1
|
Zou J, Qin J. Real-time volume rendering for three-dimensional fetal ultrasound using volumetric photon mapping. Vis Comput Ind Biomed Art 2024; 7:25. [PMID: 39453538 PMCID: PMC11511803 DOI: 10.1186/s42492-024-00177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Three-dimensional (3D) fetal ultrasound has been widely used in prenatal examinations. Realistic and real-time volumetric ultrasound volume rendering can enhance the effectiveness of diagnoses and assist obstetricians and pregnant mothers in communicating. However, this remains a challenging task because (1) there is a large amount of speckle noise in ultrasound images and (2) ultrasound images usually have low contrasts, making it difficult to distinguish different tissues and organs. However, traditional local-illumination-based methods do not achieve satisfactory results. This real-time requirement makes the task increasingly challenging. This study presents a novel real-time volume-rendering method equipped with a global illumination model for 3D fetal ultrasound visualization. This method can render direct illumination and indirect illumination separately by calculating single scattering and multiple scattering radiances, respectively. The indirect illumination effect was simulated using volumetric photon mapping. Calculating each photon's brightness is proposed using a novel screen-space destiny estimation to avoid complicated storage structures and accelerate computation. This study proposes a high dynamic range approach to address the issue of fetal skin with a dynamic range exceeding that of the display device. Experiments show that our technology, compared to conventional methodologies, can generate realistic rendering results with far more depth information.
Collapse
Affiliation(s)
- Jing Zou
- Centre for Smart Health, School of Nursing, the Hong Kong Polytechnic University, Hong Kong, China.
| | - Jing Qin
- Centre for Smart Health, School of Nursing, the Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Li G, van Batenburg‐Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, de Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Bowes Rickman C, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. Aging Cell 2024; 23:e14160. [PMID: 38566432 PMCID: PMC11258442 DOI: 10.1111/acel.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Guorong Li
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Babak N. Safa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Nina Sara Fraticelli Guzmán
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrea Wilson
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Mohammad Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Kevin Choy
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | | | - J. Serena Cui
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew J. Feola
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Center for Visual and Neurocognitive RehabilitationAtlanta Virginia Medical CenterDecaturGeorgiaUSA
| | - Tara Weisz
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Megan Kuhn
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Sina Farsiu
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
| | - W. Daniel Stamer
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
3
|
Li G, van Batenburg-Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, De Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Rickman CB, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562768. [PMID: 38106150 PMCID: PMC10723259 DOI: 10.1101/2023.10.17.562768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
|
4
|
Zou Q, Huang Y, Gao J, Zhang B, Wang D, Wan M. Three-dimensional ultrasound image reconstruction based on 3D-ResNet in the musculoskeletal system using a 1D probe: ex vivoand in vivofeasibility studies. Phys Med Biol 2023; 68:165003. [PMID: 37419124 DOI: 10.1088/1361-6560/ace58b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective. Three-dimensional (3D) ultrasound (US) is needed to provide sonographers with a more intuitive panoramic view of the complex anatomical structure, especially the musculoskeletal system. In actual scanning, sonographers may perform fast scanning using a one-dimensional (1D) array probe .at random angles to gain rapid feedback, which leads to a large US image interval and missing regions in the reconstructed volume.Approach.In this study, a 3D residual network (3D-ResNet) modified by a 3D global residual branch (3D-GRB) and two 3D local residual branches (3D-LRBs) was proposed to retain detail and reconstruct high-quality 3D US volumes with high efficiency using only sparse two-dimensional (2D) US images. The feasibility and performance of the proposed algorithm were evaluated onex vivoandin vivosets.Main results. High-quality 3D US volumes in the fingers, radial and ulnar bones, and metacarpophalangeal joints were obtained by the 3D-ResNet, respectively. Their axial, coronal, and sagittal slices exhibited rich texture and speckle details. Compared with kernel regression, voxel nearest-neighborhood, squared distance weighted methods, and a 3D convolution neural network in the ablation study, the mean peak-signal-to-noise ratio and mean structure similarity of the 3D-ResNet were up to 28.53 ± 1.29 dB and 0.98 ± 0.01, respectively, and the corresponding mean absolute error dropped to 0.023 ± 0.003 with a better resolution gain of 1.22 ± 0.19 and shorter reconstruction time.Significance.These results illustrate that the proposed algorithm can rapidly reconstruct high-quality 3D US volumes in the musculoskeletal system in cases of a large amount of data loss. This suggests that the proposed algorithm has the potential to provide rapid feedback and precise analysis of stereoscopic details in complex and meticulous musculoskeletal system scanning with a less limited scanning speed and pose variations for the 1D array probe.
