1
|
Karunanayaka PR, Lu J, Elyan R, Yang QX, Sathian K. Olfactory-trigeminal integration in the primary olfactory cortex. Hum Brain Mapp 2024; 45:e26772. [PMID: 38962966 PMCID: PMC11222875 DOI: 10.1002/hbm.26772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024] Open
Abstract
Humans naturally integrate signals from the olfactory and intranasal trigeminal systems. A tight interplay has been demonstrated between these two systems, and yet the neural circuitry mediating olfactory-trigeminal (OT) integration remains poorly understood. Using functional magnetic resonance imaging (fMRI), combined with psychophysics, this study investigated the neural mechanisms underlying OT integration. Fifteen participants with normal olfactory function performed a localization task with air-puff stimuli, phenylethyl alcohol (PEA; rose odor), or a combination thereof while being scanned. The ability to localize PEA to either nostril was at chance. Yet, its presence significantly improved the localization accuracy of weak, but not strong, air-puffs, when both stimuli were delivered concurrently to the same nostril, but not when different nostrils received the two stimuli. This enhancement in localization accuracy, exemplifying the principles of spatial coincidence and inverse effectiveness in multisensory integration, was associated with multisensory integrative activity in the primary olfactory (POC), orbitofrontal (OFC), superior temporal (STC), inferior parietal (IPC) and cingulate cortices, and in the cerebellum. Multisensory enhancement in most of these regions correlated with behavioral multisensory enhancement, as did increases in connectivity between some of these regions. We interpret these findings as indicating that the POC is part of a distributed brain network mediating integration between the olfactory and trigeminal systems. PRACTITIONER POINTS: Psychophysical and neuroimaging study of olfactory-trigeminal (OT) integration. Behavior, cortical activity, and network connectivity show OT integration. OT integration obeys principles of inverse effectiveness and spatial coincidence. Behavioral and neural measures of OT integration are correlated.
Collapse
Affiliation(s)
- Prasanna R. Karunanayaka
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Neural and Behavioral SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Public Health SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jiaming Lu
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Rommy Elyan
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Qing X. Yang
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of NeurosurgeryPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - K. Sathian
- Department of Neural and Behavioral SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of NeurologyPenn State Health Milton S. Hershey Medical CenterHersheyPennsylvaniaUSA
- Department of PsychologyPennsylvania State University College of Liberal ArtsState CollegePennsylvaniaUSA
| |
Collapse
|
2
|
Dikeçligil GN, Yang AI, Sanghani N, Lucas T, Chen HI, Davis KA, Gottfried JA. Odor representations from the two nostrils are temporally segregated in human piriform cortex. Curr Biol 2023; 33:5275-5287.e5. [PMID: 37924807 DOI: 10.1016/j.cub.2023.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
The human olfactory system has two discrete channels of sensory input, arising from olfactory epithelia housed in the left and right nostrils. Here, we asked whether the primary olfactory cortex (piriform cortex [PC]) encodes odor information arising from the two nostrils as integrated or distinct stimuli. We recorded intracranial electroencephalogram (iEEG) signals directly from PC while human subjects participated in an odor identification task where odors were delivered to the left, right, or both nostrils. We analyzed the time course of odor identity coding using machine-learning approaches and found that uni-nostril odor inputs to the ipsilateral nostril are encoded ∼480-ms faster than odor inputs to the contralateral nostril on average. During naturalistic bi-nostril odor sampling, odor information emerged in two temporally segregated epochs, with the first epoch corresponding to the ipsilateral and the second epoch corresponding to the contralateral odor representations. These findings reveal that PC maintains distinct representations of odor input from each nostril through temporal segregation, highlighting an olfactory coding scheme at the cortical level that can parse odor information across nostrils within the course of a single inhalation.
