1
|
Guo J, Wang G, Tang W, Song D, Wang X, Hong J, Zhang Z. An optimized approach using cryofixation for high-resolution 3D analysis by FIB-SEM. J Struct Biol 2020; 212:107600. [PMID: 32798655 DOI: 10.1016/j.jsb.2020.107600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/10/2023]
Abstract
Compared with conventional two-dimensional transmission electron microscopy (TEM), focused ion beam scanning electron microscopy (FIB-SEM) can provide more comprehensive 3D information on cell substructures at the nanometer scale. Biological samples prepared by cryofixation using high-pressure freezing demonstrate optimal preservation of the morphology of cellular structures, as these are arrested instantly in their near-native states. However, samples from cryofixation often show a weak back-scatter electron signal and bad image contrast in FIB-SEM imaging. In addition, it is impossible to do large amounts of heavy metal staining. This is commonly achieved via established osmium impregnation (OTO) en bloc staining protocols. Here, we compared the FIB-SEM image quality of brain tissues prepared using several common freeze-substitution media, and we developed an approach that overcomes these limitations through a combination of osmium tetroxide, uranyl acetate, tannic acid, and potassium permanganate at proper concentrations, respectively. Using this optimized sample preparation protocol for high-pressure freezing and freeze-substitution, perfect smooth membrane morphology, even of the lipid bilayers of the cell membrane, was readily obtained using FIB-SEM. In addition, our protocol is broadly applicable and we demonstrated successful application to brain tissues, plant tissues, Caenorhabditis elegans, Candida albicans, and chlorella. This approach combines the potential of cryofixation for 3D large volume analysis of subcellular structures with the high-resolution capabilities of FIB-SEM.
Collapse
Affiliation(s)
- Jiansheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China; Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China
| | - Guan Wang
- Department of Neurobiology, Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China
| | - Wen Tang
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China
| | - Dandan Song
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China
| | - Xinqiu Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jian Hong
- Center of Analysis and Measurement, Zhejiang University, Hangzhou 310029, China
| | - Zhongkai Zhang
- Biotechnology and Genetic Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation Ministry of Agriculture and Rural Affairs, Key Lab of Agricultural Biotechnology of Yunnan Province, Kunming 650205, Yunnan, China.
| |
Collapse
|
2
|
Ismagulova T, Shebanova A, Gorelova O, Baulina O, Solovchenko A. A new simple method for quantification and locating P and N reserves in microalgal cells based on energy-filtered transmission electron microscopy (EFTEM) elemental maps. PLoS One 2018; 13:e0208830. [PMID: 30533056 PMCID: PMC6289464 DOI: 10.1371/journal.pone.0208830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
We established a new simple approach to study phosphorus (P) and nitrogen (N) reserves at subcellular level potentially applicable to various types of cells capable of accumulating P- and/or N-rich inclusions. Here, we report on using this approach for locating and assessing the abundance of the P and N reserves in microalgal and cyanobacterial cells. The approach includes separation of the signal from P- or N-rich structures from noise on the energy-filtered transmission electron microscopy (EFTEM) P- or N-maps. The separation includes (i) relative entropy estimation for each pixel of the map, (ii) binary thresholding of the map, and (iii) segmenting the image to assess the inclusion relative area and localization in the cell section. The separation is based on comparing the a posteriori probability that a pixel of the map contains information about the sample vs. Gaussian a priori probability that the pixel contains noise. The difference is expressed as relative entropy value for the pixel; positive values are characteristic of the pixels containing the payload information about the sample. This is the first known method for quantification and locating at a subcellular level P-rich and N-rich inclusions including tiny (< 180 nm) structures. We demonstrated the applicability of the proposed method both to the cells of eukaryotic green microalgae and cyanobacteria. Using the new method, we elucidated the heterogeneity of the studied cells in accumulation of P and N reserves across different species. The proposed approach will be handy for any cytological and microbiological study requiring a comparative assessment of subcellular distribution of cyanophycin, polyphosphates or other type of P- or N-rich inclusions. An added value is the potential of this approach for automation of the data processing and evaluation enabling an unprecedented increase of the EFTEM analysis throughput.
Collapse
Affiliation(s)
- Tatiana Ismagulova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Anastasia Shebanova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Baulina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Eurasian Centre for Food Security, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Tsang TK, Bushong EA, Boassa D, Hu J, Romoli B, Phan S, Dulcis D, Su CY, Ellisman MH. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues. eLife 2018; 7:35524. [PMID: 29749931 PMCID: PMC5988420 DOI: 10.7554/elife.35524] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications.
