1
|
Gugel ZV, Maurais EG, Hong EJ. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of Drosophila olfactory processing. eLife 2023; 12:e85443. [PMID: 37195027 PMCID: PMC10229125 DOI: 10.7554/elife.85443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 05/18/2023] Open
Abstract
In insects and mammals, olfactory experience in early life alters olfactory behavior and function in later life. In the vinegar fly Drosophila, flies chronically exposed to a high concentration of a monomolecular odor exhibit reduced behavioral aversion to the familiar odor when it is reencountered. This change in olfactory behavior has been attributed to selective decreases in the sensitivity of second-order olfactory projection neurons (PNs) in the antennal lobe that respond to the overrepresented odor. However, since odorant compounds do not occur at similarly high concentrations in natural sources, the role of odor experience-dependent plasticity in natural environments is unclear. Here, we investigated olfactory plasticity in the antennal lobe of flies chronically exposed to odors at concentrations that are typically encountered in natural odor sources. These stimuli were chosen to each strongly and selectively excite a single class of primary olfactory receptor neuron (ORN), thus facilitating a rigorous assessment of the selectivity of olfactory plasticity for PNs directly excited by overrepresented stimuli. Unexpectedly, we found that chronic exposure to three such odors did not result in decreased PN sensitivity but rather mildly increased responses to weak stimuli in most PN types. Odor-evoked PN activity in response to stronger stimuli was mostly unaffected by odor experience. When present, plasticity was observed broadly in multiple PN types and thus was not selective for PNs receiving direct input from the chronically active ORNs. We further investigated the DL5 olfactory coding channel and found that chronic odor-mediated excitation of its input ORNs did not affect PN intrinsic properties, local inhibitory innervation, ORN responses or ORN-PN synaptic strength; however, broad-acting lateral excitation evoked by some odors was increased. These results show that PN odor coding is only mildly affected by strong persistent activation of a single olfactory input, highlighting the stability of early stages of insect olfactory processing to significant perturbations in the sensory environment.
Collapse
Affiliation(s)
- Zhannetta V Gugel
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth G Maurais
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
2
|
Haploinsufficiency of Shank3 increases the orientation selectivity of V1 neurons. Sci Rep 2022; 12:22230. [PMID: 36564435 PMCID: PMC9789112 DOI: 10.1038/s41598-022-26402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose hallmarks are social deficits, language impairment, repetitive behaviors, and sensory alterations. It has been reported that patients with ASD show differential activity in cortical regions, for instance, increased neuronal activity in visual processing brain areas and atypical visual perception compared with healthy subjects. The causes of these alterations remain unclear, although many studies demonstrate that ASD has a strong genetic correlation. An example is Phelan-McDermid syndrome, caused by a deletion of the Shank3 gene in one allele of chromosome 22. However, the neuronal consequences relating to the haploinsufficiency of Shank3 in the brain remain unknown. Given that sensory abnormalities are often present along with the core symptoms of ASD, our goal was to study the tuning properties of the primary visual cortex to orientation and direction in awake, head-fixed Shank3+/- mice. We recorded neural activity in vivo in response to visual gratings in the primary visual cortex from a mouse model of ASD (Shank3+/- mice) using the genetically encoded calcium indicator GCaMP6f, imaged with a two-photon microscope through a cranial window. We found that Shank3+/- mice showed a higher proportion of neurons responsive to drifting gratings stimuli than wild-type mice. Shank3+/- mice also show increased responses to some specific stimuli. Furthermore, analyzing the distributions of neurons for the tuning width, we found that Shank3+/- mice have narrower tuning widths, which was corroborated by analyzing the orientation selectivity. Regarding this, Shank3+/- mice have a higher proportion of selective neurons, specifically neurons showing increased selectivity to orientation but not direction. Thus, the haploinsufficiency of Shank3 modified the neuronal response of the primary visual cortex.
Collapse
|
3
|
Tyson TL, Feick NH, Cravalho PF, Flynn-Evans EE, Stone LS. Dose-dependent sensorimotor impairment in human ocular tracking after acute low-dose alcohol administration. J Physiol 2020; 599:1225-1242. [PMID: 33332605 PMCID: PMC7898833 DOI: 10.1113/jp280395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 11/08/2022] Open
Abstract
Key points Oculomotor behaviours are commonly used to evaluate sensorimotor disruption due to ethanol (EtOH). The current study demonstrates the dose‐dependent impairment in oculomotor and ocular behaviours across a range of ultra‐low BACs (<0.035%). Processing of target speed and direction, as well as pursuit eye movements, are significantly impaired at 0.015% BAC, suggesting impaired neural activity within brain regions associated with the visual processing of motion. Catch‐up saccades during steady visual tracking of the moving target compensate for the reduced vigour of smooth eye movements that occurs with the ingestion of low‐dose alcohol. Saccade dynamics start to become ‘sluggish’ at as low as 0.035% BAC. Pupillary light responses appear unaffected at BAC levels up to 0.065%.