Collapse
Affiliation(s)
- Gülce Nazlı Dikeçligil
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew I Yang
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Nisha Sanghani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lucas
- Department of Neurosurgery and Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay A Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Licht T, Yunerman M, Maor I, Lawabny N, Oz Rokach R, Shiff I, Mizrahi A, Rokni D. Adaptive olfactory circuitry restores function despite severe olfactory bulb degeneration. Curr Biol 2023; 33:4857-4868.e6. [PMID: 37858342 PMCID: PMC10681124 DOI: 10.1016/j.cub.2023.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
The olfactory bulb (OB) is a critical component of mammalian olfactory neuroanatomy. Beyond being the first and sole relay station for olfactory information to the rest of the brain, it also contains elaborate stereotypical circuitry that is considered essential for olfaction. Indeed, substantial lesions of the OB in rodents lead to anosmia. Here, we examined the circuitry that underlies olfaction in a mouse model with severe developmental degeneration of the OB. These mice could perform odor-guided tasks and even responded normally to innate olfactory cues. Despite the near total loss of the OB, piriform cortices in these mice responded to odors, and its neural activity sufficed to decode odor identity. We found that sensory neurons express the full repertoire of olfactory receptors, and their axons project primarily to the rudiments of the OB but also, ectopically, to olfactory cortical regions. Within the OB, the number of principal neurons was greatly reduced, and the morphology of their dendrites was abnormal, extending over large regions within the OB. Glomerular organization was totally lost in the severe cases of OB degeneration and altered in the more conserved OBs. This study shows that olfactory functionality can be preserved despite reduced and aberrant circuitry that is missing many of the elements believed to be essential for olfaction, and it may explain reported retention of olfaction in humans with degenerated OBs.
Collapse
Affiliation(s)
- Tamar Licht
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel.
| | - Michael Yunerman
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ido Maor
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Naheel Lawabny
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Renana Oz Rokach
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Idit Shiff
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel.
| |
Collapse
|
4
|
Zavatone-Veth JA, Masset P, Tong WL, Zak JD, Murthy VN, Pehlevan C. Neural Circuits for Fast Poisson Compressed Sensing in the Olfactory Bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545947. [PMID: 37961548 PMCID: PMC10634677 DOI: 10.1101/2023.06.21.545947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.
Collapse
Affiliation(s)
- Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Physics, Harvard University Cambridge, MA 02138
| | - Paul Masset
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - William L Tong
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL 60607
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| |
Collapse
|
5
|
Dikecligil GN, Yang AI, Sanghani N, Lucas T, Chen HI, Davis KA, Gottfried JA. Odor representations from the two nostrils are temporally segregated in human piriform cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528521. [PMID: 36824705 PMCID: PMC9948982 DOI: 10.1101/2023.02.14.528521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The human olfactory system has two discrete channels of sensory input, arising from olfactory epithelia housed in the left and right nostrils. Here, we asked whether primary olfactory cortex (piriform cortex, PC) encodes odor information arising from the two nostrils as integrated or distinct stimuli. We recorded intracranial EEG signals directly from PC while human subjects participated in an odor identification task where odors were delivered to the left, right, or both nostrils. We analyzed the time-course of odor-identity coding using machine learning approaches, and found that uni-nostril odor inputs to the ipsilateral nostril are encoded ~480 ms faster than odor inputs to the contralateral nostril on average. During naturalistic bi-nostril odor sampling, odor information emerged in two temporally segregated epochs with the first epoch corresponding to the ipsilateral and the second epoch corresponding to the contralateral odor representations. These findings reveal that PC maintains distinct representations of odor input from each nostril through temporal segregation, highlighting an olfactory coding scheme at the cortical level that can parse odor information across nostrils within the course of a single inhalation.
Collapse
|
6
|
Zavatone-Veth JA, Masset P, Tong WL, Zak JD, Murthy VN, Pehlevan C. Neural Circuits for Fast Poisson Compressed Sensing in the Olfactory Bulb. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2023; 36:64793-64828. [PMID: 40376274 PMCID: PMC12079577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.