Collapse
Affiliation(s)
- Tin Ki Tsang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Junru Hu
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Benedetto Romoli
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, United States
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, United States
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, United States
| |
Collapse
|
4
|
|
5
|
Sheader AA, Varambhia AM, Fleck RA, Flatters SJL, Nellist PD. Observation of metal nanoparticles at atomic resolution in Pt-based cancer chemotherapeutics. J Microsc 2017; 270:92-97. [PMID: 29091266 DOI: 10.1111/jmi.12659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
The chemotherapeutics cisplatin and oxaliplatin are important tools in the fight against cancer. Both compounds are platinum complexes. Aberration-corrected scanning transmission electron microscopy using the annular dark-field imaging mode now routinely provides single-atom sensitivity with atomic number contrast. Here, this imaging mode is used to directly image the platinum within the two drugs in their dried form on an amorphous carbon support film. The oxaliplatin is found to have wetted the supporting amorphous carbon, forming disordered clusters suggesting that the platinum has remained within the complex. Conversely, the cisplatin sample reveals 1.8-nm-diameter metallic platinum clusters. The size and shape of the clusters do not appear to be dependent on drying rate nor formed by beam damage, which may suggest that they were present in the original drug solution.
Collapse
Affiliation(s)
- A A Sheader
- Department of Materials, University of Oxford, Oxford, U.K
| | - A M Varambhia
- Department of Materials, University of Oxford, Oxford, U.K
| | - R A Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, U.K
| | - S J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, U.K
| | - P D Nellist
- Department of Materials, University of Oxford, Oxford, U.K
| |
Collapse
|
6
|
Mapping brain structure and function: cellular resolution, global perspective. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:245-264. [PMID: 28341866 DOI: 10.1007/s00359-017-1163-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.
Collapse
|
7
|
Hermelink A, Naumann D, Piesker J, Lasch P, Laue M, Hermann P. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 2017; 142:1342-1349. [DOI: 10.1039/c6an02151d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The morphology and structure of biological nanoparticles, such as viruses, can be efficiently analysed by transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- A. Hermelink
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - D. Naumann
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - J. Piesker
- Centre for Biological Threats and Special Pathogens – Advanced Light and Electron Microscopy (ZBS4)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - P. Lasch
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - M. Laue
- Centre for Biological Threats and Special Pathogens – Advanced Light and Electron Microscopy (ZBS4)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - P. Hermann
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
- Physikalisch-Technische Bundesanstalt (PTB)
| |
Collapse
|
8
|
Kumar S, Filippi MD. An Alternative Approach for Sample Preparation with Low Cell Number for TEM Analysis. J Vis Exp 2016. [PMID: 27768053 DOI: 10.3791/54724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transmission electron microscopy (TEM) provides details of the cellular organization and ultrastructure. However, TEM analysis of rare cell populations, especially cells in suspension such as hematopoietic stem cells (HSCs), remains limited due to the requirement of a high cell number during sample preparation. There are a few cytospin or monolayer approaches for TEM analysis from scarce samples, but these approaches fail to get significant quantitative data from the limited number of cells. Here, an alternative and novel approach for sample preparation in TEM studies is described for rare cell populations that enables quantitative analysis. A relatively low cell number, i.e., 10,000 HSCs, was successfully used for TEM analysis compared to the millions of cells typically used for TEM studies. In particular, Evans blue staining was performed after paraformaldehyde-glutaraldehyde (PFA-GA) fixation to visualize the tiny cell pellet, which facilitated embedding in agarose. Clusters of numerous cells were observed in ultra-thin sections. The cells had a well preserved morphology, and the ultra-structural details of the Golgi complex and several mitochondria were visible. This efficient, easy and reproducible protocol allows sample preparation from a low cell number and can be used for qualitative and quantitative TEM analysis on rare cell populations from limited biological samples.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation;
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation;
| |
Collapse
|
9
|
Kumar S, Ciraolo G, Hinge A, Filippi MD. An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations. J Immunol Methods 2013; 404:87-90. [PMID: 24291346 DOI: 10.1016/j.jim.2013.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
Abstract
Transmission electron microscopy (TEM) provides ultra-structural details of cells at the sub-organelle level. However, details of the cellular ultrastructure, and the cellular organization and content of various organelles in rare populations, particularly in the suspension, like hematopoietic stem cells (HSCs) remained elusive. This is mainly due to the requirement of millions of cells for TEM studies. Thus, there is a vital requirement of a method that will allow TEM studies with low cell numbers of such rare populations. We describe an alternative and novel approach for TEM studies for rare cell populations. Here we performed a TEM study from 10,000 HSC cells with relative ease. In particular, tiny cell pellets were identified by Evans blue staining after PFA-GA fixation. The cell pellet was pre-embedded in agarose in a small microcentrifuge tube and processed for dehydration, infiltration and embedding. Semi-thin and ultra-thin sections identified clusters of numerous cells per sections with well preserved morphology and ultrastructural details of golgi complex and mitochondria. Together, this method provides an efficient, easy and reproducible process to perform qualitative and quantitative TEM analysis from limited biological samples including cells in suspension.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Georgianne Ciraolo
- Electron microscopy Unit, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Ashwini Hinge
- Division of Experimental Hematology and Cancer Biology, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Pivovarova NB, Andrews SB. Measurement of total calcium in neurons by electron probe X-ray microanalysis. J Vis Exp 2013:e50807. [PMID: 24300079 DOI: 10.3791/50807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance.