Abstract Changes in oculomotor behaviours are often used as metrics of sensorimotor disruption due to ethanol (EtOH); however, previous studies have focused on deficits at blood‐alcohol concentrations (BACs) above about 0.04%. We investigated the dose dependence of the impairment in oculomotor and ocular behaviours caused by EtOH administration across a range of ultra‐low BACs (≤0.035%). We took repeated measures of oculomotor and ocular performance from sixteen participants, both pre‐ and post‐EtOH administration. To assess the neurological impacts across a wide range of brain areas and pathways, our protocol measured 21 largely independent performance metrics extracted from a range of behavioural responses ranging from ocular tracking of radial step‐ramp stimuli, to eccentric gaze holding, to pupillary responses evoked by light flashes. Our results show significant impairment of pursuit and visual motion processing at 0.015% BAC, reflecting degraded neural processing within extrastriate cortical pathways. However, catch‐up saccades largely compensate for the tracking displacement shortfall caused by low pursuit gain, although there still is significant residual retinal slip and thus degraded dynamic acuity. Furthermore, although saccades are more frequent, their dynamics are more sluggish (i.e. show lower peak velocities) starting at BAC levels as low as 0.035%. Small effects in eccentric gaze holding and no effect in pupillary response dynamics were observed at levels below 0.07%, showing the higher sensitivity of the pursuit response to very low levels of blood alcohol, under the conditions of our study. Oculomotor behaviours are commonly used to evaluate sensorimotor disruption due to ethanol (EtOH). The current study demonstrates the dose‐dependent impairment in oculomotor and ocular behaviours across a range of ultra‐low BACs (<0.035%). Processing of target speed and direction, as well as pursuit eye movements, are significantly impaired at 0.015% BAC, suggesting impaired neural activity within brain regions associated with the visual processing of motion. Catch‐up saccades during steady visual tracking of the moving target compensate for the reduced vigour of smooth eye movements that occurs with the ingestion of low‐dose alcohol. Saccade dynamics start to become ‘sluggish’ at as low as 0.035% BAC. Pupillary light responses appear unaffected at BAC levels up to 0.065%.
Collapse
Affiliation(s)
- Terence L Tyson
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Leland S Stone
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
4
|
Borghuis BG, Tadin D, Lankheet MJ, Lappin JS, van de Grind WA. Temporal Limits of Visual Motion Processing: Psychophysics and Neurophysiology. Vision (Basel) 2019; 3:vision3010005. [PMID: 31735806 PMCID: PMC6802765 DOI: 10.3390/vision3010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Under optimal conditions, just 3–6 ms of visual stimulation suffices for humans to see motion. Motion perception on this timescale implies that the visual system under these conditions reliably encodes, transmits, and processes neural signals with near-millisecond precision. Motivated by in vitro evidence for high temporal precision of motion signals in the primate retina, we investigated how neuronal and perceptual limits of motion encoding relate. Specifically, we examined the correspondence between the time scale at which cat retinal ganglion cells in vivo represent motion information and temporal thresholds for human motion discrimination. The timescale for motion encoding by ganglion cells ranged from 4.6 to 91 ms, and depended non-linearly on temporal frequency, but not on contrast. Human psychophysics revealed that minimal stimulus durations required for perceiving motion direction were similarly brief, 5.6–65 ms, and similarly depended on temporal frequency but, above ~10%, not on contrast. Notably, physiological and psychophysical measurements corresponded closely throughout (r = 0.99), despite more than a 20-fold variation in both human thresholds and optimal timescales for motion encoding in the retina. The match in absolute values of the neurophysiological and psychophysical data may be taken to indicate that from the lateral geniculate nucleus (LGN) through to the level of perception little temporal precision is lost. However, we also show that integrating responses from multiple neurons can improve temporal resolution, and this potential trade-off between spatial and temporal resolution would allow for loss of temporal resolution after the LGN. While the extent of neuronal integration cannot be determined from either our human psychophysical or neurophysiological experiments and its contribution to the measured temporal resolution is unknown, our results demonstrate a striking similarity in stimulus dependence between the temporal fidelity established in the retina and the temporal limits of human motion discrimination.
