1
|
Piersanti R, Bradley R, Ali SY, Quarteroni A, Dede' L, Trayanova NA. Defining myocardial fiber bundle architecture in atrial digital twins. Comput Biol Med 2025; 188:109774. [PMID: 39946790 PMCID: PMC11966639 DOI: 10.1016/j.compbiomed.2025.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 02/19/2025]
Abstract
A key component in developing atrial digital twins (ADT) - virtual representations of patients' atria - is the accurate prescription of myocardial fibers which are essential for the tissue characterization. Due to the difficulty of reconstructing atrial fibers from medical imaging, a widely used strategy for fiber generation in ADT relies on mathematical models. Existing methodologies utilize semi-automatic approaches, are tailored to specific morphologies, and lack rigorous validation against imaging fiber data. In this study, we introduce a novel atrial Laplace-Dirichlet-Rule-Based Method (LDRBM) for prescribing highly detailed myofiber orientations and providing robust regional annotation in bi-atrial morphologies of any complexity. The robustness of our approach is verified in eight extremely detailed bi-atrial geometries, derived from a sub-millimeter Diffusion-Tensor-Magnetic-Resonance Imaging (DTMRI) human atrial fiber dataset. We validate the LDRBM by quantitatively recreating each of the DTMRI fiber architectures: a comprehensive comparison with DTMRI ground truth data is conducted, investigating differences between electrophysiology (EP) simulations provided by either LDRBM and DTMRI fibers. Finally, we demonstrate that the novel LDRBM outperforms current state-of-the-art (LDRBMs and Universal Atrial Coordinates) fiber models, confirming the exceptional accuracy of our methodology and the critical importance of incorporating detailed fiber orientations in EP simulations. Ultimately, this work represents a fundamental step towards the development of physics-based digital twins of the human atria, establishing a new standard for prescribing fibers in ADT.
Collapse
Affiliation(s)
- Roberto Piersanti
- MOX - Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Milano, Italy; ADVANCE - Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, USA.
| | - Ryan Bradley
- ADVANCE - Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, USA; Research Computing, Lehigh University, Bethlehem, PA, USA
| | - Syed Yusuf Ali
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Alfio Quarteroni
- MOX - Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Milano, Italy; Mathematics Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Luca Dede'
- MOX - Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Milano, Italy
| | - Natalia A Trayanova
- ADVANCE - Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
2
|
Banduc T, Azzolin L, Manninger M, Scherr D, Plank G, Pezzuto S, Sahli Costabal F. Simulation-free prediction of atrial fibrillation inducibility with the fibrotic kernel signature. Med Image Anal 2025; 99:103375. [PMID: 39476470 DOI: 10.1016/j.media.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 12/02/2024]
Abstract
Computational models of atrial fibrillation (AF) can help improve success rates of interventions, such as ablation. However, evaluating the efficacy of different treatments requires performing multiple costly simulations by pacing at different points and checking whether AF has been induced or not, hindering the clinical application of these models. In this work, we propose a classification method that can predict AF inducibility in patient-specific cardiac models without running additional simulations. Our methodology does not require re-training when changing atrial anatomy or fibrotic patterns. To achieve this, we develop a set of features given by a variant of the heat kernel signature that incorporates fibrotic pattern information and fiber orientations: the fibrotic kernel signature (FKS). The FKS is faster to compute than a single AF simulation, and when paired with machine learning classifiers, it can predict AF inducibility in the entire domain. To learn the relationship between the FKS and AF inducibility, we performed 2371 AF simulations comprising 6 different anatomies and various fibrotic patterns, which we split into training and a testing set. We obtain a median F1 score of 85.2% in test set and we can predict the overall inducibility with a mean absolute error of 2.76 percent points, which is lower than alternative methods. We think our method can significantly speed-up the calculations of AF inducibility, which is crucial to optimize therapies for AF within clinical timelines. An example of the FKS for an open source model is provided in https://github.com/tbanduc/FKS_AtrialModel_Ferrer.git.