Collapse
Affiliation(s)
- Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Paul Masset
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - William L Tong
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL 60607
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| |
Collapse
|
7
|
Schubert C, Schulz K, Träger S, Plath AL, Omriouate A, Rosenkranz SC, Morellini F, Friese MA, Hirnet D. Neuronal Adenosine A1 Receptor is Critical for Olfactory Function but Unable to Attenuate Olfactory Dysfunction in Neuroinflammation. Front Cell Neurosci 2022; 16:912030. [PMID: 35846561 PMCID: PMC9279574 DOI: 10.3389/fncel.2022.912030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adenine nucleotides, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), as well as the nucleoside adenosine are important modulators of neuronal function by engaging P1 and P2 purinergic receptors. In mitral cells, signaling of the G protein-coupled P1 receptor adenosine 1 receptor (A1R) affects the olfactory sensory pathway by regulating high voltage-activated calcium channels and two-pore domain potassium (K2P) channels. The inflammation of the central nervous system (CNS) impairs the olfactory function and gives rise to large amounts of extracellular ATP and adenosine, which act as pro-inflammatory and anti-inflammatory mediators, respectively. However, it is unclear whether neuronal A1R in the olfactory bulb modulates the sensory function and how this is impacted by inflammation. Here, we show that signaling via neuronal A1R is important for the physiological olfactory function, while it cannot counteract inflammation-induced hyperexcitability and olfactory deficit. Using neuron-specific A1R-deficient mice in patch-clamp recordings, we found that adenosine modulates spontaneous dendro-dendritic signaling in mitral and granule cells via A1R. Furthermore, neuronal A1R deficiency resulted in olfactory dysfunction in two separate olfactory tests. In mice with experimental autoimmune encephalomyelitis (EAE), we detected immune cell infiltration and microglia activation in the olfactory bulb as well as hyperexcitability of mitral cells and olfactory dysfunction. However, neuron-specific A1R activity was unable to attenuate glutamate excitotoxicity in the primary olfactory bulb neurons in vitro or EAE-induced olfactory dysfunction and disease severity in vivo. Together, we demonstrate that A1R modulates the dendro-dendritic inhibition (DDI) at the site of mitral and granule cells and impacts the processing of the olfactory sensory information, while A1R activity was unable to counteract inflammation-induced hyperexcitability.
Collapse
Affiliation(s)
- Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Simone Träger
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Lena Plath
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asina Omriouate
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C. Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Manuel A. Friese,
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
- Daniela Hirnet,
| |
Collapse
|
8
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
9
|
Environmental enrichment ameliorates high-fat diet induced olfactory deficit and decrease of parvalbumin neurons in the olfactory bulb in mice. Brain Res Bull 2021; 179:13-24. [PMID: 34848271 DOI: 10.1016/j.brainresbull.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022]
Abstract
Overweight induced by high-fat diet (HFD) represents one of the major health concerns in modern societies, which can cause lasting peripheral and central metabolic disorders in all age groups. Specifically, childhood obesity could lead to life-long impact on brain development and functioning. On the other hand, environmental enrichment (EE) has been demonstrated to be beneficial for learning and memory. Here, we explored the impact of high-fat diet on olfaction and organization of olfactory bulb cells in adolescent mice, and the effect of EE intervention thereon. Puberty mice (3-week-old) fed with HFD for 10 weeks exhibited poorer odor sensitivity and olfactory memory relative to controls consuming standard chows. The behavioral deficits were rescued in the HFD group with EE intervention. Neuroanatomically, parvalbumin (PV) interneurons in the olfactory bulb (OB) were reduced in the HFD-fed animals relative to control, while EE intervention also normalized this alteration. In contrast, cells expressing calbindin (CB), doublecortin (DCX) in the OB were not altered. Our findings suggest that PV interneurons may play a crucial role in mediating the HFD-induced olfactory deficit in adolescent mice, and can also serve a protective effect of EE against the functional deficit.
