1
|
Mieling M, Yousuf M, Bunzeck N. Predicting the progression of MCI and Alzheimer's disease on structural brain integrity and other features with machine learning. GeroScience 2025:10.1007/s11357-025-01626-5. [PMID: 40285975 DOI: 10.1007/s11357-025-01626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer's disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer's Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, n = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, n = 92; MCI-to-AD converters vs. MCI stable, n = 378). All classifications achieved 70-77% accuracy and 61-83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.
Collapse
Affiliation(s)
- Marthe Mieling
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Mushfa Yousuf
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
2
|
Battineni G, Chintalapudi N, Amenta F. Machine Learning Driven by Magnetic Resonance Imaging for the Classification of Alzheimer Disease Progression: Systematic Review and Meta-Analysis. JMIR Aging 2024; 7:e59370. [PMID: 39714089 PMCID: PMC11704653 DOI: 10.2196/59370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive impairment. There are currently no specific causes or conditions for this disease. OBJECTIVE The purpose of this systematic review and meta-analysis was to assess AD prevalence across different stages using machine learning (ML) approaches comprehensively. METHODS The selection of papers was conducted in 3 phases, as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines: identification, screening, and final inclusion. The final analysis included 24 papers that met the criteria. The selection of ML approaches for AD diagnosis was rigorously based on their relevance to the investigation. The prevalence of patients with AD at 2, 3, 4, and 6 stages was illustrated through the use of forest plots. RESULTS The prevalence rate for both cognitively normal (CN) and AD across 6 studies was 49.28% (95% CI 46.12%-52.45%; P=.32). The prevalence estimate for the 3 stages of cognitive impairment (CN, mild cognitive impairment, and AD) is 29.75% (95% CI 25.11%-34.84%, P<.001). Among 5 studies with 14,839 participants, the analysis of 4 stages (nondemented, moderately demented, mildly demented, and AD) found an overall prevalence of 13.13% (95% CI 3.75%-36.66%; P<.001). In addition, 4 studies involving 3819 participants estimated the prevalence of 6 stages (CN, significant memory concern, early mild cognitive impairment, mild cognitive impairment, late mild cognitive impairment, and AD), yielding a prevalence of 23.75% (95% CI 12.22%-41.12%; P<.001). CONCLUSIONS The significant heterogeneity observed across studies reveals that demographic and setting characteristics are responsible for the impact on AD prevalence estimates. This study shows how ML approaches can be used to describe AD prevalence across different stages, which provides valuable insights for future research.
Collapse
Affiliation(s)
- Gopi Battineni
- Clinical Research, Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University Camerino, Camerino, Italy
- Centre for Global Health Research, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Nalini Chintalapudi
- Clinical Research, Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University Camerino, Camerino, Italy
| | - Francesco Amenta
- Clinical Research, Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University Camerino, Camerino, Italy
| |
Collapse
|
3
|
Nie Y, Cui Q, Li W, Lü Y, Deng T. MHAGuideNet: a 3D pre-trained guidance model for Alzheimer's Disease diagnosis using 2D multi-planar sMRI images. BMC Med Imaging 2024; 24:338. [PMID: 39695435 PMCID: PMC11656594 DOI: 10.1186/s12880-024-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Alzheimer's Disease is a neurodegenerative condition leading to irreversible and progressive brain damage, with possible features such as structural atrophy. Effective precision diagnosis is crucial for slowing disease progression and reducing the incidence rate and morbidity. Traditional computer-aided diagnostic methods using structural MRI data often focus on capturing such features but face challenges, like overfitting with 3D image analysis and insufficient feature capture with 2D slices, potentially missing multi-planar information, and the complementary nature of features across different orientations. METHODS The study introduces MHAGuideNet, a classification method incorporating a guidance network utilizing multi-head attention. The model utilizes a pre-trained 3D convolutional neural network to direct the feature extraction of multi-planar 2D slices, specifically targeting the detection of features like structural atrophy. Additionally, a hybrid 2D slice-level network combining 2D CNN and 2D Swin Transformer is employed to capture the interrelations between the atrophy in different brain structures associated with Alzheimer's Disease. RESULTS The proposed MHAGuideNet is tested using two datasets: the ADNI and OASIS datasets. The model achieves an accuracy of 97.58%, specificity of 99.89%, F1 score of 93.98%, and AUC of 99.31% on the ADNI test dataset, demonstrating superior performance in distinguishing between Alzheimer's Disease and cognitively normal subjects. Furthermore, testing on the independent OASIA test dataset yields an accuracy of 96.02%, demonstrating the model's robust performance across different datasets. CONCLUSION MHAGuideNet shows great promise as an effective tool for the computer-aided diagnosis of Alzheimer's Disease. Within the guidance of information from the 3D pre-trained CNN, the ability to leverage multi-planar information and capture subtle brain changes, including the interrelations between different structural atrophies, underscores its potential for clinical application.