Collapse
Affiliation(s)
- Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Helmholtz Institute and Department of Functional Neurobiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Correspondence:
| | - Duje Tadin
- Brain and Cognitive Sciences, Center for Visual Science, Neuroscience, and Ophthalmology, University of Rochester, Rochester, NY 14627, USA
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Martin J.M. Lankheet
- Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
- Helmholtz Institute and Department of Functional Neurobiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Joseph S. Lappin
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Helmholtz Institute and Department of Functional Neurobiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Wim A. van de Grind
- Helmholtz Institute and Department of Functional Neurobiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
5
|
Cyr A, Thériault F, Ross M, Berberian N, Chartier S. Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context. Front Neurorobot 2018; 12:75. [PMID: 30524261 PMCID: PMC6256284 DOI: 10.3389/fnbot.2018.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.
Collapse
Affiliation(s)
- André Cyr
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Frédéric Thériault
- Department of Computer Science, Cégep du Vieux Montréal, Montreal, QC, Canada
| | - Matthew Ross
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Nareg Berberian
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Sylvain Chartier
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| |
Collapse
|
6
|
Abstract
Abstract
How direction of image motion is detected as early as at the level of the vertebrate eye has been intensively studied in retina research. Although the first direction-selective (DS) retinal ganglion cells were already described in the 1960s and have since then been in the focus of many studies, scientists are still puzzled by the intricacy of the neuronal circuits and computational mechanisms underlying retinal direction selectivity. The fact that the retina can be easily isolated and studied in a Petri dish-by presenting light stimuli while recording from the various cell types in the retinal circuits-in combination with the extensive anatomical, molecular and physiological knowledge about this part of the brain presents a unique opportunity for studying this intriguing visual circuit in detail. This article provides a brief overview of the history of research on retinal direction selectivity, but then focuses on the past decade and the progress achieved, in particular driven by methodological advances in optical recording techniques, molecular genetics approaches and large-scale ultrastructural reconstructions. As it turns out, retinal direction selectivity is a complex, multi-tiered computation, involving dendrite-intrinsic mechanisms as well as several types of network interactions on the basis of highly selective, likely genetically predetermined synaptic connectivity. Moreover, DS ganglion cell types appear to be more diverse than previously thought, differing not only in their preferred direction and response polarity, but also in physiology, DS mechanism, dendritic morphology and, importantly, the target area of their projections in the brain.
Collapse
|
7
|
Morrie RD, Feller MB. Development of synaptic connectivity in the retinal direction selective circuit. Curr Opin Neurobiol 2016; 40:45-52. [PMID: 27380013 DOI: 10.1016/j.conb.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
Abstract
Direction selectivity is a classic neuronal computation that has been described in many different sensory systems. The circuit basis of this computation is perhaps best understood in the retina, where direction selectivity is the result of asymmetric connectivity patterns between excitatory and inhibitory circuit components. Retinal direction selective circuits emerge before eye-opening, though components of the circuit undergo refinement after vision begins. These features make the direction selective circuit a rich model in which to investigate neuronal circuit assembly. In this Opinion, we highlight recent experiments investigating the contribution of various molecular cues, as well as neuronal activity, to the development of the retinal direction selective circuit.
Collapse
Affiliation(s)
- Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3200, United States.
| |
Collapse
|
8
|
Katz ML, Viney TJ, Nikolic K. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions. PLoS One 2016; 11:e0147738. [PMID: 26845435 PMCID: PMC4742227 DOI: 10.1371/journal.pone.0147738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types.