Collapse
|
10
|
Kumar A, Barkai E, Schiller J. Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex. eLife 2021; 10:70383. [PMID: 34698637 PMCID: PMC8575458 DOI: 10.7554/elife.70383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
The piriform cortex (PCx) is essential for learning of odor information. The current view postulates that odor learning in the PCx is mainly due to plasticity in intracortical (IC) synapses, while odor information from the olfactory bulb carried via the lateral olfactory tract (LOT) is ‘hardwired.’ Here, we revisit this notion by studying location- and pathway-dependent plasticity rules. We find that in contrast to the prevailing view, synaptic and optogenetically activated LOT synapses undergo strong and robust long-term potentiation (LTP) mediated by only a few local NMDA-spikes delivered at theta frequency, while global spike timing-dependent plasticity (STDP) protocols failed to induce LTP in these distal synapses. In contrast, IC synapses in apical and basal dendrites undergo plasticity with both NMDA-spikes and STDP protocols but to a smaller extent compared with LOT synapses. These results are consistent with a self-potentiating mechanism of odor information via NMDA-spikes that can form branch-specific memory traces of odors that can further associate with contextual IC information via STDP mechanisms to provide cognitive and emotional value to odors.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jackie Schiller
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Cousens GA. Characterization of odor-evoked neural activity in the olfactory peduncle. IBRO Rep 2020; 9:157-163. [PMID: 32793841 PMCID: PMC7412720 DOI: 10.1016/j.ibror.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
The tenia tecta is extensively interconnected with the main olfactory bulb and olfactory cortical areas and is well positioned to contribute to olfactory processing. However, little is known about odor representation within its dorsal (DTT) and ventral (VTT) components. To address this need, spontaneous and odor-evoked activity of DTT and VTT neurons was recorded from urethane anesthetized mice and compared to activity recorded from adjacent areas within adjacent caudomedial aspects of the anterior olfactory nucleus (AON). Neurons recorded from DTT, VTT, and AON exhibited odor-selective alterations in firing rate in response to a diverse set of monomolecular odorants. While DTT and AON neurons exhibited similar tuning breadth, selectivity, and response topography, the proportion of odor-selective neurons was substantially higher in the DTT. These findings provide evidence that the tenia tecta may contribute to the encoding of specific stimulus attributes. Further work is needed to fully characterize functional organization of the tenia tecta and its contribution to sensory representation and utilization.
Collapse
Key Words
- AON, Anterior olfactory nucleus
- CV, Coefficient of variation
- CoA, Cortical amygdala
- DPC, Dorsal peduncular cortex
- DTT, Dorsal tenia tecta
- EC, Entorhinal cortex
- ISI, Interspike interval
- OB, Main olfactory bulb
- OT, Olfactory tubercle
- Olfaction
- PC, Piriform cortex
- TT, Tenia tecta
- VTT, Ventral tenia tecta
- anterior olfactory nucleus
- olfactory peduncle
- sensory tuning
- tenia tecta
Collapse
Affiliation(s)
- Graham A. Cousens
- Department of Psychology and Neuroscience Program, Drew University, 36 Madison Avenue, Madison, NJ, 07940, USA
| |
Collapse
|
12
|
Rapp H, Nawrot MP. A spiking neural program for sensorimotor control during foraging in flying insects. Proc Natl Acad Sci U S A 2020; 117:28412-28421. [PMID: 33122439 PMCID: PMC7668073 DOI: 10.1073/pnas.2009821117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foraging is a vital behavioral task for living organisms. Behavioral strategies and abstract mathematical models thereof have been described in detail for various species. To explore the link between underlying neural circuits and computational principles, we present how a biologically detailed neural circuit model of the insect mushroom body implements sensory processing, learning, and motor control. We focus on cast and surge strategies employed by flying insects when foraging within turbulent odor plumes. Using a spike-based plasticity rule, the model rapidly learns to associate individual olfactory sensory cues paired with food in a classical conditioning paradigm. We show that, without retraining, the system dynamically recalls memories to detect relevant cues in complex sensory scenes. Accumulation of this sensory evidence on short time scales generates cast-and-surge motor commands. Our generic systems approach predicts that population sparseness facilitates learning, while temporal sparseness is required for dynamic memory recall and precise behavioral control. Our work successfully combines biological computational principles with spike-based machine learning. It shows how knowledge transfer from static to arbitrary complex dynamic conditions can be achieved by foraging insects and may serve as inspiration for agent-based machine learning.