Collapse
Affiliation(s)
- Yuanbi Nie
- School of Electrical Engineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Qiushi Cui
- School of Electrical Engineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Wenyuan Li
- School of Electrical Engineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Chongqing, 401122, China
| | - Tianqing Deng
- Department of Geriatrics, Chongqing Medical University, Medical College Road, Chongqing, 400016, China
| |
Collapse
|
4
|
Ghofrani-Jahromi M, Poudel GR, Razi A, Abeyasinghe PM, Paulsen JS, Tabrizi SJ, Saha S, Georgiou-Karistianis N. Prognostic enrichment for early-stage Huntington's disease: An explainable machine learning approach for clinical trial. Neuroimage Clin 2024; 43:103650. [PMID: 39142216 PMCID: PMC11367643 DOI: 10.1016/j.nicl.2024.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In Huntington's disease clinical trials, recruitment and stratification approaches primarily rely on genetic load, cognitive and motor assessment scores. They focus less on in vivo brain imaging markers, which reflect neuropathology well before clinical diagnosis. Machine learning methods offer a degree of sophistication which could significantly improve prognosis and stratification by leveraging multimodal biomarkers from large datasets. Such models specifically tailored to HD gene expansion carriers could further enhance the efficacy of the stratification process. OBJECTIVES To improve stratification of Huntington's disease individuals for clinical trials. METHODS We used data from 451 gene positive individuals with Huntington's disease (both premanifest and diagnosed) from previously published cohorts (PREDICT, TRACK, TrackON, and IMAGE). We applied whole-brain parcellation to longitudinal brain scans and measured the rate of lateral ventricular enlargement, over 3 years, which was used as the target variable for our prognostic random forest regression models. The models were trained on various combinations of features at baseline, including genetic load, cognitive and motor assessment score biomarkers, as well as brain imaging-derived features. Furthermore, a simplified stratification model was developed to classify individuals into two homogenous groups (low risk and high risk) based on their anticipated rate of ventricular enlargement. RESULTS The predictive accuracy of the prognostic models substantially improved by integrating brain imaging features alongside genetic load, cognitive and motor biomarkers: a 24 % reduction in the cross-validated mean absolute error, yielding an error of 530 mm3/year. The stratification model had a cross-validated accuracy of 81 % in differentiating between moderate and fast progressors (precision = 83 %, recall = 80 %). CONCLUSIONS This study validated the effectiveness of machine learning in differentiating between low- and high-risk individuals based on the rate of ventricular enlargement. The models were exclusively trained using features from HD individuals, which offers a more disease-specific, simplified, and accurate approach for prognostic enrichment compared to relying on features extracted from healthy control groups, as done in previous studies. The proposed method has the potential to enhance clinical utility by: i) enabling more targeted recruitment of individuals for clinical trials, ii) improving post-hoc evaluation of individuals, and iii) ultimately leading to better outcomes for individuals through personalized treatment selection.