Collapse
Affiliation(s)
- Matthew L. Katz
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, The Bessemer Building, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tim J. Viney
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Konstantin Nikolic
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, The Bessemer Building, Imperial College London, London SW7 2AZ, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Damjanović I. Direction-selective units in goldfish retina and tectum opticum - review and new aspects. J Integr Neurosci 2016; 14:1530002. [PMID: 26729019 DOI: 10.1142/s0219635215300024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The output units of fish retina, i.e., the retinal ganglion cells (detectors), send highly processed information to the primary visual centers of the brain, settled in the midbrain formation tectum opticum (TO). Axons of different fish motion detectors terminate in different tectal levels. In the superficial layer of TO, axons of direction-selective ganglion cells (DS GCs) are terminated. Single unit responses of the DS GCs were recorded in intact fish from their axon terminals in TO. Goldfish DS GCs projecting to TO were shown to comprise six physiological types according to their selectivity to sign of stimulus contrast (ON and OFF units) and their preferred directions: three directions separated by 120[Formula: see text]. These units, characterized by relatively small receptive fields and remarkable spatial resolution should be classified as local motion detectors. In addition to the retinal DS GCs, other kinds of DS units were extracellularly recorded in the superficial and deep sublaminae of tectum. Some features of their responses suggested that they originated from tectal neurons (TNs). Contrary to DS GCs which are characterized by small RFs and use separate ON and OFF channels, DS TNs have extra-large RFs and ON-OFF type responses. DS TNs were shown to select four preferred directions. Three of them are compatible with those already selected on the retinal level. Complementary to them, the fourth DS TN type with rostro-caudal preference (lacking in the retina) has been revealed. Possible functional interrelations between DS GCs and DS TNs are discussed.
Collapse
Affiliation(s)
- Ilija Damjanović
- 1 Institute for Information Transmission Problems Russian Academy of Sciences Bolshoi Karetny 19, 127994 Moscow, Russia
| |
Collapse
|
10
|
An Asymmetric Increase in Inhibitory Synapse Number Underlies the Development of a Direction Selective Circuit in the Retina. J Neurosci 2015; 35:9281-6. [PMID: 26109653 DOI: 10.1523/jneurosci.0670-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits rely upon a precise wiring of their component neurons to perform meaningful computations. To compute the direction of motion in the visual scene, the direction selective circuit in the mouse retina depends on an asymmetry in the inhibitory neurotransmission from starburst amacrine cells (SACs) to direction selective ganglion cells (DSGCs). Specifically, depolarization of a SAC on the null side of a DSGC causes a threefold greater unitary inhibitory conductance than depolarization of a SAC on the preferred side. This asymmetry emerges during the second postnatal week of development, but its basis remains unknown. To determine the source of this asymmetry in inhibitory conductance, we conducted paired recordings between SACs and DSGCs at the beginning and end of the second postnatal week. We replaced calcium with strontium to promote asynchronous neurotransmitter release and produce quantal events. During the second postnatal week the quantal frequency but not the quantal amplitude of synaptic events increased more than threefold for null-side SAC-DSGC pairs but remained constant for preferred-side pairs. In addition, paired-pulse depression did not differ between SACs located on the null and preferred sides of DSGCs, indicating that all inhibitory SAC synapses onto a DSGC exhibit the same probability of release. Thus, the higher quantal frequency seen in null-side pairs results from a greater number of inhibitory synapses, revealing that an asymmetry in synapse number between SACs and DSGCs underlies the development of an essential component in the retina's direction selective circuit.
Collapse
|
11
|
Goudar V, Buonomano DV. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity. J Neurophysiol 2014; 113:509-23. [PMID: 25339707 DOI: 10.1152/jn.00568.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Determining the order of sensory events separated by a few hundred milliseconds is critical to many forms of sensory processing, including vocalization and speech discrimination. Although many experimental studies have recorded from auditory order-sensitive and order-selective neurons, the underlying mechanisms are poorly understood. Here we demonstrate that universal properties of cortical synapses-short-term synaptic plasticity of excitatory and inhibitory synapses-are well suited for the generation of order-selective neural responses. Using computational models of canonical disynaptic circuits, we show that the dynamic changes in the balance of excitation and inhibition imposed by short-term plasticity lead to the generation of order-selective responses. Parametric analyses predict that among the forms of short-term plasticity expressed at excitatory-to-excitatory, excitatory-to-inhibitory, and inhibitory-to-excitatory synapses, the single most important contributor to order-selectivity is the paired-pulse depression of inhibitory postsynaptic potentials (IPSPs). A topographic model of the auditory cortex that incorporates short-term plasticity accounts for both context-dependent suppression and enhancement in response to paired tones. Together these results provide a framework to account for an important computational problem based on ubiquitous synaptic properties that did not yet have a clearly established computational function. Additionally, these studies suggest that disynaptic circuits represent a fundamental computational unit that is capable of processing both spatial and temporal information.