Collapse
Affiliation(s)
- Tomás Banduc
- Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | | | - Martin Manninger
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel Scherr
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center - Division of Biophysics, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Simone Pezzuto
- Laboratory of Mathematics for Biology and Medicine, Department of Mathematics, Università di Trento, Trento, Italy; Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland.
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering and Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Chile.
| |
Collapse
|
3
|
Drummond D, Gonsard A. Definitions and Characteristics of Patient Digital Twins Being Developed for Clinical Use: Scoping Review. J Med Internet Res 2024; 26:e58504. [PMID: 39536311 PMCID: PMC11602770 DOI: 10.2196/58504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The concept of digital twins, widely adopted in industry, is entering health care. However, there is a lack of consensus on what constitutes the digital twin of a patient. OBJECTIVE The objective of this scoping review was to analyze definitions and characteristics of patient digital twins being developed for clinical use, as reported in the scientific literature. METHODS We searched PubMed, Scopus, Embase, IEEE, and Google Scholar for studies claiming digital twin development or evaluation until August 2023. Data on definitions, characteristics, and development phase were extracted. Unsupervised classification of claimed digital twins was performed. RESULTS We identified 86 papers representing 80 unique claimed digital twins, with 98% (78/80) in preclinical phases. Among the 55 papers defining "digital twin," 76% (42/55) described a digital replica, 42% (23/55) mentioned real-time updates, 24% (13/55) emphasized patient specificity, and 15% (8/55) included 2-way communication. Among claimed digital twins, 60% (48/80) represented specific organs (primarily heart: 15/48, 31%; bones or joints: 10/48, 21%; lung: 6/48, 12%; and arteries: 5/48, 10%); 14% (11/80) embodied biological systems such as the immune system; and 26% (21/80) corresponded to other products (prediction models, etc). The patient data used to develop and run the claimed digital twins encompassed medical imaging examinations (35/80, 44% of publications), clinical notes (15/80, 19% of publications), laboratory test results (13/80, 16% of publications), wearable device data (12/80, 15% of publications), and other modalities (32/80, 40% of publications). Regarding data flow between patients and their virtual counterparts, 16% (13/80) claimed that digital twins involved no flow from patient to digital twin, 73% (58/80) used 1-way flow from patient to digital twin, and 11% (9/80) enabled 2-way data flow between patient and digital twin. Based on these characteristics, unsupervised classification revealed 3 clusters: simulation patient digital twins in 54% (43/80) of publications, monitoring patient digital twins in 28% (22/80) of publications, and research-oriented models unlinked to specific patients in 19% (15/80) of publications. Simulation patient digital twins used computational modeling for personalized predictions and therapy evaluations, mostly for one-time assessments, and monitoring digital twins harnessed aggregated patient data for continuous risk or outcome forecasting and care optimization. CONCLUSIONS We propose defining a patient digital twin as "a viewable digital replica of a patient, organ, or biological system that contains multidimensional, patient-specific information and informs decisions" and to distinguish simulation and monitoring digital twins. These proposed definitions and subtypes offer a framework to guide research into realizing the potential of these personalized, integrative technologies to advance clinical care.