Collapse
Affiliation(s)
| | - Govinda R Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne VIC3000, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton VIC3800, Australia
| | - Pubu M Abeyasinghe
- Turner Institute for Brain and Mental Health, Monash University, Clayton VIC3800, Australia
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, USA
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, Department of Neurodegenerative Diseases, University College London, London, UK
| | - Susmita Saha
- Turner Institute for Brain and Mental Health, Monash University, Clayton VIC3800, Australia
| | | |
Collapse
|
5
|
Rajagopal SK, Beltz AM, Hampstead BM, Polk TA. Estimating individual trajectories of structural and cognitive decline in mild cognitive impairment for early prediction of progression to dementia of the Alzheimer's type. Sci Rep 2024; 14:12906. [PMID: 38839800 PMCID: PMC11153588 DOI: 10.1038/s41598-024-63301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Only a third of individuals with mild cognitive impairment (MCI) progress to dementia of the Alzheimer's type (DAT). Identifying biomarkers that distinguish individuals with MCI who will progress to DAT (MCI-Converters) from those who will not (MCI-Non-Converters) remains a key challenge in the field. In our study, we evaluate whether the individual rates of loss of volumes of the Hippocampus and entorhinal cortex (EC) with age in the MCI stage can predict progression to DAT. Using data from 758 MCI patients in the Alzheimer's Disease Neuroimaging Database, we employ Linear Mixed Effects (LME) models to estimate individual trajectories of regional brain volume loss over 12 years on average. Our approach involves three key analyses: (1) mapping age-related volume loss trajectories in MCI-Converters and Non-Converters, (2) using logistic regression to predict progression to DAT based on individual rates of hippocampal and EC volume loss, and (3) examining the relationship between individual estimates of these volumetric changes and cognitive decline across different cognitive functions-episodic memory, visuospatial processing, and executive function. We find that the loss of Hippocampal volume is significantly more rapid in MCI-Converters than Non-Converters, but find no such difference in EC volumes. We also find that the rate of hippocampal volume loss in the MCI stage is a significant predictor of conversion to DAT, while the rate of volume loss in the EC and other additional regions is not. Finally, individual estimates of rates of regional volume loss in both the Hippocampus and EC, and other additional regions, correlate strongly with individual rates of cognitive decline. Across all analyses, we find significant individual variation in the initial volumes and the rates of changes in volume with age in individuals with MCI. This study highlights the importance of personalized approaches in predicting AD progression, offering insights for future research and intervention strategies.
Collapse
Affiliation(s)
| | - Adriene M Beltz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin M Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
De A, Mishra TK, Saraf S, Tripathy B, Reddy SS. A Review on the Use of Modern Computational Methods in Alzheimer's Disease-Detection and Prediction. Curr Alzheimer Res 2024; 20:845-861. [PMID: 38468529 DOI: 10.2174/0115672050301514240307071217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Discoveries in the field of medical sciences are blooming rapidly at the cost of voluminous efforts. Presently, multidisciplinary research activities have been especially contributing to catering cutting-edge solutions to critical problems in the domain of medical sciences. The modern age computing resources have proved to be a boon in this context. Effortless solutions have become a reality, and thus, the real beneficiary patients are able to enjoy improved lives. One of the most emerging problems in this context is Alzheimer's disease, an incurable neurological disorder. For this, early diagnosis is made possible with benchmark computing tools and schemes. These benchmark schemes are the results of novel research contributions being made intermittently in the timeline. In this review, an attempt is made to explore all such contributions in the past few decades. A systematic review is made by categorizing these contributions into three folds, namely, First, Second, and Third Generations. However, priority is given to the latest ones as a handful of literature reviews are already available for the classical ones. Key contributions are discussed vividly. The objectives set for this review are to bring forth the latest discoveries in computing methodologies, especially those dedicated to the diagnosis of Alzheimer's disease. A detailed timeline of the contributions is also made available. Performance plots for certain key contributions are also presented for better graphical understanding.
Collapse
Affiliation(s)
- Arka De
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Tusar Kanti Mishra
- Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sameeksha Saraf
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balakrushna Tripathy
- School of Information Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shiva Shankar Reddy
- Department of Computer Science and Engineering, Sagi Rama Krishnam Raju Engineering College, Bhimavaram, Andhra Pradesh, India
| |
Collapse
|
7
|
Avelar-Pereira B, Phillips CM, Hosseini SMH. Convergence of Accelerated Brain Volume Decline in Normal Aging and Alzheimer's Disease Pathology. J Alzheimers Dis 2024; 101:249-258. [PMID: 39177595 PMCID: PMC11745547 DOI: 10.3233/jad-231458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background Age represents the largest risk factor for Alzheimer's disease (AD) but is typically treated as a covariate. Still, there are similarities between brain regions affected in AD and those showing accelerated decline in normal aging, suggesting that the distinction between the two might fall on a spectrum. Objective Our goal was to identify regions showing accelerated atrophy across the brain and investigate whether these overlapped with regions involved in AD or where related to amyloid. Methods We used a longitudinal sample of 137 healthy older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI), who underwent magnetic resonance imaging (MRI). In addition, a total of 79 participants also had longitudinal positron emission tomography (PET) data. We computed linear-mixed effects models for brain regions declining faster than the average to investigate variability in the rate of change. Results 23 regions displayed a 0.5 standard deviation (SD) above average decline over 2 years. Of these, 52% overlapped with regions showing similar decline in a matched AD sample. Beyond this, the left precuneus, right superior frontal, transverse temporal, and superior temporal sulcus showed accelerated decline. Lastly, atrophy in the precuneus was associated with increased amyloid load. Conclusions Accelerated decline in normal aging might contribute to the detection of early signs of AD among healthy individuals.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Curran Michael Phillips