Collapse
Affiliation(s)
- Natalia B Pivovarova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | | |
Collapse
|
11
|
Affiliation(s)
- F Braet
- Australian Key Centre for Microscopy and Microanalysis (AKCMM), Electron Microscopy Unit, The University of Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Vogels IMC, Hoeben KA, Van Noorden CJF. Rapid combined light and electron microscopy on large frozen biological samples. J Microsc 2009; 235:252-8. [PMID: 19754720 DOI: 10.1111/j.1365-2818.2009.03225.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of large unfixed frozen tissue samples (10 x 10 x 5 mm(3)) for combined light microscopy (LM) and electron microscopy (EM) is described. First, cryostat sections are applied for various LM histochemical approaches including in situ hybridization, immunohistochemistry and metabolic mapping (enzyme histochemistry). When EM inspection is needed, the tissue blocks that were used for cryostat sectioning and are stored at -80 degrees C, are then fixed at 4 degrees C with glutaraldehyde/paraformaldehyde and prepared for EM according to standard procedures. Ultrastructurally, most morphological aspects of normal and pathological tissue are retained whereas cryostat sectioning at -25 degrees C does not have serious damaging effects on the ultrastructure. This approach allows simple and rapid combined LM and EM of relatively large tissue specimens with acceptable ultrastructure. Its use is demonstrated with the elucidation of transdifferentiated mouse stromal elements in human pancreatic adenocarcinoma explants grown subcutaneously in nude mice. Combined LM and EM analysis revealed that these elements resemble cartilage showing enchondral mineralization and aberrant muscle fibres with characteristics of skeletal muscle cells.
Collapse
Affiliation(s)
- I M C Vogels
- Department of Cell Biology and Histology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Milne JLS, Subramaniam S. Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 2009; 7:666-75. [PMID: 19668224 PMCID: PMC6993139 DOI: 10.1038/nrmicro2183] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in three-dimensional electron microscopy provide remarkable tools to image the interior of bacterial cells. Glimpses of cells at resolutions that are 1-2 orders of magnitude higher than those currently attained with light microscopy can now be obtained with cryo-electron tomography, especially when used in combination with new tools for image averaging. This Review highlights recent advances in this area and provides an assessment of the general applicability, current limitations and type of structural information that can be obtained about the organization of intact cells using tomography. Possible future directions for whole cell imaging are also discussed.
Collapse
Affiliation(s)
- Jacqueline L S Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Shaw JA, Macey DJ, Brooker LR, Stockdale EJ, Saunders M, Clode PL. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2009; 15:154-165. [PMID: 19284897 DOI: 10.1017/s1431927609090230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cusp epithelium is a specialized branch of the superior epithelium that surrounds the developing teeth of chitons and is responsible for delivering the elements required for the formation of biominerals within the major lateral teeth. These biominerals are deposited within specific regions of the tooth in sequence, making it possible to conduct a row by row examination of cell development in the cusp epithelium as the teeth progress from the unmineralized to the mineralized state. Cusp epithelium from the chiton Acanthopleura hirtosa was prepared using conventional chemical and microwave assisted tissue processing, for observation by light microscopy, conventional transmission electron microscopy (TEM) and energy filtered TEM. The onset of iron mineralization within the teeth, initiated at row 13, is associated with a number of dramatic changes in the ultrastructure of the apical cusp cell epithelium. Specifically, the presence of ferritin containing siderosomes, the position and number of mitochondria, and the structure of the cell microvilli are each linked to aspects of the mineralization process. These changes in tissue development are discussed in context with their influence over the physiological conditions within both the cells and extracellular compartment of the tooth at the onset of iron mineralization.