Collapse
Affiliation(s)
- Qin Zou
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuqing Huang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Junling Gao
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Diya Wang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Fu T, Wu C, Fan J, Song H, Xiao D, Lin Y, Liu F, Yang J. Adaptive tetrahedral interpolation for reconstruction of uneven freehand 3D ultrasound. Phys Med Biol 2023; 68. [PMID: 36731138 DOI: 10.1088/1361-6560/acb88c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Objective.Freehand 3D ultrasound volume reconstruction has received considerable attention in medical research because it can freely perform spatial imaging at a low cost. However, the uneven distribution of the original ultrasound images in space reduces the reconstruction effect of the traditional method.Approach.An adaptive tetrahedral interpolation algorithm is proposed to reconstruct 3D ultrasound volume data. The algorithm adaptively divides the unevenly distributed images into numerous tetrahedrons and interpolates the voxel value in each tetrahedron to reconstruct 3D ultrasound volume data.Main results.Extensive experiments on simulated and clinical data confirm that the proposed method can achieve more accurate reconstruction than six benchmark methods. Specifically, the averaged interpolation error at the gray level can be reduced by 0.22-0.82, and the peak signal-to-noise ratio and the mean structure similarity can be improved by 0.32-1.83 dB and 0.01-0.05, respectively.Significance.With the parallel implementation of the algorithm, one 3D ultrasound volume data with size 279 × 279 × 276 can be reconstructed from 100 slices 2D ultrasound images with size 200 × 200 at 1.04 s. Such a quick and accurate approach has practical value in medical research.
Collapse
Affiliation(s)
- Yifan Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tianyu Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chan Wu
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jingfan Fan
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hong Song
- School of Software, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Deqiang Xiao
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yucong Lin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
6
|
Li G, Lee C, Read AT, Wang K, Ha J, Kuhn M, Navarro I, Cui J, Young K, Gorijavolu R, Sulchek T, Kopczynski C, Farsiu S, Samples J, Challa P, Ethier CR, Stamer WD. Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis. eLife 2021; 10:60831. [PMID: 33783352 PMCID: PMC8009676 DOI: 10.7554/elife.60831] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids are widely used as an ophthalmic medication. A common, sight-threatening adverse event of glucocorticoid usage is ocular hypertension, caused by dysfunction of the conventional outflow pathway. We report that netarsudil, a rho-kinase inhibitor, decreased glucocorticoid-induced ocular hypertension in patients whose intraocular pressures were poorly controlled by standard medications. Mechanistic studies in our established mouse model of glucocorticoid-induced ocular hypertension show that netarsudil both prevented and reduced intraocular pressure elevation. Further, netarsudil attenuated characteristic steroid-induced pathologies as assessed by quantification of outflow function and tissue stiffness, and morphological and immunohistochemical indicators of tissue fibrosis. Thus, rho-kinase inhibitors act directly on conventional outflow cells to prevent or attenuate fibrotic disease processes in glucocorticoid-induced ocular hypertension in an immune-privileged environment. Moreover, these data motivate the need for a randomized prospective clinical study to determine whether netarsudil is indeed superior to first-line anti-glaucoma drugs in lowering steroid-induced ocular hypertension.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, United States
| | - Chanyoung Lee
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - A Thomas Read
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Ke Wang
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Jungmin Ha
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke University, Durham, United States
| | - Iris Navarro
- Department of Ophthalmology, Duke University, Durham, United States
| | - Jenny Cui
- Department of Ophthalmology, Duke University, Durham, United States
| | - Katherine Young
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States
| | - Rahul Gorijavolu
- Department of Ophthalmology, Duke University, Durham, United States
| | - Todd Sulchek
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | | | - Sina Farsiu
- Department of Ophthalmology, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States
| | - John Samples
- Washington State University Floyd Elson School of Medicine, Spokane, United States
| | - Pratap Challa
- Department of Ophthalmology, Duke University, Durham, United States