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - S. M. Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Tan NA, Carpio AMA, Heller HC, Pittaras EC. Behavioral and Neuronal Characterizations, across Ages, of the TgSwDI Mouse Model of Alzheimer's Disease. Genes (Basel) 2023; 15:47. [PMID: 38254938 PMCID: PMC10815655 DOI: 10.3390/genes15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that currently affects as many as 50 million people worldwide. It is neurochemically characterized by an aggregation of β-amyloid plaques and tau neurofibrillary tangles that result in neuronal dysfunction, cognitive decline, and a progressive loss of brain function. TgSwDI is a well-studied transgenic mouse model of AD, but no longitudinal studies have been performed to characterize cognitive deficits or β-amyloid plaque accumulation for use as a baseline reference in future research. Thus, we use behavioral tests (T-Maze, Novel Object Recognition (NOR), Novel Object Location (NOL)) to study long-term and working memory, and immunostaining to study β-amyloid plaque deposits, as well as brain size, in hippocampal, cerebellum, and cortical slices in TgSwDI and wild-type (WT) mice at 3, 5, 8, and 12 months old. The behavioral results show that TgSwDI mice exhibit deficits in their long-term spatial memory starting at 8 months old and in long-term recognition memory at all ages, but no deficits in their working memory. Immunohistochemistry showed an exponential increase in β-amyloid plaque in the hippocampus and cortex of TgSwDI mice over time, whereas there was no significant accumulation of plaque in WT mice at any age. Staining showed a smaller hippocampus and cerebellum starting at 8 months old for the TgSwDI compared to WT mice. Our data show how TgSwDI mice differ from WT mice in their baseline levels of cognitive function and β-amyloid plaque load throughout their lives.
Collapse
Affiliation(s)
| | | | | | - Elsa C. Pittaras
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (N.A.T.); (A.M.A.C.); (H.C.H.)
| |
Collapse
|
9
|
Bucholc M, James C, Khleifat AA, Badhwar A, Clarke N, Dehsarvi A, Madan CR, Marzi SJ, Shand C, Schilder BM, Tamburin S, Tantiangco HM, Lourida I, Llewellyn DJ, Ranson JM. Artificial intelligence for dementia research methods optimization. Alzheimers Dement 2023; 19:5934-5951. [PMID: 37639369 DOI: 10.1002/alz.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care. HIGHLIGHTS: Machine learning (ML) can improve diagnosis, prevention, and management of dementia. Inadequate reporting of ML procedures affects reproduction/replication of results. ML models built on unrepresentative datasets do not generalize to new datasets. Obligatory metrics for certain model structures and use cases have not been defined. Interpretability and trust in ML predictions are barriers to clinical translation.
Collapse
Affiliation(s)
- Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
| | - Charlotte James
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - AmanPreet Badhwar
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Quebec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Natasha Clarke
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Amir Dehsarvi
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Cameron Shand
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| | | |
Collapse
|
10
|
Kantayeva G, Lima J, Pereira AI. Application of machine learning in dementia diagnosis: A systematic literature review. Heliyon 2023; 9:e21626. [PMID: 38027622 PMCID: PMC10663815 DOI: 10.1016/j.heliyon.2023.e21626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
According to the World Health Organization forecast, over 55 million people worldwide have dementia, and about 10 million new cases are detected yearly. Early diagnosis is essential for patients to plan for the future and deal with the disease. Machine Learning algorithms allow us to solve the problems associated with early disease detection. This work attempts to identify the current relevance of the application of machine learning in dementia prediction in the scientific world and suggests open fields for future research. The literature review was conducted by combining bibliometric and content analysis of articles originating in a period of 20 years in the Scopus database. Twenty-seven thousand five hundred twenty papers were identified firstly, of which a limited number focused on machine learning in dementia diagnosis. After the exclusion process, 202 were selected, and 25 were chosen for analysis. The recent increasing interest in the past five years in the theme of machine learning in dementia shows that it is a relevant field for research with still open questions. The methods used to identify dementia or what features are used to identify or predict this disease are explored in this study. The literature review revealed that most studies used magnetic resonance imaging (MRI) and its types as the main feature, accompanied by demographic data such as age, gender, and the mini-mental state examination score (MMSE). Data are usually acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Classification of Alzheimer's disease is more prevalent than prediction of Mild Cognitive Impairment (MCI) or their combination. The authors preferred machine learning algorithms such as SVM, Ensemble methods, and CNN because of their excellent performance and results in previous studies. However, most use not one machine-learning technique but a combination of techniques. Despite achieving good results in the studies considered, there are new concepts for future investigation declared by the authors and suggestions for improvements by employing promising methods with potentially significant results.