Collapse
Affiliation(s)
- David Drummond
- Health Data- and Model-Driven Knowledge Acquisition Team, National Institute for Research in Digital Science and Technology, Paris, France
- Faculté de Médecine, Université Paris Cité, Paris, France
- Department of Pediatric Pulmonology and Allergology, University Hospital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Apolline Gonsard
- Department of Pediatric Pulmonology and Allergology, University Hospital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Martínez Díaz P, Dasí A, Goetz C, Unger LA, Haas A, Luik A, Rodríguez B, Dössel O, Loewe A. Impact of effective refractory period personalization on arrhythmia vulnerability in patient-specific atrial computer models. Europace 2024; 26:euae215. [PMID: 39177260 PMCID: PMC11500604 DOI: 10.1093/europace/euae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
AIMS The effective refractory period (ERP) is one of the main electrophysiological properties governing arrhythmia, yet ERP personalization is rarely performed when creating patient-specific computer models of the atria to inform clinical decision-making. This study evaluates the impact of integrating clinical ERP measurements into personalized in silico models on arrhythmia vulnerability. METHODS AND RESULTS Clinical ERP measurements were obtained in seven patients from multiple locations in the atria. Atrial geometries from the electroanatomical mapping system were used to generate personalized anatomical atrial models. The Courtemanche M. et al. cellular model was adjusted to reproduce patient-specific ERP. Four modeling approaches were compared: homogeneous (A), heterogeneous (B), regional (C), and continuous (D) ERP distributions. Non-personalized approaches (A and B) were based on literature data, while personalized approaches (C and D) were based on patient measurements. Modeling effects were assessed on arrhythmia vulnerability and tachycardia cycle length, with sensitivity analysis on ERP measurement uncertainty. Mean vulnerability was 3.4 ± 4.0%, 7.7 ± 3.4%, 9.0 ± 5.1%, and 7.0 ± 3.6% for scenarios A-D, respectively. Mean tachycardia cycle length was 167.1 ± 12.6 ms, 158.4 ± 27.5 ms, 265.2 ± 39.9 ms, and 285.9 ± 77.3 ms for scenarios A-D, respectively. Incorporating perturbations to the measured ERP in the range of 2, 5, 10, 20, and 50 ms changed the vulnerability of the model to 5.8 ± 2.7%, 6.1 ± 3.5%, 6.9 ± 3.7%, 5.2 ± 3.5%, and 9.7 ± 10.0%, respectively. CONCLUSION Increased ERP dispersion had a greater effect on re-entry dynamics than on vulnerability. Inducibility was higher in personalized scenarios compared with scenarios with uniformly reduced ERP; however, this effect was reversed when incorporating fibrosis informed by low-voltage areas. Effective refractory period measurement uncertainty up to 20 ms slightly influenced vulnerability. Electrophysiological personalization of atrial in silico models appears essential and requires confirmation in larger cohorts.
Collapse
Affiliation(s)
- Patricia Martínez Díaz
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber, Weg 1 30.33, 76131, Karlsruhe, Germany
| | - Albert Dasí
- Department of Computer Science, University of Oxford, 7 Parks Rd, OX13QG, Oxford, England, UK
| | - Christian Goetz
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber, Weg 1 30.33, 76131, Karlsruhe, Germany
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Laura A Unger
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber, Weg 1 30.33, 76131, Karlsruhe, Germany
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Teaching Hospital of the University of Freiburg, Moltkestraße 90, 76133, Karlsruhe, Germany
| | - Annika Haas
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Teaching Hospital of the University of Freiburg, Moltkestraße 90, 76133, Karlsruhe, Germany
| | - Armin Luik
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Teaching Hospital of the University of Freiburg, Moltkestraße 90, 76133, Karlsruhe, Germany
| | - Blanca Rodríguez
- Department of Computer Science, University of Oxford, 7 Parks Rd, OX13QG, Oxford, England, UK
| | - Olaf Dössel
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber, Weg 1 30.33, 76131, Karlsruhe, Germany
| | - Axel Loewe
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber, Weg 1 30.33, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Thangaraj PM, Benson SH, Oikonomou EK, Asselbergs FW, Khera R. Cardiovascular care with digital twin technology in the era of generative artificial intelligence. Eur Heart J 2024; 45:ehae619. [PMID: 39322420 PMCID: PMC11638093 DOI: 10.1093/eurheartj/ehae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Digital twins, which are in silico replications of an individual and its environment, have advanced clinical decision-making and prognostication in cardiovascular medicine. The technology enables personalized simulations of clinical scenarios, prediction of disease risk, and strategies for clinical trial augmentation. Current applications of cardiovascular digital twins have integrated multi-modal data into mechanistic and statistical models to build physiologically accurate cardiac replicas to enhance disease phenotyping, enrich diagnostic workflows, and optimize procedural planning. Digital twin technology is rapidly evolving in the setting of newly available data modalities and advances in generative artificial intelligence, enabling dynamic and comprehensive simulations unique to an individual. These twins fuse physiologic, environmental, and healthcare data into machine learning and generative models to build real-time patient predictions that can model interactions with the clinical environment to accelerate personalized patient care. This review summarizes digital twins in cardiovascular medicine and their potential future applications by incorporating new personalized data modalities. It examines the technical advances in deep learning and generative artificial intelligence that broaden the scope and predictive power of digital twins. Finally, it highlights the individual and societal challenges as well as ethical considerations that are essential to realizing the future vision of incorporating cardiology digital twins into personalized cardiovascular care.