Collapse
Affiliation(s)
- Hannes Rapp
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| |
Collapse
|
13
|
Lietzau G, Nyström T, Wang Z, Darsalia V, Patrone C. Western Diet Accelerates the Impairment of Odor-Related Learning and Olfactory Memory in the Mouse. ACS Chem Neurosci 2020; 11:3590-3602. [PMID: 33054173 PMCID: PMC7645872 DOI: 10.1021/acschemneuro.0c00466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Olfactory dysfunction could be an early indicator of cognitive decline in type 2 diabetes (T2D). However, whether obesity affects olfaction in people with T2D is unclear. This question needs to be addressed, because most people with T2D are obese. Importantly, whether different contributing factors leading to obesity (e.g., different components of diet or gain in weight) affect specific olfactory functions and underlying mechanisms is unknown. We examined whether two T2D-inducing obesogenic diets, one containing a high proportion of fat (HFD) and one with moderate fat and high sugar (Western diet, WD), affect odor detection/discrimination, odor-related learning, and olfactory memory in the mouse. We also investigated whether the diets impair adult neurogenesis, GABAergic interneurons, and neuroblasts in the olfactory system. Here, we further assessed olfactory cortex volume and cFos expression-based neuronal activity. The WD-fed mice showed declined odor-related learning and olfactory memory already after 3 months of diet intake (p = 0.046), although both diets induced similar hyperglycemia and weight gain compared to those of standard diet-fed mice (p = 0.0001 and p < 0.0001, respectively) at this time point. Eight months of HFD and WD diminished odor detection (p = 0.016 and p = 0.045, respectively), odor-related learning (p = 0.015 and p = 0.049, respectively), and olfactory memory. We observed no changes in the investigated cellular mechanisms. We show that the early deterioration of olfactory parameters related to learning and memory is associated with a high content of sugar in the diet rather than with hyperglycemia or weight gain. This finding could be exploited for understanding, and potentially preventing, cognitive decline/dementia in people with T2D. The mechanisms behind this finding remain to be elucidated.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
- Department of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-210, Poland
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
| | - Zhida Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
| |
Collapse
|
14
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Pentylenetetrazol kindling induces cortical astrocytosis and increased expression of extracellular matrix molecules in mice. Brain Res Bull 2020; 163:120-134. [PMID: 32726668 DOI: 10.1016/j.brainresbull.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Although epilepsy is one of the most common chronic neurological disorders with a prevalence of approximately 1.0 %, the underlying pathophysiology remains to be elucidated. Understanding the molecular and cellular mechanisms involved in the development of epilepsy is important for the development of appropriate therapeutic strategy. In this study, we investigated the effects of status epilepticus on astrocytes, microglia, and extracellular matrix (ECM) molecules in the somatosensory cortex and piriform cortex of mice. Activation of astrocytes was observed in many cortices except the retrosplenial granular cortex after pentylenetetrazol (PTZ)-induced kindling in mice. Activated astrocytes in the cortex were found in layers 1-3 but not in layers 4-6. In the somatosensory and piriform cortices, no change was observed in the number of parvalbumin (PV)-positive neurons and PV-positive neurons covered with perineuronal nets. However, the amount of ECM in the extracellular space increased. The expression of VGLUT1- and GAD67-positive synapses also increased. Thus, in the PTZ-kindling epilepsy mice model, an increase in the number of ECM molecules and activation of astrocytes were observed in the somatosensory cortex and piriform cortex. These results indicate that PTZ-induced seizures affect not only the hippocampus but also other cortical areas. Our study findings may help to develop new therapeutic approaches to prevent seizures or their sequelae.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, 701-0193, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| |
Collapse
|
15
|
Kermen F, Lal P, Faturos NG, Yaksi E. Interhemispheric connections between olfactory bulbs improve odor detection. PLoS Biol 2020; 18:e3000701. [PMID: 32310946 PMCID: PMC7192517 DOI: 10.1371/journal.pbio.3000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/30/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. However, the cellular and spatial organization of interhemispheric networks and the computational properties they mediate in vertebrates are still poorly understood. Thus, it remains unclear to what extent the connectivity between left and right brain hemispheres participates in sensory processing. Here, we show that the zebrafish olfactory bulbs (OBs) receive direct interhemispheric projections from their contralateral counterparts in addition to top-down inputs from the contralateral zebrafish homolog of olfactory cortex. The direct interhemispheric projections between the OBs reach peripheral layers of the contralateral OB and retain a precise topographic organization, which directly connects similarly tuned olfactory glomeruli across hemispheres. In contrast, interhemispheric top-down inputs consist of diffuse projections that broadly innervate the inhibitory granule cell layer. Jointly, these interhemispheric connections elicit a balance of topographically organized excitation and nontopographic inhibition on the contralateral OB and modulate odor responses. We show that the interhemispheric connections in the olfactory system enable the modulation of odor response and contribute to a small but significant improvement in the detection of a reproductive pheromone when presented together with complex olfactory cues by potentiating the response of the pheromone selective neurons. Taken together, our data show a previously unknown function for an interhemispheric connection between chemosensory maps of the olfactory system. Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. This study shows that interhemispheric olfactory connections in the zebrafish brain improve the detection of a reproductive pheromone within a noisy odor background.