Collapse
Affiliation(s)
- Vishwa Goudar
- Integrative Center for Learning and Memory, Departments of Neurobiology and Psychology, UCLA, Los Angeles, California
| | - Dean V Buonomano
- Integrative Center for Learning and Memory, Departments of Neurobiology and Psychology, UCLA, Los Angeles, California
| |
Collapse
|
12
|
Subcellular mapping of dendritic activity in optic flow processing neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:359-70. [PMID: 24647929 DOI: 10.1007/s00359-014-0893-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Dendritic integration is a fundamental element of neuronal information processing. So far, few studies have provided a detailed spatial picture of this process, describing the properties of local dendritic activity and its subcellular organization. Here, we used 2-photon calcium imaging in optic flow processing neurons of the fly Calliphora vicina to determine the preferred location and direction of local motion cues for small branchlets throughout the entire dendrite. We found a pronounced retinotopic mapping on both the subcellular and the cell population level. In addition, dendritic branchlets residing in different layers of the neuropil were tuned to distinct directions of motion. Summing the local receptive fields of all dendritic branchlets reproduced the characteristic properties of these neurons' axonal output receptive fields. Our results corroborate the notion that the dendritic morphology of vertical system cells allows them to selectively collect local motion inputs with particular directional preferences from a spatially organized input repertoire, thus forming filters that match global patterns of optic flow. Furthermore, we suggest that the facet arrangement across the fly's eye shapes the subcellular direction tuning to local motion stimuli. These data illustrate a highly structured circuit organization as an efficient way to hard-wire a complex sensory task.
Collapse
|
13
|
Arshad Q, Nigmatullina Y, Bronstein AM. Unidirectional visual motion adaptation induces reciprocal inhibition of human early visual cortex excitability. Clin Neurophysiol 2013; 125:798-804. [PMID: 24120313 DOI: 10.1016/j.clinph.2013.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/17/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Behavioural observations provided by the waterfall illusion suggest that motion perception is mediated by a comparison of responsiveness of directional selective neurones. These are proposed to be optimally tuned for motion detection in different directions. Critically however, despite the behavioural observations, direct evidence of this relationship at a cortical level in humans is lacking. By utilising the state dependant properties of transcranial magnetic stimulation (TMS), one can probe the excitability of specific neuronal populations using the perceptual phenomenon of phosphenes. METHOD We exposed subjects to unidirectional visual motion adaptation and subsequently simultaneously measured early visual cortex (V1) excitability whilst viewing motion in the adapted and non-adapted direction. RESULT Following adaptation, the probability of perceiving a phosphene whilst viewing motion in the adapted direction was diminished reflecting a reduction in V1 excitability. Conversely, V1 excitability was enhanced whilst viewing motion in the opposite direction to that used for adaptation. CONCLUSION Our results provide support that in humans a process of reciprocal inhibition between oppositely tuned directionally selective neurones in V1 facilitates motion perception. SIGNIFICANCE This paradigm affords a unique opportunity to investigate changes in cortical excitability following peripheral vestibular disorders.
Collapse
Affiliation(s)
- Q Arshad
- Academic Department of Neuro-Otology, Imperial College London, Charing Cross Hospital Campus, Fulham Palace Road, London W6 8RF, United Kingdom
| | - Y Nigmatullina
- Academic Department of Neuro-Otology, Imperial College London, Charing Cross Hospital Campus, Fulham Palace Road, London W6 8RF, United Kingdom
| | - A M Bronstein
- Academic Department of Neuro-Otology, Imperial College London, Charing Cross Hospital Campus, Fulham Palace Road, London W6 8RF, United Kingdom.
| |
Collapse
|
14
|
Chan YC, Chiao CC. The distribution of the preferred directions of the ON-OFF direction selective ganglion cells in the rabbit retina requires refinement after eye opening. Physiol Rep 2013; 1:e00013. [PMID: 24303104 PMCID: PMC3831909 DOI: 10.1002/phy2.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022] Open
Abstract
The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina respond differentially for an object moving in different directions. DSGCs can be further segregated into four functional subtypes, namely those responsible for the detection of motion in the superior, inferior, anterior, and posterior directions of the visual field. Although it has been known that the basic neural circuit of direction selectivity is established at around the time of eye opening, it is less known if the four DSGC subtypes can be unambiguously distinguished at this time and whether their preferred directions are aligned with four canonical axes at this developmental stage. By examining the preferred directions of DSGCs in P10-12 rabbit retinas and characterizing their distribution pattern, we have shown that the preferred directions of DSGCs at around the time of eye opening are not distinctly segregated but rather are diffusely distributed along the four canonical axes. Similar results were found in the mouse retina by reanalyzing previously published data. Furthermore, taking into account the fact that the direction tuning strength of DSGCs at P10-12 is weaker than that in adults, this was found not to be correlated with their preferred directions, which suggests that the maturations of direction selectivity and preferred direction are independent processes. In addition, we also found that the subtypes of DSGCs, which do not display tracer coupling pattern in the adult, show extensive coupling at P10-12. Taken together, the present study supports that the significant refinement after eye opening is required for the development of the four functional DSGC subtypes in the rabbit retina.
