantify the effect of mixed gas transport, which showed an 18% and 15% percentage error for the permeability and solubility, respectively, in comparison to the simulation data. This study provides a basis for future understanding of MMMs using molecular simulations and modeling techniques for mixed gas conditions that demonstrate real membrane separation.
Collapse
Affiliation(s)
- Khadija Asif
- CO2 Research Center (CO2 RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (K.A.); (N.J.)
| | - Serene Sow Mun Lock
- CO2 Research Center (CO2 RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (K.A.); (N.J.)
- Correspondence:
| | - Syed Ali Ammar Taqvi
- Department of Chemical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan;
- Neurocomputation Lab, National Centre of Artificial Intelligence, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Norwahyu Jusoh
- CO2 Research Center (CO2 RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (K.A.); (N.J.)
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Malaysia;
| | - Bridgid Lai Fui Chin
- Department of Chemical Engineering, Faculty of Engineering and Science, Sarawak Campus, Curtin University Malaysia, Miri 98009, Malaysia;
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
10
|
Balchandani S, Singh R. COSMO-RS Analysis of CO 2 Solubility in N-Methyldiethanolamine, Sulfolane, and 1-Butyl-3-methyl-imidazolium Acetate Activated by 2-Methylpiperazine for Postcombustion Carbon Capture. ACS OMEGA 2021; 6:747-761. [PMID: 33458527 PMCID: PMC7807770 DOI: 10.1021/acsomega.0c05298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 05/12/2023]
Abstract
Novel aqueous (aq) blends of N-methyldiethanolamine (MDEA), sulfolane (TMSO2), and 1-butyl-3-methyl-imidazolium acetate ([bmim][Ac]) with amine activator 2-methylpiperazine (2-MPZ) are analyzed through conductor-like screening model for real solvents (COSMO-RS) for possible application in the chemisorption of CO2. The molecules associated are analyzed for their ground-state energy, σ potential, and σ surface. Thermodynamic and physicochemical properties have been assessed and paralleled with the experimental data. Vapor pressure of the blended systems and pure component density and viscosity have been compared successfully with the experimental data. Important binary interaction parameters for the aqueous blends over a wide temperature, pressure, and concentration range have been estimated for NRTL, WILSON, and UNIQUAC 4 models. The COSMO-RS theory is further applied in calculating the expected CO2 solubility over a pressure range of 1.0-3.0 bar and temperature range of 303.15-323.15 K. Henry's constant and free energy of solvation to realize the physical absorption through intermolecular interaction offered by the proposed solvents. Perceptive molecular learning from the behavior of chemical constituents involved indicated that the best suitable solvent is aq (MDEA + 2-MPZ).
Collapse
Affiliation(s)
- Sweta Balchandani
- Department of Chemical
Engineering, Indian Institute of Technology
Guwahati, Guwahati 781039, India
- CO2 Research
Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar 382007, India
| | - Ramesh Singh
- Department of Chemical Engineering, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, United States
- . Tel: +1-814-269-7269
| |
Collapse
|
11
|
Lock SSM, Lau KK, Jusoh N, Shariff AM, Gan CH, Yiin CL. An atomistic simulation towards molecular design of silica polymorphs nanoparticles in polysulfone based mixed matrix membranes for
CO
2
/
CH
4
gas separation. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serene Sow Mun Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
| | - Kok Keong Lau
- CO2 Research Center (CO2RES), Department of Chemical Engineering Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
| | - Norwahyu Jusoh
- CO2 Research Center (CO2RES), Department of Chemical Engineering Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
| | - Azmi Mohd Shariff
- CO2 Research Center (CO2RES), Department of Chemical Engineering Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia
| | - Chin Heng Gan
- Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras Kajang Selangor Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering Universiti Malaysia Sarawak (UNIMAS) Kota Samarahan Sarawak Malaysia
| |
Collapse
|
12
|
Lock SSM, Lau KK, Jusoh N, Shariff AM, Yeong YF, Yiin CL, Ammar Taqvi SA. Physical property and gas transport studies of ultrathin polysulfone membrane from 298.15 to 328.15 K and 2 to 50 bar: atomistic molecular simulation and empirical modelling. RSC Adv 2020; 10:32370-32392. [PMID: 35516493 PMCID: PMC9056602 DOI: 10.1039/d0ra05836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 01/19/2023] Open
Abstract
Elucidation of ultrathin polymeric membrane at the laboratory scale is complicated at different operating conditions due to limitation of instruments to obtain in situ measurement data of membrane physical properties. This is essential since their effects are reversible. In addition, tedious experimental work is required to collect gas transport data at varying operating conditions. Recently, we have proposed a validated Soft Confining Methodology for Ultrathin Films that can be used to simulate ultrathin polysulfone (PSF) membranes upon confinement limited to 308.15 K and 2 bars. In industry application, these ultrathin membranes are operated within 298.15–328.15 K and up to 50 bars. Therefore, our proposed methodology using computational chemistry has been adapted to circumvent limitation in experimental study by simulating ultrathin PSF membranes upon confinement at different operating temperatures (298.15 to 328.15 K) and pressures (2 to 50 bar). The effect of operating parameters towards non-bonded and potential energy, free volume, specific volume and gas transport data (e.g. solubility and diffusivity) for oxygen and nitrogen of the ultrathin films has been simulated and collected using molecular simulation. Our previous empirical equations that have been confined to thickness dependent gas transport properties have been modified to accommodate the effect of operating parameters. The empirical equations are able to provide a good quantitative characterization with R2 ≥ 0.99 consistently, and are able to be interpolated to predict gas transport properties within the range of operating conditions. The modified empirical model can be utilized in process optimization studies to determine optimal membrane design for typical membrane specifications and operating parameters used in industrial applications. Pioneering work to elucidate and model the effect of operating conditions on physical and transport properties of ultrathin membranes.![]()