Collapse
Affiliation(s)
- Florence Kermen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail: (FK); (EY)
| | - Pradeep Lal
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicholas G. Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- * E-mail: (FK); (EY)
| |
Collapse
|
16
|
Betkiewicz R, Lindner B, Nawrot MP. Circuit and Cellular Mechanisms Facilitate the Transformation from Dense to Sparse Coding in the Insect Olfactory System. eNeuro 2020; 7:ENEURO.0305-18.2020. [PMID: 32132095 PMCID: PMC7294456 DOI: 10.1523/eneuro.0305-18.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
Transformations between sensory representations are shaped by neural mechanisms at the cellular and the circuit level. In the insect olfactory system, the encoding of odor information undergoes a transition from a dense spatiotemporal population code in the antennal lobe to a sparse code in the mushroom body. However, the exact mechanisms shaping odor representations and their role in sensory processing are incompletely identified. Here, we investigate the transformation from dense to sparse odor representations in a spiking model of the insect olfactory system, focusing on two ubiquitous neural mechanisms: spike frequency adaptation at the cellular level and lateral inhibition at the circuit level. We find that cellular adaptation is essential for sparse representations in time (temporal sparseness), while lateral inhibition regulates sparseness in the neuronal space (population sparseness). The interplay of both mechanisms shapes spatiotemporal odor representations, which are optimized for the discrimination of odors during stimulus onset and offset. Response pattern correlation across different stimuli showed a nonmonotonic dependence on the strength of lateral inhibition with an optimum at intermediate levels, which is explained by two counteracting mechanisms. In addition, we find that odor identity is stored on a prolonged timescale in the adaptation levels but not in the spiking activity of the principal cells of the mushroom body, providing a testable hypothesis for the location of the so-called odor trace.
Collapse
Affiliation(s)
- Rinaldo Betkiewicz
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
- Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
| | - Martin P Nawrot
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
17
|
Abstract
Axons from the olfactory bulb (OB) project to multiple central structures of the brain, many of which, in turn, send axons back into the OB and/or to one another. These secondary sensory regions underlie many aspects of odor representation, valence, and learning, as well as serving some nonolfactory functions, though many details remain unclear. We here describe the connectivity and essential structural and functional properties of these postbulbar olfactory regions in the mammalian brain.
Collapse
Affiliation(s)
- Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Kumar A, Schiff O, Barkai E, Mel BW, Poleg-Polsky A, Schiller J. NMDA spikes mediate amplification of inputs in the rat piriform cortex. eLife 2018; 7:38446. [PMID: 30575520 PMCID: PMC6333441 DOI: 10.7554/elife.38446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
The piriform cortex (PCx) receives direct input from the olfactory bulb (OB) and is the brain's main station for odor recognition and memory. The transformation of the odor code from OB to PCx is profound: mitral and tufted cells in olfactory glomeruli respond to individual odorant molecules, whereas pyramidal neurons (PNs) in the PCx responds to multiple, apparently random combinations of activated glomeruli. How these 'discontinuous' receptive fields are formed from OB inputs remains unknown. Counter to the prevailing view that olfactory PNs sum their inputs passively, we show for the first time that NMDA spikes within individual dendrites can both amplify OB inputs and impose combination selectivity upon them, while their ability to compartmentalize voltage signals allows different dendrites to represent different odorant combinations. Thus, the 2-layer integrative behavior of olfactory PN dendrites provides a parsimonious account for the nonlinear remapping of the odor code from bulb to cortex.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Schiff
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Bartlett W Mel
- Biomedical Engineering Department, University of Southern California, Los Angeles, United States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Jackie Schiller
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Layer-specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices. IBRO Rep 2018; 6:1-17. [PMID: 30582064 PMCID: PMC6293036 DOI: 10.1016/j.ibror.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/24/2018] [Indexed: 02/04/2023] Open
Abstract
In the developing central nervous system (CNS), extracellular matrix (ECM) molecules have regulating roles such as in brain development, neural-circuit maturation, and synaptic-function control. However, excluding the perineuronal net (PNN) area, the distribution, constituent elements, and expression level of granular ECM molecules (diffuse ECM) present in the mature CNS remain unclear. Diffuse ECM molecules in the CNS share the components of PNNs and are likely functional. As cortical functions are greatly region-dependent, we hypothesized that ECM molecules would differ in distribution, expression level, and components in a region- and layer-dependent manner. We examined the layer-specific expression of several chondroitin sulfate proteoglycans (aggrecan, neurocan, and brevican), tenascin-R, Wisteria floribunda agglutinin (WFA)-positive molecules, hyaluronic acid, and link protein in the somatosensory and piriform cortices of mature mice. Furthermore, we investigated expression changes in WFA-positive molecules due to aging. In the somatosensory cortex, PNN density was particularly high at layer 4 (L4), but not all diffuse ECM molecules were highly expressed at L4 compared to the other layers. There was almost no change in tenascin-R and hyaluronic acid in any somatosensory-cortex layer. Neurocan showed high expression in L1 of the somatosensory cortex. In the piriform cortex, many ECM molecules showed higher expression in L1 than in the other layers. However, hyaluronic acid showed high expression in deep layers. Here, we clarified that ECM molecules differ in constituent elements and expression in a region- and layer-dependent manner. Region-specific expression of ECM molecules is possibly related to functions such as region-specific plasticity and vulnerability.