Collapse
Affiliation(s)
- Jeremy A Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Plitzko JM, Rigort A, Leis A. Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. Curr Opin Biotechnol 2009; 20:83-9. [DOI: 10.1016/j.copbio.2009.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/16/2009] [Indexed: 12/28/2022]
|
16
|
JONIĆ S, SORZANO C, BOISSET N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc 2008; 232:562-79. [DOI: 10.1111/j.1365-2818.2008.02119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Eder M, Lütz-Meindl U. Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 2008; 231:201-14. [PMID: 18778418 DOI: 10.1111/j.1365-2818.2008.02036.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pectins are the major matrix polysaccharides of plant cell walls and are important for controlling growth, wall porosity and regulation of the ionic environment in plant cells. Pectic epitopes recognized by the monoclonal antibodies JIM5, JIM7 and 2F4 could be localized in the primary wall during development of the green alga Micrasterias. As the degree of pectin esterification determines the calcium-binding capacity and thus the physical properties of the cell wall, chemical and enzymatic in situ de-esterification was performed. This resulted in displacement of epitopes recognized by JIM5, JIM7 and 2F4, respectively, in changes in the intensity of the antibody labelling as visualized in CLSM. In addition, calcium-binding capacities of cell walls and components of the secretory apparatus were determined in transmission electron microscopy by electron energy loss spectroscopy and electron spectroscopic imaging. These analyses revealed that pectic polysaccharides are transported to the cell wall in a de-esterified form. At the primary wall, pectins get methyl-esterified at the inner side, thus allowing flexibility of the wall. At the outer side of the wall they become again de-esterified and bind high amounts of calcium which leads to cell wall stiffening. Mucilage vesicles possess the highest calcium-binding capacity of all structures observed in Micrasterias, indicating that the pectic polysaccharides of mucilage are secreted in a de-esterified, compact form. When mucilage is excreted through the cell wall, it loses its ability to bind calcium. The esterification of pectins involved is obviously required for swelling of mucilage by water uptake, which generates the motive force for orientation of this unicellular organism in respect to light. Incubation of Micrasterias in pectin methylesterase (PME), which de-esterifies pectic polymers in higher plants, resulted in growth inhibition, cell shape malformation and primary wall thickening. A PME-like enzyme could be found in Micrasterias by PME activity assays.
Collapse
Affiliation(s)
- M Eder
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | |
Collapse
|
18
|
Jahn KA, Braet F. Monitoring membrane rafts in colorectal cancer cells by means of correlative fluorescence electron microscopy (CFEM). Micron 2008; 39:1393-7. [PMID: 18495485 DOI: 10.1016/j.micron.2008.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 12/20/2022]
Abstract
Detergent-resistant membrane (DRM) rafts have been shown to play a pivotal role in regulating key cell biological processes, such as signal transduction, cellular transport and cell survival. The fine structure of membrane rafts are studied using various different imaging approaches and the outcomes are largely dependent on the detection methodology applied. All these microscopy techniques which employ light-, laser- and photon-optics, electrons as well as atomic force probing are characterized on their turn by their strengths and limitations for membrane raft identification. This explains in part the diversity of definitions available to describe these peculiar membrane structures. We present herewith an alternative and uncomplicated microscopy tool to study fluorescently labelled DRMs with information at the transmission electron microscopical level of the same cell, enabling us to obtain a snapshot of the morpho-functional relationships between the cell's interior and DRMs. The proposed approach of correlative fluorescence electron microscopy (CFEM) can therefore be considered as an additional alternative imaging approach to unravel DRM structure-function relationships from micro- to nanometre length scales, from the cell to the molecule.
Collapse
Affiliation(s)
- Kristina A Jahn
- Australian Key Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
19
|
Mühlfeld C, Rothen-Rutishauser B, Vanhecke D, Blank F, Gehr P, Ochs M. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol 2007; 4:11. [PMID: 17996124 PMCID: PMC2211502 DOI: 10.1186/1743-8977-4-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/12/2007] [Indexed: 11/11/2022] Open
Abstract
Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | | | - Dimitri Vanhecke
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Fabian Blank
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Peter Gehr
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Matthias Ochs
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| |
Collapse
|
20
|
Braet F, Ratinac K. Creating next-generation microscopists: structural and molecular biology at the crossroads. J Cell Mol Med 2007; 11:759-63. [PMID: 17760837 PMCID: PMC3823254 DOI: 10.1111/j.1582-4934.2007.00072.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This paper highlights the importance of advanced microscopy and microanalysis in the pursuit of quality research in the biological and life sciences.With the growing complexity of modern microscopes, there is substantial risk of incorrect use or misinterpretation of data by the inexperienced researcher. This paper emphasizes the need for collaboration between biological microscopists and molecular biologists, within the context of centralized facilities and supported by first-class training, to fully realize the power of these unique instruments in modern biology and to create the next generation of molecular microscopists.