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, United States.,Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
7
|
Chen F, Liu J, Zhang X, Zhang D, Liao H. Improved 3D Catheter Shape Estimation Using Ultrasound Imaging for Endovascular Navigation: A Further Study. IEEE J Biomed Health Inform 2020; 24:3616-3629. [PMID: 32966224 DOI: 10.1109/jbhi.2020.3026105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Two-dimensional fluoroscopy is the standard guidance imaging method for closed endovascular intervention. However, two-dimensional fluoroscopy lacks depth perception for the intervention catheter and causes radiation exposure for both surgeons and patients. In this paper, we extend our previous study and develop the improved three-dimensional (3D) catheter shape estimation using ultrasound imaging. In addition, we perform further quantitative evaluations of endovascular navigation. METHOD First, the catheter tracking accuracy in ultrasound images is improved by adjusting the state vector and adding direction information. Then, the 3D catheter points from the catheter tracking are further optimized based on the 3D catheter shape optimization with a high-quality sample set. Finally, the estimated 3D catheter shapes from ultrasound images are overlaid with preoperative 3D tissue structures for the intuitive endovascular navigation. RESULTS the tracking accuracy of the catheter increased by 24.39%, and the accuracy of the catheter shape optimization step also increased by approximately 17.34% compared with our previous study. Furthermore, the overall error of catheter shape estimation was further validated in the catheter intervention experiment of in vitro cardiovascular tissue and in a vivo swine, and the errors were 2.13 mm and 3.37 mm, respectively. CONCLUSION Experimental results demonstrate that the improved catheter shape estimation using ultrasound imaging is accurate and appropriate for endovascular navigation. SIGNIFICANCE Improved navigation reduces the radiation risk because it decreases use of X-ray imaging. In addition, this navigation method can also provide accurate 3D catheter shape information for endovascular surgery.
Collapse
|
8
|
Li G, Schmitt H, Johnson WM, Lee C, Navarro I, Cui J, Fleming T, Gomez-Caraballo M, Elliott MH, Sherwood JM, Hauser MA, Farsiu S, Ethier CR, Stamer WD. Integral role for lysyl oxidase-like-1 in conventional outflow tissue function and behavior. FASEB J 2020; 34:10762-10777. [PMID: 32623782 DOI: 10.1096/fj.202000702rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Lysyl oxidase-like-1 (LOXL1), a vital crosslinking enzyme in elastin fiber maintenance, is essential for the stability and strength of elastic vessels and tissues. Variants in the LOXL1 locus associate with a dramatic increase in risk of exfoliation syndrome (XFS), a systemic fibrillopathy, which often presents with ocular hypertension and exfoliation glaucoma (XFG). We examined the role of LOXL1 in conventional outflow function, the prime regulator of intraocular pressure (IOP). Using Loxl1-/- , Loxl1+/- , and Loxl1+/+ mice, we observed an inverse relationship between LOXL1 expression and IOP, which worsened with age. Elevated IOP in Loxl1-/- mice was associated with a larger globe, decreased ocular compliance, increased outflow facility, extracellular matrix (ECM) abnormalities, and dilated intrascleral veins, yet, no dilation of arteries or capillaries. Interestingly, in living Loxl1-/- mouse eyes, Schlemm's canal (SC) was less susceptible to collapse when challenged with acute elevations in IOP, suggesting elevated episcleral venous pressure (EVP). Thus, LOXL1 expression is required for normal IOP control, while ablation results in altered ECM repair/homeostasis and conventional outflow physiology. Dilation of SC and distal veins, but not arteries, is consistent with key structural and functional roles for elastin in low-pressure vessels subjected to cyclical mechanical stress.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Heather Schmitt
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | | - Chanyoung Lee
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Iris Navarro
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Jenny Cui
- East Chapel Hill School, Chapel Hill, NC, USA
| | - Todd Fleming
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | | - Michael H Elliott
- Department of Ophthalmology and Physiology, University of Oklahoma Health, Oklahoma City, OK, USA
| | | | - Michael A Hauser
- Department of Ophthalmology, Duke University, Durham, NC, USA.,Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Sina Farsiu