Collapse
Affiliation(s)
- Gauhar Kantayeva
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politecnico de Bragança, Bragança, Portugal
| | - José Lima
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politecnico de Bragança, Bragança, Portugal
| | - Ana I. Pereira
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politecnico de Bragança, Bragança, Portugal
| |
Collapse
|
11
|
Aberathne I, Kulasiri D, Samarasinghe S. Detection of Alzheimer's disease onset using MRI and PET neuroimaging: longitudinal data analysis and machine learning. Neural Regen Res 2023; 18:2134-2140. [PMID: 37056120 PMCID: PMC10328296 DOI: 10.4103/1673-5374.367840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
The scientists are dedicated to studying the detection of Alzheimer's disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer's disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer's disease onset.
Collapse
Affiliation(s)
- Iroshan Aberathne
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
12
|
Ren Y, Shahbaba B, Stark CEL. Improving clinical efficiency in screening for cognitive impairment due to Alzheimer's. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12494. [PMID: 37908438 PMCID: PMC10613605 DOI: 10.1002/dad2.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION To reduce demands on expert time and improve clinical efficiency, we developed a framework to evaluate whether inexpensive, accessible data could accurately classify Alzheimer's disease (AD) clinical diagnosis and predict the likelihood of progression. METHODS We stratified relevant data into three tiers: obtainable at primary care (low-cost), mostly available at specialty visits (medium-cost), and research-only (high-cost). We trained several machine learning models, including a hierarchical model, an ensemble model, and a clustering model, to distinguish between diagnoses of cognitively unimpaired, mild cognitive impairment, and dementia due to AD. RESULTS All models showed viable classification, but the hierarchical and ensemble models outperformed the conventional model. Classifier "error" was predictive of progression rates, and cluster membership identified subgroups with high and low risk of progression within 1.5 to 3 years. DISCUSSION Accessible, inexpensive clinical data can be used to guide AD diagnosis and are predictive of current and future disease states. HIGHLIGHTS Classification performance using cost-effective features was accurate and robustHierarchical classification outperformed conventional multinomial classificationClassification labels indicated significant changes in conversion risk at follow-upA clustering-classification method identified subgroups at high risk of decline.
Collapse
Affiliation(s)
- Yueqi Ren
- Mathematical, Computational and Systems Biology Graduate ProgramCenter for Complex Biological SystemsUniversity of California IrvineIrvineCaliforniaUSA
- Medical Scientist Training Program, School of MedicineUniversity of California IrvineIrvineCaliforniaUSA
| | - Babak Shahbaba
- Mathematical, Computational and Systems Biology Graduate ProgramCenter for Complex Biological SystemsUniversity of California IrvineIrvineCaliforniaUSA
- Department of StatisticsDonald Bren School of Information and Computer SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Craig E. L. Stark
- Mathematical, Computational and Systems Biology Graduate ProgramCenter for Complex Biological SystemsUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineNeurobiology and BehaviorIrvineCaliforniaUSA
| |
Collapse
|
13
|
Altay DN, Yagar H, Ozcan HM. A new ITO-based Aβ 42 biosensor for early detection of Alzheimer's disease. Bioelectrochemistry 2023; 153:108501. [PMID: 37421689 DOI: 10.1016/j.bioelechem.2023.108501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
In this study, a novel label-free impedimetric immunosensor was fabricated for rapid, selective, and sensitive quantitative analysis of Aβ42 protein for use in the diagnosis of Alzheimer's disease. The immunosensor was fabricated using inexpensive and disposable indium tin oxide polyethylene terephthalate (ITO-PET) electrodes. After the electrodes were modified with 3-glycidoxypropyldimethoxymethylsilane (GPDMMS), the antibody specific to the Aβ42 protein (anti-Aβ42) was immobilized. The affinity interaction between anti-Aβ42 and Aβ42 in the immobilization steps in immunosensor fabrication and in the quantitation of Aβ42 were analyzed using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) techniques. Additionally, the morphological changes occurring on the electrode surface during each immobilization step were imaged using scanning electron microscopy (SEM). The linear detection range of the immunosensor was determined as 1-100 pg/mL with the limit of detection value of 0.37 pg/mL. Analytical properties of the biosensor, including reproducibility, repeatability, storage stability, selectivity, and regeneration were investigated. The kinetic behavior of antibody-antigen complex formation was determined for the first time using single frequency impedance (SFI) analysis on an Aβ42 biosensor. The potential for use of the immunosensor in clinical studies was demonstrated by analysis of Aβ42 in commercially purchased human serum.