Collapse
Affiliation(s)
- F Braet
- Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
21
|
Sorzano COS, Jonic S, Cottevieille M, Larquet E, Boisset N, Marco S. 3D electron microscopy of biological nanomachines: principles and applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:995-1013. [PMID: 17611751 DOI: 10.1007/s00249-007-0203-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 06/01/2007] [Accepted: 06/11/2007] [Indexed: 11/21/2022]
Abstract
Transmission electron microscopy is a powerful technique for studying the three-dimensional (3D) structure of a wide range of biological specimens. Knowledge of this structure is crucial for fully understanding complex relationships among macromolecular complexes and organelles in living cells. In this paper, we present the principles and main application domains of 3D transmission electron microscopy in structural biology. Moreover, we survey current developments needed in this field, and discuss the close relationship of 3D transmission electron microscopy with other experimental techniques aimed at obtaining structural and dynamical information from the scale of whole living cells to atomic structure of macromolecular complexes.
Collapse
Affiliation(s)
- C O S Sorzano
- Bioengineering Lab, Escuela Politécnica Superior, Univ. San Pablo CEU, Campus Urb, Montepríncipe s/n, 28668, Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Lütz-Meindl U. Use of energy filtering transmission electron microscopy for image generation and element analysis in plant organisms. Micron 2007; 38:181-96. [PMID: 16766193 DOI: 10.1016/j.micron.2006.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/16/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Energy filtering TEM (EFTEM) with modern spectrometers and software offers new possibilities for element analysis and image generation in plant cells. In the present review, applications of EFTEM in plant physiology, such as identification of light elements and ion transport, analyses of natural cell incrustations, determination of element exchange between fungi and rootlets during mycorrhiza development, heavy metal storage and detoxification, and employment in plant physiological experiments are summarized. In addition, it is demonstrated that EFTEM can be successfully used in more practical approaches, for example, in phytoremediation, food and wood industry, and agriculture. Preparation methods for plant material as prerequisites for EFTEM analysis are compared with respect to their suitability and technical problems are discussed.
Collapse
Affiliation(s)
- Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria.
| |
Collapse
|
23
|
Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 2007; 70:230-42. [PMID: 17279510 DOI: 10.1002/jemt.20408] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tchelidze P, Sauvage C, Bonnet N, Kilian L, Beorchia A, O'Donohue MF, Ploton D, Kaplan H. Electron tomography of amplified nanogold immunolabelling: Improvement of quality based on alignment of projections with sinograms and use of post-reconstruction deconvolution. J Struct Biol 2006; 156:421-31. [PMID: 16919476 DOI: 10.1016/j.jsb.2006.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 11/19/2022]
Abstract
Electron tomography of immunolabelled proteins identified with amplified nanogold particles imaged by Scanning and Transmission Electron Microscopy within thick sections is a powerful method to investigate the three-dimensional organization of complex cellular machineries. In order to increase the overall quality of the reconstructed cube, we have developed two methods that improve the tomographic reconstruction process. We first performed a very precise alignment of the projections before reconstruction with a technique using sinograms. After reconstruction, we propose to compute image restoration by calculating the Point Spread Function of the projection/back-projection system and to use it to deblur the reconstructed cubes. Improvement in the quality of the reconstructed cubes is demonstrated on images of nucleolar proteins tagged with EGFP and immunolabelled with nanogold particles.
Collapse
Affiliation(s)
- P Tchelidze
- Unité MéDIAN, CNRS UMR 6142, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Briggman KL, Denk W. Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 2006; 16:562-70. [PMID: 16962767 DOI: 10.1016/j.conb.2006.08.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Electron microscopy is the only currently available technique with a resolution adequate to identify and follow every axon and dendrite in dense neuropil. Reconstructions of large volumes of neural tissue, necessary to reconstruct even local neural circuits, have, however, been inhibited by the daunting task of serially sectioning and reconstructing thousands of sections. Recent technological developments have improved the quality of volume electron microscopy data and automated its acquisition. This opens up the prospect of reconstructing almost complete invertebrate and sizable fractions of vertebrate nervous systems. Such reconstructions of complete neural wiring diagrams could rekindle the tradition of relating neural function to the underlying neuroanatomical circuitry.