- Department of Ophthalmology, Duke University, Durham, NC, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Remote control of a robotic prosthesis arm with six-degree-of-freedom for ultrasonic scanning and three-dimensional imaging. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.101606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model. Proc Natl Acad Sci U S A 2019; 116:1714-1722. [PMID: 30651311 PMCID: PMC6358695 DOI: 10.1073/pnas.1814889116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ocular corticosteroids are commonly used clinically. Unfortunately, their administration frequently leads to ocular hypertension, i.e., elevated intraocular pressure (IOP), which, in turn, can progress to a form of glaucoma known as steroid-induced glaucoma. The pathophysiology of this condition is poorly understood yet shares similarities with the most common form of glaucoma. Using nanotechnology, we created a mouse model of corticosteroid-induced ocular hypertension. This model functionally and morphologically resembles human ocular hypertension, having titratable, robust, and sustained IOPs caused by increased resistance to aqueous humor outflow. Using this model, we then interrogated the biomechanical properties of the trabecular meshwork (TM), including the inner wall of Schlemm's canal (SC), tissues known to strongly influence IOP and to be altered in other forms of glaucoma. Specifically, using spectral domain optical coherence tomography, we observed that SC in corticosteroid-treated mice was more resistant to collapse at elevated IOPs, reflecting increased TM stiffness determined by inverse finite element modeling. Our noninvasive approach to monitoring TM stiffness in vivo is applicable to other forms of glaucoma and has significant potential to monitor TM function and thus positively affect the clinical care of glaucoma, the leading cause of irreversible blindness worldwide.
Collapse
|
11
|
Huang Q, Wu B, Lan J, Li X. Fully Automatic Three-Dimensional Ultrasound Imaging Based on Conventional B-Scan. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:426-436. [PMID: 29570068 DOI: 10.1109/tbcas.2017.2782815] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Robotic ultrasound systems have turned into clinical use over the past few decades, increasing precision and quality of medical operations. In this paper, we propose a fully automatic scanning system for three-dimensional (3-D) ultrasound imaging. A depth camera was first used to obtain the depth data and color data of the tissue surface. Based on the depth image, the 3-D contour of the tissue was rendered and the scan path of ultrasound probe was automatically planned. Following the scan path, a 3-D translating device drove the probe to move on the tissue surface. Simultaneously, the B-scans and their positional information were recorded for subsequent volume reconstruction. In order to stop the scanning process when the pressure on the skin exceeded a preset threshold, two force sensors were attached to the front side of the probe for force measurement. In vitro and in vivo experiments were conducted for assessing the performance of the proposed system. Quantitative results show that the error of volume measurement was less than 1%, indicating that the system is capable of automatic ultrasound scanning and 3-D imaging. It is expected that the proposed system can be well used in clinical practices.
Collapse
|
12
|
Chen Z, Huang Q. Real-time freehand 3D ultrasound imaging. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2018. [DOI: 10.1080/21681163.2016.1167623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zhenping Chen
- School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
| | - Qinghua Huang
- School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
- Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, Yichang, China
| |
Collapse
|
13
|
Wen T, Yang F, Gu J, Chen S, Wang L, Xie Y. An adaptive kernel regression method for 3D ultrasound reconstruction using speckle prior and parallel GPU implementation. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Mozaffari MH, Lee WS. Freehand 3-D Ultrasound Imaging: A Systematic Review. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2099-2124. [PMID: 28716431 DOI: 10.1016/j.ultrasmedbio.2017.06.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 05/20/2023]
Abstract
Two-dimensional ultrasound (US) imaging has been successfully used in clinical applications as a low-cost, portable and non-invasive image modality for more than three decades. Recent advances in computer science and technology illustrate the promise of the 3-D US modality as a medical imaging technique that is comparable to other prevalent modalities and that overcomes certain drawbacks of 2-D US. This systematic review covers freehand 3-D US imaging between 1970 and 2017, highlighting the current trends in research fields, the research methods, the main limitations, the leading researchers, standard assessment criteria and clinical applications. Freehand 3-D US systems are more prevalent in the academic environment, whereas in clinical applications and industrial research, most studies have focused on 3-D US transducers and improvement of hardware performance. This topic is still an interesting active area for researchers, and there remain many unsolved problems to be addressed.
