1
|
Valbuena Rubio S, García-Ordás MT, García-Olalla Olivera O, Alaiz-Moretón H, González-Alonso MI, Benítez-Andrades JA. Survival and grade of the glioma prediction using transfer learning. PeerJ Comput Sci 2023; 9:e1723. [PMID: 38192446 PMCID: PMC10773899 DOI: 10.7717/peerj-cs.1723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
Glioblastoma is a highly malignant brain tumor with a life expectancy of only 3-6 months without treatment. Detecting and predicting its survival and grade accurately are crucial. This study introduces a novel approach using transfer learning techniques. Various pre-trained networks, including EfficientNet, ResNet, VGG16, and Inception, were tested through exhaustive optimization to identify the most suitable architecture. Transfer learning was applied to fine-tune these models on a glioblastoma image dataset, aiming to achieve two objectives: survival and tumor grade prediction.The experimental results show 65% accuracy in survival prediction, classifying patients into short, medium, or long survival categories. Additionally, the prediction of tumor grade achieved an accuracy of 97%, accurately differentiating low-grade gliomas (LGG) and high-grade gliomas (HGG). The success of the approach is attributed to the effectiveness of transfer learning, surpassing the current state-of-the-art methods. In conclusion, this study presents a promising method for predicting the survival and grade of glioblastoma. Transfer learning demonstrates its potential in enhancing prediction models, particularly in scenarios with limited large datasets. These findings hold promise for improving diagnostic and treatment approaches for glioblastoma patients.
Collapse
Affiliation(s)
| | - María Teresa García-Ordás
- SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de León, León, Spain
| | | | - Héctor Alaiz-Moretón
- SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de León, León, Spain
| | | | | |
Collapse
|
2
|
Yang DM, Chang TJ, Hung KF, Wang ML, Cheng YF, Chiang SH, Chen MF, Liao YT, Lai WQ, Liang KH. Smart healthcare: A prospective future medical approach for COVID-19. J Chin Med Assoc 2023; 86:138-146. [PMID: 36227021 PMCID: PMC9847685 DOI: 10.1097/jcma.0000000000000824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
COVID-19 has greatly affected human life for over 3 years. In this review, we focus on smart healthcare solutions that address major requirements for coping with the COVID-19 pandemic, including (1) the continuous monitoring of severe acute respiratory syndrome coronavirus 2, (2) patient stratification with distinct short-term outcomes (eg, mild or severe diseases) and long-term outcomes (eg, long COVID), and (3) adherence to medication and treatments for patients with COVID-19. Smart healthcare often utilizes medical artificial intelligence (AI) and cloud computing and integrates cutting-edge biological and optoelectronic techniques. These are valuable technologies for addressing the unmet needs in the management of COVID. By leveraging deep learning/machine learning capabilities and big data, medical AI can perform precise prognosis predictions and provide reliable suggestions for physicians' decision-making. Through the assistance of the Internet of Medical Things, which encompasses wearable devices, smartphone apps, internet-based drug delivery systems, and telemedicine technologies, the status of mild cases can be continuously monitored and medications provided at home without the need for hospital care. In cases that develop into severe cases, emergency feedback can be provided through the hospital for rapid treatment. Smart healthcare can possibly prevent the development of severe COVID-19 cases and therefore lower the burden on intensive care units.
Collapse
Affiliation(s)
- De-Ming Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Address correspondence. Dr. De-Ming Yang, Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (D.-M. Yang). and Dr. Kung-Hao Liang, Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail: (K.-H. Liang)
| | - Tai-Jay Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Su-Hua Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Fang Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Qun Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Address correspondence. Dr. De-Ming Yang, Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (D.-M. Yang). and Dr. Kung-Hao Liang, Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail: (K.-H. Liang)
| |
Collapse
|
4
|
Gomes R, Kamrowski C, Langlois J, Rozario P, Dircks I, Grottodden K, Martinez M, Tee WZ, Sargeant K, LaFleur C, Haley M. A Comprehensive Review of Machine Learning Used to Combat COVID-19. Diagnostics (Basel) 2022; 12:1853. [PMID: 36010204 PMCID: PMC9406981 DOI: 10.3390/diagnostics12081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease (COVID-19) has had a significant impact on global health since the start of the pandemic in 2019. As of June 2022, over 539 million cases have been confirmed worldwide with over 6.3 million deaths as a result. Artificial Intelligence (AI) solutions such as machine learning and deep learning have played a major part in this pandemic for the diagnosis and treatment of COVID-19. In this research, we review these modern tools deployed to solve a variety of complex problems. We explore research that focused on analyzing medical images using AI models for identification, classification, and tissue segmentation of the disease. We also explore prognostic models that were developed to predict health outcomes and optimize the allocation of scarce medical resources. Longitudinal studies were conducted to better understand COVID-19 and its effects on patients over a period of time. This comprehensive review of the different AI methods and modeling efforts will shed light on the role that AI has played and what path it intends to take in the fight against COVID-19.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Connor Kamrowski
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Jordan Langlois
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Papia Rozario
- Department of Geography and Anthropology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA;
| | - Ian Dircks
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Keegan Grottodden
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Matthew Martinez
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Wei Zhong Tee
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Kyle Sargeant
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Corbin LaFleur
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Mitchell Haley
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| |
Collapse
|