Collapse
Affiliation(s)
- S S M Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - K K Lau
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - Norwahyu Jusoh
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - A M Shariff
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - Y F Yeong
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak Malaysia
| | - Syed Ali Ammar Taqvi
- Department of Chemical Engineering, NED University of Engineering and Technology Karachi 75270 Pakistan
| |
Collapse
|
13
|
Effect of Nafion and APTEOS functionalization on mixed gas separation of PEBA-FAU membranes: Experimental study and MD and GCMC simulations. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Wang D, Song S, Zhang W, He Z, Wang Y, Zheng Y, Yao D, Pan Y, Yang Z, Meng Z, Li Y. CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116708] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Pazirofteh M, Abdolmajidi M, Samipoorgiri M, Dehghani M, Mohammadi AH. Separation and transport specification of a novel PEBA-1074/PEG-400/TiO2 nanocomposite membrane for light gas separation: Molecular simulation study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Cai F, You G, Zhao X, Hu H, Wu S. The Relationship between Specific Structure and Gas Permeability of Bromobutyl Rubber: A Combination of Experiments and Molecular Simulations. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Cai
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guohua You
- College of Information Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
| | - Xiuying Zhao
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Haihua Hu
- Petrochemical Research Institute PetroChina, Gan Su Lanzhou 730060 P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
17
|
Liu CW, Kuo BC, Liu MH, Huang YR, Chen CL. Computer simulation for the study of the liquid chromatographic separation of explosive molecules. J Mol Graph Model 2018; 85:331-339. [PMID: 30292170 DOI: 10.1016/j.jmgm.2018.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
The application of high performance liquid chromatography (HPLC) to separate explosive chemicals was investigated by molecular dynamics (MD) simulations. The explosive ingredients including NG, RDX, HMX and TNT were assigned as solutes, while methanol (CH3OH) and acetonitrile (CH3CN) were assigned as solvents in the solution system. The polymeric-molecular siloxanes (SiC8) and poly-1,2-methylenedioxy-4-propenyl benzene (PISAF) compounds were treated as stationary phase in the simulation. The simulation results showed that the different species of explosive ingredients were separated successfully in the solutions by each of the constructed stationary phase of SiC8 and PISAF after a total simulation time of 12.0 ps approximately, which were consistent with the experimental analysis of HPLC spectra. The origin for the separation was found due to the electrostatic interactions between polymer and explosives.
Collapse
Affiliation(s)
- Chuan-Wen Liu
- Department of Chemical and Materials Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, 335, Taiwan, ROC
| | - Bing-Cheng Kuo
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan, ROC
| | - Min-Hsien Liu
- Department of Chemical and Materials Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, 335, Taiwan, ROC
| | - Yu-Ren Huang
- Department of Applied Science, Naval Academy, Zuoying District, Kaohsiung City, 813, Taiwan, ROC
| | - Cheng-Lung Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan, ROC.
| |
Collapse
|
18
|
Dashti A, Asghari M, Dehghani M, Rezakazemi M, Mohammadi AH, Bhatia SK. Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Kupgan G, Abbott LJ, Hart KE, Colina CM. Modeling Amorphous Microporous Polymers for CO2 Capture and Separations. Chem Rev 2018; 118:5488-5538. [DOI: 10.1021/acs.chemrev.7b00691] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Grit Kupgan
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- George & Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
- Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren J. Abbott
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyle E. Hart
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Coray M. Colina
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- George & Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
- Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
20
|
Soltani B, Asghari M. Effects of ZnO Nanoparticle on the Gas Separation Performance of Polyurethane Mixed Matrix Membrane. MEMBRANES 2017; 7:E43. [PMID: 28800109 PMCID: PMC5618128 DOI: 10.3390/membranes7030043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
Polyurethane (PU)-ZnO mixed matrix membranes (MMM) were fabricated and characterized for gas separation. A thermogravimetric analysis (TGA), a scanning electron microscope (SEM) test and an atomic-force microscopy (AFM) revealed that the physical properties and thermal stability of the membranes were improved through filler loading. Hydrogen Bonding Index, obtained from the Fourier transform infrared spectroscopy (FTIR), demonstrate that the degree of phase separation in PU-ZnO 0.5 wt % MMM was more than the neat PU, while in PU-ZnO 1.0 wt % MMM, the phase mixing had increased. Compared to the neat membrane, the CO₂ permeability of the MMMs increased by 31% for PU-ZnO 0.5 wt % MMM and decreased by 34% for 1.0 wt % ZnO MMM. The CO₂/CH₄ and CO₂/N₂ selectivities of PU-ZnO 0.5 wt % were 18.75 and 64.75, respectively.
Collapse
Affiliation(s)
- Banafsheh Soltani
- Separation Processes Research Group (SPRG), Department of Chemical Engineering, University of Kashan, Kashan 8731753153, Iran.
| | - Morteza Asghari
- Separation Processes Research Group (SPRG), Department of Chemical Engineering, University of Kashan, Kashan 8731753153, Iran.
- Energy Research Institute, University of Kashan, Ghotb-e-Ravandi Ave., Kashan 8731753153, Iran.
| |
Collapse
|