Collapse
Affiliation(s)
- Dilek Nur Altay
- Institute of Natural and Applied Sciences, Trakya University, Edirne, Turkey.
| | - Hulya Yagar
- Department of Chemistry, Faculty of Science, Trakya University, Edirne, Turkey.
| | - Hakki Mevlut Ozcan
- Department of Chemistry, Faculty of Science, Trakya University, Edirne, Turkey.
| |
Collapse
|
14
|
Khalid A, Senan EM, Al-Wagih K, Al-Azzam MMA, Alkhraisha ZM. Automatic Analysis of MRI Images for Early Prediction of Alzheimer's Disease Stages Based on Hybrid Features of CNN and Handcrafted Features. Diagnostics (Basel) 2023; 13:diagnostics13091654. [PMID: 37175045 PMCID: PMC10178535 DOI: 10.3390/diagnostics13091654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer's is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer's and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer's, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This study contributed to the development of three methodologies, each with two systems, with all systems aimed at achieving satisfactory accuracy for the detection of AD and predicting the stages of its progression. The first methodology is by Feed Forward Neural Network (FFNN) with the features of GoogLeNet and DenseNet-121 models separately. The second methodology is by FFNN network with combined features between GoogLeNet and Dense-121 models before and after high-dimensionality reduction of features using the Principal Component Analysis (PCA) algorithm. The third methodology is by FFNN network with combined features between GoogLeNet and Dense-121 models separately and features extracted by Discrete Wavelet Transform (DWT), Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM) methods called handcrafted features. All systems yielded super results in detecting AD and predicting the stages of its progression. With the combined features of the DenseNet-121 and handcrafted, the FFNN achieved an accuracy of 99.7%, sensitivity of 99.64%, AUC of 99.56%, precision of 99.63%, and a specificity of 99.67%.
Collapse
Affiliation(s)
- Ahmed Khalid
- Computer Department, Applied College, Najran University, Najran 66462, Saudi Arabia
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana'a, Yemen
| | - Khalil Al-Wagih
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana'a, Yemen
| | | | | |
Collapse
|
15
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
16
|
Sedlakova Z, Nachtigalova I, Rusina R, Matej R, Buncova M, Kukal J. Alzheimer ’s disease identification from 3D SPECT brain scans by variational analysis. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Zubrikhina M, Abramova O, Yarkin V, Ushakov V, Ochneva A, Bernstein A, Burnaev E, Andreyuk D, Savilov V, Kurmishev M, Syunyakov T, Karpenko O, Andryushchenko A, Kostyuk G, Sharaev M. Machine learning approaches to Mild Cognitive Impairment detection based on structural MRI data and morphometric features. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Rye I, Vik A, Kocinski M, Lundervold AS, Lundervold AJ. Predicting conversion to Alzheimer's disease in individuals with Mild Cognitive Impairment using clinically transferable features. Sci Rep 2022; 12:15566. [PMID: 36114257 PMCID: PMC9481567 DOI: 10.1038/s41598-022-18805-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with Mild Cognitive Impairment (MCI) have an increased risk of Alzheimer's disease (AD). Early identification of underlying neurodegenerative processes is essential to provide treatment before the disease is well established in the brain. Here we used longitudinal data from the ADNI database to investigate prediction of a trajectory towards AD in a group of patients defined as MCI at a baseline examination. One group remained stable over time (sMCI, n = 357) and one converted to AD (cAD, n = 321). By running two independent classification methods within a machine learning framework, with cognitive function, hippocampal volume and genetic APOE status as features, we obtained a cross-validation classification accuracy of about 70%. This level of accuracy was confirmed across different classification methods and validation procedures. Moreover, the sets of misclassified subjects had a large overlap between the two models. Impaired memory function was consistently found to be one of the core symptoms of MCI patients on a trajectory towards AD. The prediction above chance level shown in the present study should inspire further work to develop tools that can aid clinicians in making prognostic decisions.