Collapse
Affiliation(s)
- Mohammad Hamed Mozaffari
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada.
| | - Won-Sook Lee
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
A Review on Real-Time 3D Ultrasound Imaging Technology. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6027029. [PMID: 28459067 PMCID: PMC5385255 DOI: 10.1155/2017/6027029] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/07/2017] [Indexed: 01/06/2023]
Abstract
Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail.
Collapse
|
16
|
Du J, Mao XL, Ye PF, Huang QH. Three-Dimensional Reconstruction and Visualization of Human Enamel Ex Vivo Using High-Frequency Ultrasound. J Med Biol Eng 2017. [DOI: 10.1007/s40846-016-0213-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Li G, Mukherjee D, Navarro I, Ashpole NE, Sherwood JM, Chang J, Overby DR, Yuan F, Gonzalez P, Kopczynski CC, Farsiu S, Stamer WD. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. Eur J Pharmacol 2016; 787:20-31. [PMID: 27085895 DOI: 10.1016/j.ejphar.2016.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/10/2016] [Accepted: 04/04/2016] [Indexed: 12/23/2022]
Abstract
Visual impairment due to glaucoma currently impacts 70 million people worldwide. While disease progression can be slowed or stopped with effective lowering of intraocular pressure, current medical treatments are often inadequate. Fortunately, three new classes of therapeutics that target the diseased conventional outflow tissue responsible for ocular hypertension are in the final stages of human testing. The rho kinase inhibitors have proven particularly efficacious and additive to current therapies. Unfortunately, non-contact technology that monitors the health of outflow tissue and its response to conventional outflow therapy is not available clinically. Using optical coherence tomographic (OCT) imaging and novel segmentation software, we present the first demonstration of drug effects on conventional outflow tissues in living eyes. Topical netarsudil (formerly AR-13324), a rho kinase/ norepinephrine transporter inhibitor, affected both proximal (trabecular meshwork and Schlemm's Canal) and distal portions (intrascleral vessels) of the mouse conventional outflow tract. Hence, increased perfusion of outflow tissues was reliably resolved by OCT as widening of the trabecular meshwork and significant increases in cross-sectional area of Schlemm's canal following netarsudil treatment. These changes occurred in conjunction with increased outflow facility, increased speckle variance intensity of outflow vessels, increased tracer deposition in conventional outflow tissues and decreased intraocular pressure. This is the first report using live imaging to show real-time drug effects on conventional outflow tissues and specifically the mechanism of action of netarsudil in mouse eyes. Advancements here pave the way for development of a clinic-friendly OCT platform for monitoring glaucoma therapy.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Dibyendu Mukherjee
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Iris Navarro
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Nicole E Ashpole
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jinlong Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | | | - Sina Farsiu
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Chen Z, Chen Y, Huang Q. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:394-403. [PMID: 26954841 DOI: 10.1109/tbcas.2015.2420117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time.
Collapse
|
19
|
Kishore PVV, Kumar KVV, kumar DA, Prasad MVD, Goutham END, Rahul R, Krishna CBSV, Sandeep Y. Twofold processing for denoising ultrasound medical images. SPRINGERPLUS 2015; 4:775. [PMID: 26697285 PMCID: PMC4678143 DOI: 10.1186/s40064-015-1566-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/26/2015] [Indexed: 11/29/2022]
Abstract
Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.
Collapse
Affiliation(s)
- P. V. V. Kishore
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| | - K. V. V. Kumar
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| | - D. Anil kumar
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| | - M. V. D. Prasad
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| | - E. N. D. Goutham
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| | - R. Rahul
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| | - C. B. S. Vamsi Krishna
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| | - Y. Sandeep
- Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India
| |
Collapse
|
20
|
Wen T, Yang F, Gu J, Wang L. A novel Bayesian-based nonlocal reconstruction method for freehand 3D ultrasound imaging. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Chang H, Chen Z, Huang Q, Shi J, Li X. Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.05.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Huang Q, Xie B, Ye P, Chen Z. 3-D ultrasonic strain imaging based on a linear scanning system. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:392-400. [PMID: 25643088 DOI: 10.1109/tuffc.2014.006665] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper introduces a 3-D strain imaging method based on a freehand linear scanning mode. We designed a linear sliding track with a position sensor and a height-adjustable holder to constrain the movement of an ultrasound probe in a freehand manner. When moving the probe along the sliding track, the corresponding positional measures for the probe are transmitted via a wireless communication module based on Bluetooth in real time. In a single examination, the probe is scanned in two sweeps in which the height of the probe is adjusted by the holder to collect the pre- and postcompression radio-frequency echoes, respectively. To generate a 3-D strain image, a volume cubic in which the voxels denote relative strains for tissues is defined according to the range of the two sweeps. With respect to the post-compression frames, several slices in the volume are determined and the pre-compression frames are re-sampled to precisely correspond to the post-compression frames. Thereby, a strain estimation method based on minimizing a cost function using dynamic programming is used to obtain the 2-D strain image for each pair of frames from the re-sampled pre-compression sweep and the post-compression sweep, respectively. A software system is developed for volume reconstruction, visualization, and measurement of the 3-D strain images. The experimental results show that high-quality 3-D strain images of phantom and human tissues can be generated by the proposed method, indicating that the proposed system can be applied for real clinical applications (e.g., musculoskeletal assessments).