Collapse
Affiliation(s)
- Phyllis M Thangaraj
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Sean H Benson
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Evangelos K Oikonomou
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Center, University College London, London, UK
| | - Rohan Khera
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, 47 College St., New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, 100 College St. Fl 9, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St. Fl 6, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Hussain S, Falanga M, Chiaravalloti A, Tomasi C, Corsi C. Patient-specific left atrium contraction quantification associated with atrial fibrillation: A region-based approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 249:108138. [PMID: 38522329 DOI: 10.1016/j.cmpb.2024.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Atrial fibrillation (AF) is a widespread cardiac arrhythmia that significantly impacts heart function. AF disrupts atrial mechanical contraction, leading to irregular, uncoordinated, and slow blood flow inside the atria which favors the formation of clots, primarily within the left atrium (LA). A standardized region-based analysis of the LA is missing, and there is not even any consensus about how to define the LA regions. In this study we propose an automatic approach for regionalizing the LA into segments to provide a comprehensive 3D region-based LA contraction assessment. LA global and regional contraction were quantified in control subjects and in AF patients to describe mechanical abnormalities associated with AF. METHODS The proposed automatic approach for LA regionalization was tested in thirteen control subjects and seventeen AF patients. After dividing LA into standard regions, we evaluated the global and regional mechanical function by measuring LA contraction parameters, such as regional volume, global and regional strains, regional wall motion and regional shortening fraction. RESULTS LA regionalization was successful in all study subjects. In the AF group compared with control subjects, results showed: a global impairment of LA contraction which appeared more pronounced along radial and circumferential direction; a regional impairment of radial strain which was more pronounced in septal, inferior, and lateral regions suggesting a greater reduction in mechanical efficiency in these regions in comparison to the posterior and anterior ones. CONCLUSION An automatic approach for LA regionalization was proposed. The regionalization method was proved to be robust with several LA anatomical variations and able to characterize contraction changes associated with AF.
Collapse
Affiliation(s)
| | | | | | - Corrado Tomasi
- Santa Maria delle Croci Hospital, AUSL della Romagna, Ravenna, Italy
| | | |
Collapse
|
7
|
Martínez Díaz P, Sánchez J, Fitzen N, Ravens U, Dössel O, Loewe A. The right atrium affects in silico arrhythmia vulnerability in both atria. Heart Rhythm 2024; 21:799-805. [PMID: 38301854 DOI: 10.1016/j.hrthm.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Affiliation(s)
- Patricia Martínez Díaz
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jorge Sánchez
- Institute of Information and Communication Technologies (ITACA), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Nikola Fitzen
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
8
|
Jaffery OA, Melki L, Slabaugh G, Good WW, Roney CH. A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data. Arrhythm Electrophysiol Rev 2024; 13:e08. [PMID: 38807744 PMCID: PMC11131150 DOI: 10.15420/aer.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/27/2023] [Indexed: 05/30/2024] Open
Abstract
Computational models of cardiac electrophysiology have gradually matured during the past few decades and are now being personalised to provide patient-specific therapy guidance for improving suboptimal treatment outcomes. The predictive features of these personalised electrophysiology models hold the promise of providing optimal treatment planning, which is currently limited in the clinic owing to reliance on a population-based or average patient approach. The generation of a personalised electrophysiology model entails a sequence of steps for which a range of activation mapping, calibration methods and therapy simulation pipelines have been suggested. However, the optimal methods that can potentially constitute a clinically relevant in silico treatment are still being investigated and face limitations, such as uncertainty of electroanatomical data recordings, generation and calibration of models within clinical timelines and requirements to validate or benchmark the recovered tissue parameters. This paper is aimed at reporting techniques on the personalisation of cardiac computational models, with a focus on calibrating cardiac tissue conductivity based on electroanatomical mapping data.