Collapse
Affiliation(s)
- Ingrid Rye
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Alexandra Vik
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Marek Kocinski
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Alexander S Lundervold
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Computer Science, Electrical Engineering, and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Li R, Wang X, Lawler K, Garg S, Bai Q, Alty J. Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions. J Biomed Inform 2022; 127:104030. [PMID: 35183766 DOI: 10.1016/j.jbi.2022.104030] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & OBJECTIVE With populations aging, the number of people with dementia worldwide is expected to triple to 152 million by 2050. Seventy percent of cases are due to Alzheimer's disease (AD) pathology and there is a 10-20 year 'pre-clinical' period before significant cognitive decline occurs. We urgently need, cost effective, objective biomarkers to detect AD, and other dementias, at an early stage. Risk factor modification could prevent 40% of cases and drug trials would have greater chances of success if participants are recruited at an earlier stage. Currently, detection of dementia is largely by pen and paper cognitive tests but these are time consuming and insensitive to the pre-clinical phase. Specialist brain scans and body fluid biomarkers can detect the earliest stages of dementia but are too invasive or expensive for widespread use. With the advancement of technology, Artificial Intelligence (AI) shows promising results in assisting with detection of early-stage dementia. This scoping review aims to summarise the current capabilities of AI-aided digital biomarkers to aid in early detection of dementia, and also discusses potential future research directions. METHODS & MATERIALS In this scoping review, we used PubMed and IEEE Xplore to identify relevant papers. The resulting records were further filtered to retrieve articles published within five years and written in English. Duplicates were removed, titles and abstracts were screened and full texts were reviewed. RESULTS After an initial yield of 1,463 records, 1,444 records were screened after removal of duplication. A further 771 records were excluded after screening titles and abstracts, and 496 were excluded after full text review. The final yield was 177 studies. Records were grouped into different artificial intelligence based tests: (a) computerized cognitive tests (b) movement tests (c) speech, conversion, and language tests and (d) computer-assisted interpretation of brain scans. CONCLUSIONS In general, AI techniques enhance the performance of dementia screening tests because more features can be retrieved from a single test, there are less errors due to subjective judgements and AI shifts the automation of dementia screening to a higher level. Compared with traditional cognitive tests, AI-based computerized cognitive tests improve the discrimination sensitivity by around 4% and specificity by around 3%. In terms of speech, conversation and language tests, combining both acoustic features and linguistic features achieve the best result with accuracy around 94%. Deep learning techniques applied in brain scan analysis achieves around 92% accuracy. Movement tests and setting smart environments to capture daily life behaviours are two potential future directions that may help discriminate dementia from normal aging. AI-based smart environments and multi-modal tests are promising future directions to improve detection of dementia in the earliest stages.
Collapse
Affiliation(s)
- Renjie Li
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Xinyi Wang
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia.
| | - Katherine Lawler
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia; Royal Hobart Hospital, Tasmania, TAS 7000, Australia.
| | - Saurabh Garg
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Quan Bai
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia; Royal Hobart Hospital, Tasmania, TAS 7000, Australia.
| |
Collapse
|
20
|
Sethi M, Ahuja S, Rani S, Bawa P, Zaguia A. Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:4186666. [PMID: 34646334 PMCID: PMC8505090 DOI: 10.1155/2021/4186666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine learning (ML) techniques has also shown their effectiveness and its reliability as one of the better options for an early diagnosis of AD. But the heterogeneous dimensions and composition of the disease data have undoubtedly made diagnostics more difficult, needing a sufficient model choice to overcome the difficulty. Therefore, in this paper, four different 2D and 3D convolutional neural network (CNN) frameworks based on Bayesian search optimization are proposed to develop an optimized deep learning model to predict the early onset of AD binary and ternary classification on magnetic resonance imaging (MRI) scans. Moreover, certain hyperparameters such as learning rate, optimizers, and hidden units are to be set and adjusted for the performance boosting of the deep learning model. Bayesian optimization enables to leverage advantage throughout the experiments: A persistent hyperparameter space testing provides not only the output but also about the nearest conclusions. In this way, the series of experiments needed to explore space can be substantially reduced. Finally, alongside the use of Bayesian approaches, long short-term memory (LSTM) through the process of augmentation has resulted in finding the better settings of the model that too in less iterations with an relative improvement (RI) of 7.03%, 12.19%, 10.80%, and 11.99% over the four systems optimized with manual hyperparameters tuning such that hyperparameters that look more appealing from past data as well as the conventional techniques of manual selection.