Collapse
|
23
|
Reconstruction of freehand 3D ultrasound based on kernel regression. Biomed Eng Online 2014; 13:124. [PMID: 25168643 PMCID: PMC4165991 DOI: 10.1186/1475-925x-13-124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/05/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Freehand three-dimensional (3D) ultrasound has the advantages of flexibility for allowing clinicians to manipulate the ultrasound probe over the examined body surface with less constraint in comparison with other scanning protocols. Thus it is widely used in clinical diagnose and image-guided surgery. However, as the data scanning of freehand-style is subjective, the collected B-scan images are usually irregular and highly sparse. One of the key procedures in freehand ultrasound imaging system is the volume reconstruction, which plays an important role in improving the reconstructed image quality. SYSTEM AND METHODS A novel freehand 3D ultrasound volume reconstruction method based on kernel regression model is proposed in this paper. Our method consists of two steps: bin-filling and regression. Firstly, the bin-filling step is used to map each pixel in the sampled B-scan images to its corresponding voxel in the reconstructed volume data. Secondly, the regression step is used to make the nonparametric estimation for the whole volume data from the previous sampled sparse data. The kernel penalizes distance away from the current approximation center within a local neighborhood. EXPERIMENTS AND RESULTS To evaluate the quality and performance of our proposed kernel regression algorithm for freehand 3D ultrasound reconstruction, a phantom and an in-vivo liver organ of human subject are scanned with our freehand 3D ultrasound imaging system. Root mean square error (RMSE) is used for the quantitative evaluation. Both of the qualitative and quantitative experimental results demonstrate that our method can reconstruct image with less artifacts and higher quality. CONCLUSION The proposed kernel regression based reconstruction method is capable of constructing volume data with improved accuracy from irregularly sampled sparse data for freehand 3D ultrasound imaging system.
Collapse
|
24
|
Huang QH, Yang Z, Hu W, Jin LW, Wei G, Li X. Linear tracking for 3-D medical ultrasound imaging. IEEE TRANSACTIONS ON CYBERNETICS 2013; 43:1747-1754. [PMID: 23757592 DOI: 10.1109/tsmcc.2012.2229270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs.
Collapse
|
25
|
Tsai IC, Huang YL, Liu PT, Chen MC. Left ventricular myocardium segmentation on delayed phase of multi-detector row computed tomography. Int J Comput Assist Radiol Surg 2012; 7:737-51. [PMID: 22528059 DOI: 10.1007/s11548-012-0688-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Advanced ischemic heart disease is usually accompanied by left ventricular (LV) myocardial volume loss and an abnormal enhancing pattern on delayed phase of multi-detector row computed tomography (MDCT). To assist radiologists and physicians in estimating the LV myocardial volume on delayed phase, this paper proposes an adaptive segmentation method for contouring the myocardial region in the delayed-phase MDCT and for computing the volume. MATERIALS AND METHODS The proposed method uses an anisotropic diffusion filter as a preprocessing procedure to enhance contrast and reduce specks in MDCT imaging. This work picks the middle of mid-ventricular level image slices as the lead slice. The proposed method develops two contouring modes to sketch the myocardium contour on the lead slice. By establishing the obtained contours as the initial contours, the region-growing method is employed to identify the contour of the myocardial region for each slice. The convex-hull finding algorithm is then used to refine the extracted contour. Finally, the width properties of the myocardial region and the morphological operators are used to obtain the entire LV myocardial volume. RESULTS Twenty-seven healthy patients who had no symptoms of ischemic heart disease are examined to evaluate the performance of the proposed method. Compared with manual contours delineated by two experienced experts, the contouring results using computer simulation reveal that the proposed method reliably identifies contours similar to those obtained using manual sketching. CONCLUSION The proposed method provides robust contouring for the LV myocardium on delayed-phase MDCT. The potential role of this technique may substantially reduce the time required to sketch manually a precise contour with high stability.