Collapse
Affiliation(s)
- Ovais A Jaffery
- School of Engineering and Materials Science, Queen Mary University of London London, UK
| | - Lea Melki
- R&D Algorithms, Acutus Medical Carlsbad, CA, US
| | - Gregory Slabaugh
- Digital Environment Research Institute, Queen Mary University of London London, UK
| | | | - Caroline H Roney
- School of Engineering and Materials Science, Queen Mary University of London London, UK
| |
Collapse
|
9
|
Masè M, Cristoforetti A, Pelloni S, Ravelli F. Systematic in-silico evaluation of fibrosis effects on re-entrant wave dynamics in atrial tissue. Sci Rep 2024; 14:11427. [PMID: 38763959 PMCID: PMC11639732 DOI: 10.1038/s41598-024-62002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
Despite the key role of fibrosis in atrial fibrillation (AF), the effects of different spatial distributions and textures of fibrosis on wave propagation mechanisms in AF are not fully understood. To clarify these aspects, we performed a systematic computational study to assess fibrosis effects on the characteristics and stability of re-entrant waves in electrically-remodelled atrial tissues. A stochastic algorithm, which generated fibrotic distributions with controlled overall amount, average size, and orientation of fibrosis elements, was implemented on a monolayer spheric atrial model. 245 simulations were run at changing fibrosis parameters. The emerging propagation patterns were quantified in terms of rate, regularity, and coupling by frequency-domain analysis of correspondent synthetic bipolar electrograms. At the increase of fibrosis amount, the rate of reentrant waves significantly decreased and higher levels of regularity and coupling were observed (p < 0.0001). Higher spatial variability and pattern stochasticity over repetitions was observed for larger amount of fibrosis, especially in the presence of patchy and compact fibrosis. Overall, propagation slowing and organization led to higher stability of re-entrant waves. These results strengthen the evidence that the amount and spatial distribution of fibrosis concur in dictating re-entry dynamics in remodeled tissue and represent key factors in AF maintenance.
Collapse
Affiliation(s)
- Michela Masè
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy.
| | - Alessandro Cristoforetti
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Samuele Pelloni
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Flavia Ravelli
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
- CISMed-Centre for Medical Sciences, University of Trento, 38122, Trento, Italy
| |
Collapse
|
10
|
Roney CH, Solis Lemus JA, Lopez Barrera C, Zolotarev A, Ulgen O, Kerfoot E, Bevis L, Misghina S, Vidal Horrach C, Jaffery OA, Ehnesh M, Rodero C, Dharmaprani D, Ríos-Muñoz GR, Ganesan A, Good WW, Neic A, Plank G, Hopman LHGA, Götte MJW, Honarbakhsh S, Narayan SM, Vigmond E, Niederer S. Constructing bilayer and volumetric atrial models at scale. Interface Focus 2023; 13:20230038. [PMID: 38106921 PMCID: PMC10722212 DOI: 10.1098/rsfs.2023.0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).