Collapse
Affiliation(s)
- Monika Sethi
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| | - Sachin Ahuja
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| | - Shalli Rani
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| | - Puneet Bawa
- Centre of Excellence for Speech and Multimodal Laboratory, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Atef Zaguia
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
21
|
Grueso S, Viejo-Sobera R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer's disease dementia: a systematic review. Alzheimers Res Ther 2021; 13:162. [PMID: 34583745 PMCID: PMC8480074 DOI: 10.1186/s13195-021-00900-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND An increase in lifespan in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer's disease being the most prevalent. Advances in medical imaging and computational power enable new methods for the early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer's disease dementia. METHODS We conducted a systematic review following PRISMA guidelines of studies where machine learning was applied to neuroimaging data in order to predict whether patients with mild cognitive impairment might develop Alzheimer's disease dementia or remain stable. After removing duplicates, we screened 452 studies and selected 116 for qualitative analysis. RESULTS Most studies used magnetic resonance image (MRI) and positron emission tomography (PET) data but also magnetoencephalography. The datasets were mainly extracted from the Alzheimer's disease neuroimaging initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common was support vector machine with a mean accuracy of 75.4%, but convolutional neural networks achieved a higher mean accuracy of 78.5%. Studies combining MRI and PET achieved overall better classification accuracy than studies that only used one neuroimaging technique. In general, the more complex models such as those based on deep learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, genetic, and behavioral) achieved the best performance. CONCLUSIONS Although the performance of the different methods still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.
Collapse
Affiliation(s)
- Sergio Grueso
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, 08018, Barcelona, Spain.
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, 08018, Barcelona, Spain
| |
Collapse
|
22
|
Mofrad SA, Lundervold AJ, Vik A, Lundervold AS. Cognitive and MRI trajectories for prediction of Alzheimer's disease. Sci Rep 2021; 11:2122. [PMID: 33483535 PMCID: PMC7822915 DOI: 10.1038/s41598-020-78095-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
The concept of Mild Cognitive Impairment (MCI) is used to describe the early stages of Alzheimer's disease (AD), and identification and treatment before further decline is an important clinical task. We selected longitudinal data from the ADNI database to investigate how well normal function (HC, n= 134) vs. conversion to MCI (cMCI, n= 134) and stable MCI (sMCI, n=333) vs. conversion to AD (cAD, n= 333) could be predicted from cognitive tests, and whether the predictions improve by adding information from magnetic resonance imaging (MRI) examinations. Features representing trajectories of change in the selected cognitive and MRI measures were derived from mixed effects models and used to train ensemble machine learning models to classify the pairs of subgroups based on a subset of the data set. Evaluation in an independent test set showed that the predictions for HC vs. cMCI improved substantially when MRI features were added, with an increase in [Formula: see text]-score from 60 to 77%. The [Formula: see text]-scores for sMCI vs. cAD were 77% without and 78% with inclusion of MRI features. The results are in-line with findings showing that cognitive changes tend to manifest themselves several years after the Alzheimer's disease is well-established in the brain.
Collapse
Affiliation(s)
- Samaneh A Mofrad
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Pb. 7030, Bergen, 5020, Norway.
- MMIV, Department of Radiology, Haukeland University Hospital, Bergen, Norway.
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Alexandra Vik
- MMIV, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Alexander S Lundervold
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Pb. 7030, Bergen, 5020, Norway
- MMIV, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
23
|
Hasan MM, Asaduzzaman M, Rahman MM, Hossain MS, Andersson K. D3mciAD: Data-Driven Diagnosis of Mild Cognitive Impairment Utilizing Syntactic Images Generation and Neural Nets. Brain Inform 2021. [DOI: 10.1007/978-3-030-86993-9_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|