Collapse
Affiliation(s)
- Ya-Chien Chan
- Institute of Molecular Medicine, National Tsing Hua University Hsinchu, 30013, Taiwan
| | | |
Collapse
|
15
|
Gebhardt C, Baier H, Del Bene F. Direction selectivity in the visual system of the zebrafish larva. Front Neural Circuits 2013; 7:111. [PMID: 23785314 PMCID: PMC3685220 DOI: 10.3389/fncir.2013.00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/28/2013] [Indexed: 12/01/2022] Open
Abstract
Neural circuits in the vertebrate retina extract the direction of object motion from visual scenes and convey this information to sensory brain areas, including the optic tectum. It is unclear how computational layers beyond the retina process directional inputs. Recent developmental and functional studies in the zebrafish larva, using minimally invasive optical imaging techniques, indicate that direction selectivity might be a genetically hardwired property of the zebrafish brain. Axons from specific direction-selective (DS) retinal ganglion cells appear to converge on distinct laminae in the superficial tectal neuropil where they serve as inputs to DS postsynaptic neurons of matching specificity. In addition, inhibitory recurrent circuits in the tectum might strengthen the DS response of tectal output neurons. Here we review these recent findings and discuss some controversies with a particular focus on the zebrafish tectum’s role in extracting directional features from moving visual scenes.
Collapse
Affiliation(s)
- Christoph Gebhardt
- Institut Curie, Centre de Recherche Paris, France ; CNRS UMR 3215 Paris, France ; INSERM U934 Paris, France
| | | | | |
Collapse
|
16
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
17
|
Vaney DI, Sivyer B, Taylor WR. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 2012; 13:194-208. [PMID: 22314444 DOI: 10.1038/nrn3165] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is processed in the retina to a remarkable degree before it is transmitted to higher visual centres. Several types of retinal ganglion cells (the output neurons of the retina) respond preferentially to image motion in a particular direction, and each type of direction-selective ganglion cell (DSGC) is comprised of multiple subtypes with different preferred directions. The direction selectivity of the cells is generated by diverse mechanisms operating within microcircuits that rely on independent neuronal processing in individual dendrites of both the DSGCs and the presynaptic neurons that innervate them.
Collapse
Affiliation(s)
- David I Vaney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
18
|
Borst A, Euler T. Seeing Things in Motion: Models, Circuits, and Mechanisms. Neuron 2011; 71:974-94. [PMID: 21943597 DOI: 10.1016/j.neuron.2011.08.031] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/31/2022]
|
19
|
|
20
|
|
21
|
Elstrott J, Feller MB. Direction-selective ganglion cells show symmetric participation in retinal waves during development. J Neurosci 2010; 30:11197-201. [PMID: 20720127 PMCID: PMC2928560 DOI: 10.1523/jneurosci.2302-10.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 11/21/2022] Open
Abstract
Direction-selective ganglion cells (DSGCs) fire robustly for stimuli moving along one direction of motion and are strongly inhibited by stimuli moving in the opposite, or null, direction. In contrast to direction-selective neurons in primary visual cortex, a role for neural activity in the development of direction-selective retinal circuits has not been established. Direction-selective responses are detected at eye opening, before which spontaneous correlated activity known as retinal waves provide directional input to ganglion cells. Indeed, we observed a significant bias in wave propagation along the nasal over temporal direction. Using simultaneous calcium imaging and cell-attached recordings from three genetically labeled DSGC types in mice, we observed that all three DSGC types fire action potentials during retinal waves. However, we found that the direction of wave propagation did not influence DSGC spiking. These results indicate that the mechanisms guiding the formation of the asymmetric inhibition underlying direction selectivity in the retina are not dependent upon the directional properties of retinal waves.
Collapse
Affiliation(s)
- Justin Elstrott
- Department of Molecular and Cell Biology and the Helen Wills Neurosciences Institute, University of California, Berkeley, Berkeley, California 94720
| | - Marla B. Feller
- Department of Molecular and Cell Biology and the Helen Wills Neurosciences Institute, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|