Collapse
Affiliation(s)
- Caroline H. Roney
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Jose Alonso Solis Lemus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Carlos Lopez Barrera
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Center for Research in Advanced Materials S.C (CIMAV), Chihuahua, Mexico
| | - Alexander Zolotarev
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Onur Ulgen
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Eric Kerfoot
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Laura Bevis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Semhar Misghina
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Caterina Vidal Horrach
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Ovais A. Jaffery
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Mahmoud Ehnesh
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Cristobal Rodero
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Gonzalo R. Ríos-Muñoz
- Bioengineering Department, Universidad Carlos III de Madrid, Madrid 28911, Spain
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid 28007, Spain
- Center for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid 28029, Spain
| | - Anand Ganesan
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | - Gernot Plank
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | | | - Shohreh Honarbakhsh
- Electrophysiology Department, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Sanjiv M. Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Edward Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
- IMB, UMR 5251, University Bordeaux, Talence 33400, France
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Turing Research and Innovation Cluster in Digital Twins (TRIC: DT), The Alan Turing Institute, London, UK
| |
Collapse
|
11
|
Gillette K, Gsell MAF, Nagel C, Bender J, Winkler B, Williams SE, Bär M, Schäffter T, Dössel O, Plank G, Loewe A. MedalCare-XL: 16,900 healthy and pathological synthetic 12 lead ECGs from electrophysiological simulations. Sci Data 2023; 10:531. [PMID: 37553349 PMCID: PMC10409805 DOI: 10.1038/s41597-023-02416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 sub-classes. A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity. The ECG database is split into training, validation, and test folds for development and objective assessment of novel machine learning algorithms.
Collapse
Affiliation(s)
- Karli Gillette
- Gottfried Schatz Research Center: Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center: Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria
| | - Claudia Nagel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jule Bender
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Benjamin Winkler
- Physikalisch-Technische Bundesanstalt, National Metrology Institute, Berlin, Germany
| | - Steven E Williams
- King's College London, London, United Kingdom
- University of Edinburgh, Edinburgh, United Kingdom
| | - Markus Bär
- Physikalisch-Technische Bundesanstalt, National Metrology Institute, Berlin, Germany
| | - Tobias Schäffter
- Physikalisch-Technische Bundesanstalt, National Metrology Institute, Berlin, Germany
- King's College London, London, United Kingdom
- Biomedical Engineering, Technische Universität Berlin, Einstein Centre Digital Future, Berlin, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
12
|
Telle Å, Bargellini C, Chahine Y, del Álamo JC, Akoum N, Boyle PM. Personalized biomechanical insights in atrial fibrillation: opportunities & challenges. Expert Rev Cardiovasc Ther 2023; 21:817-837. [PMID: 37878350 PMCID: PMC10841537 DOI: 10.1080/14779072.2023.2273896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Atrial fibrillation (AF) is an increasingly prevalent and significant worldwide health problem. Manifested as an irregular atrial electrophysiological activation, it is associated with many serious health complications. AF affects the biomechanical function of the heart as contraction follows the electrical activation, subsequently leading to reduced blood flow. The underlying mechanisms behind AF are not fully understood, but it is known that AF is highly correlated with the presence of atrial fibrosis, and with a manifold increase in risk of stroke. AREAS COVERED In this review, we focus on biomechanical aspects in atrial fibrillation, current and emerging use of clinical images, and personalized computational models. We also discuss how these can be used to provide patient-specific care. EXPERT OPINION Understanding the connection betweenatrial fibrillation and atrial remodeling might lead to valuable understanding of stroke and heart failure pathophysiology. Established and emerging imaging modalities can bring us closer to this understanding, especially with continued advancements in processing accuracy, reproducibility, and clinical relevance of the associated technologies. Computational models of cardiac electromechanics can be used to glean additional insights on the roles of AF and remodeling in heart function.
Collapse
Affiliation(s)
- Åshild Telle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Clarissa Bargellini
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Juan C. del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Nazem Akoum
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|