Collapse
Affiliation(s)
- Kevin L Briggman
- Max-Planck Institute for Medical Research, Jahnstrasse 29,69120 Heidelberg, Germany
| | | |
Collapse
|
26
|
Zeuschner D, Geerts WJC, van Donselaar E, Humbel BM, Slot JW, Koster AJ, Klumperman J. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 2006; 8:377-83. [PMID: 16531996 DOI: 10.1038/ncb1371] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/05/2006] [Indexed: 01/16/2023]
Abstract
Transport from the endoplasmic reticulum (ER) to the Golgi complex requires assembly of the COPII coat complex at ER exit sites. Recent studies have raised the question as to whether in mammalian cells COPII coats give rise to COPII-coated transport vesicles or instead form ER sub-domains that collect proteins for transport via non-coated carriers. To establish whether COPII-coated vesicles do exist in vivo, we developed approaches to combine quantitative immunogold labelling (to identify COPII) and three-dimensional electron tomography (to reconstruct entire membrane structures). In tomograms of both chemically fixed and high-pressure-frozen HepG2 cells, immuno-labelled COPII was found on ER-associated buds as well as on free approximately 50-nm diameter vesicles. In addition, we identified a novel type of COPII-coated structure that consists of partially COPII-coated, 150-200-nm long, dumb-bell-shaped tubules. Both COPII-coated carriers also contain the SNARE protein Sec22b, which is necessary for downstream fusion events. Our studies unambiguously establish the existence of free, bona fide COPII-coated transport carriers at the ER-Golgi interface, suggesting that assembly of COPII coats in vivo can result in vesicle formation.
Collapse
Affiliation(s)
- Dagmar Zeuschner
- Department of Cell Biology, Institute of Biomembranes, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 2005; 152:36-51. [PMID: 16182563 DOI: 10.1016/j.jsb.2005.07.007] [Citation(s) in RCA: 3802] [Impact Index Per Article: 190.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/14/2005] [Accepted: 07/20/2005] [Indexed: 11/24/2022]
Abstract
A new method was developed to acquire images automatically at a series of specimen tilts, as required for tomographic reconstruction. The method uses changes in specimen position at previous tilt angles to predict the position at the current tilt angle. Actual measurement of the position or focus is skipped if the statistical error of the prediction is low enough. This method allows a tilt series to be acquired rapidly when conditions are good but falls back toward the traditional approach of taking focusing and tracking images when necessary. The method has been implemented in a program, SerialEM, that provides an efficient environment for data acquisition. This program includes control of an energy filter as well as a low-dose imaging mode, in which tracking and focusing occur away from the area of interest. The program can automatically acquire a montage of overlapping frames, allowing tomography of areas larger than the field of the CCD camera. It also includes tools for navigating between specimen positions and finding regions of interest.
Collapse
Affiliation(s)
- David N Mastronarde
- Boulder Laboratory for Three-Dimensional Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
28
|
Marsh BJ. Lessons from tomographic studies of the mammalian Golgi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:273-92. [PMID: 15896857 DOI: 10.1016/j.bbamcr.2005.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/22/2022]
Abstract
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure-function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space.
Collapse
Affiliation(s)
- Brad J Marsh
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, and School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
29
|
Abstract
Electron microscopy is arguably the most powerful tool for spatial imaging of structures. As such, 2D and 3D microscopies provide static structures with subnanometer and increasingly with angstrom-scale spatial resolution. Here we report the development of 4D ultrafast electron microscopy, whose capability imparts another dimension to imaging in general and to dynamics in particular. We demonstrate its versatility by recording images and diffraction patterns of crystalline and amorphous materials and images of biological cells. The electron packets, which were generated with femtosecond laser pulses, have a de Broglie wavelength of 0.0335 angstroms at 120 keV and have as low as one electron per pulse. With such few particles, doses of few electrons per square ångstrom, and ultrafast temporal duration, the long sought after but hitherto unrealized quest for ultrafast electron microscopy has been realized. Ultrafast electron microscopy should have an impact on all areas of microscopy, including biological imaging.
Collapse
Affiliation(s)
- Vladimir A Lobastov
- Laboratory for Molecular Sciences, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|