Collapse
Affiliation(s)
- I-Chen Tsai
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | |
Collapse
|
26
|
Lee S, Huang Q, Jin L, Lu M, Wang T. A Graph-Based Segmentation Method for Breast Tumors in Ultrasound Images. ACTA ACUST UNITED AC 2010. [DOI: 10.1109/icbbe.2010.5517619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Forsberg F, Berghella V, Merton DA, Rychlak K, Meiers J, Goldberg BB. Comparing image processing techniques for improved 3-dimensional ultrasound imaging. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2010; 29:615-619. [PMID: 20375380 DOI: 10.7863/jum.2010.29.4.615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE The purpose of this study was to compare volumetric image processing techniques for reducing noise and speckle while retaining tissue structures in 3-dimensional (3D) gray scale ultrasound imaging. METHODS Eighty subjects underwent a clinically indicated abdominal or obstetric 3D ultrasound examination (20 hepatic, 20 renal, and 40 obstetric cases). Volume data were processed on a pixel ("2-dimensional [2D] processing") or a voxel ("3D processing") basis using commercially available image enhancement software (ContextVision AB, Linköping, Sweden). Randomized, side-by-side comparisons of the image processing techniques were performed for each subject. An independent and blinded reader scored the volumes for image quality on a 3-point scale from 1 (worst) to 3 (best) and compared the results using a nonparametric Wilcoxson signed rank test. RESULTS The 40 subjects with abdominal 3D imaging received a mean score (+/- 1 SD) of 1.52 +/- 0.51, 2.45 +/- 0.60, and 2.75 +/- 0.44 for the original, the 2D processed, and the 3D processed volumes, respectively. The differences between the unprocessed and the processed volumes were highly statistically significant (P < .0001), as was the difference between the 2D and 3D processing methods (P = .002). Similar results were obtained for the obstetric data sets (n = 39 due to an acquisition problem) with a mean score of 1.03 +/- 0.16 for the original, 2.33 +/- 0.48 for the 2D processed, and 2.79 +/- 0.47 for the 3D processed volumes (P < .003). CONCLUSIONS A new volumetric ultrasound image enhancement technique has been assessed in abdominal and obstetric applications. Compared to unprocessed volumes and volumes processed with 2D image enhancement software, the new 3D processing technique performed best.
Collapse
Affiliation(s)
- Flemming Forsberg
- Department of Radiology, Division of Ultrasound, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Ni D, Chui YP, Qu Y, Yang X, Qin J, Wong TT, Ho SSH, Heng PA. Reconstruction of volumetric ultrasound panorama based on improved 3D SIFT. Comput Med Imaging Graph 2009; 33:559-66. [PMID: 19524403 DOI: 10.1016/j.compmedimag.2009.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/18/2009] [Indexed: 11/19/2022]
Abstract
Registration of ultrasound volumes is a key issue for the reconstruction of volumetric ultrasound panorama. In this paper, we propose an improved three-dimensional (3D) scale invariant feature transform (SIFT) algorithm to globally register ultrasound volumes acquired from dedicated ultrasound probe, where local deformations are corrected by block-based warping algorithm. Original SIFT algorithm is extended to 3D and improved by combining the SIFT detector with Rohr3D detector to extract complementary features and applying the diffusion distance algorithm for robust feature comparison. Extensive experiments have been performed on both phantom and clinical data sets to demonstrate the effectiveness and robustness of our approach.
Collapse
Affiliation(s)
- Dong Ni
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Karadayi K, Managuli R, Kim Y. Three-Dimensional Ultrasound: From Acquisition to Visualization and From Algorithms to Systems. IEEE Rev Biomed Eng 2009. [DOI: 10.1109/rbme.2009.2034132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|