Collapse
Key Words
- CNS, central nervous system
- CSPG, chondroitin sulfate proteoglycans
- ChABC, chondroitinase ABC
- ECM, extracellular cellular matrix
- Extracellular matrix
- HA, hyaluronic acid
- HABP, hyaluronic acid binding protein
- Hapln1, hyaluronan and proteoglycan link protein 1
- PNN, perineuronal ntes
- Perineuronal nets
- Piriform cortex
- Proteoglycans
- Somatosensory cortex
- WFA, Wisteria floribunda agglutinin
- Wisteria floribunda
- a.u., arbitrary units
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
20
|
Neural Coding of Appetitive Food Experiences in the Amygdala. Neurobiol Learn Mem 2018; 155:261-275. [PMID: 30125697 DOI: 10.1016/j.nlm.2018.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Real-life experiences involve the consumption of various foods, yet it is unclear how the brain distinguishes and categorizes such food experiences. Despite the crucial roles of the basolateral amygdala (BLA) in appetitive behavior and emotion, how BLA pyramidal cells and interneurons encode food experiences has not yet been well characterized. Here we employ large-scale tetrode recording techniques to investigate the coding properties of pyramidal neurons vs. fast-spiking interneurons in the BLA as mice freely consumed a variety of foods, such as biscuits, rice, milk and water. We found that putative pyramidal cells conformed to the power-of-two-based permutation logic, as postulated by the Theory of Connectivity, to generate specific-to-general neural clique-coding patterns. Many pyramidal cells exhibited firing increases specific to a given food type, while some other pyramidal cells increased firings to various combinations of multiple foods. In contrast, fast-spiking interneurons can increase or decrease firings to given food types, and were more broadly tuned to various food experiences. We further show that a subset of pyramidal cells exhibited rapid desensitization to repeated eating of the same food, correlated with rapid behavioral habituation. Finally, we provide the intuitive visualization of BLA ensemble activation patterns using the dimensionality-reduction classification method to decode real-time appetitive stimulus identity on a moment-to-moment, single trial basis. Elucidation of the neural coding patterns in the BLA provides a key insight into how the brain's emotion and memory circuits performs the computational operation of pattern discrimination and categorization of natural food experiences.
Collapse
|
21
|
Pardo GVE, Lucion AB, Calcagnotto ME. Postnatal development of inhibitory synaptic transmission in the anterior piriform cortex. Int J Dev Neurosci 2018; 71:1-9. [PMID: 30055229 DOI: 10.1016/j.ijdevneu.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
The morphological and functional development of inhibitory circuit in the anterior piriform cortex (aPC) during the first three postnatal weeks may be crucial for the development of odor preference learning in infant rodents. As first step toward testing this hypothesis, we examined the normal development of GABAergic synaptic transmission in the aPC of rat pups during the postnatal days (P) 5-8 and 14-17. Whole cell patch-clamp recordings of layer 2/3 (L2/3) aPC pyramidal cells revealed a significant increase in spontaneous (sIPSC) and miniature (mIPSC) inhibitory postsynaptic current frequencies and a decrease in mIPSC rise and decay-time constant at P14-P17. Moreover, as the development of neocortical inhibitory circuit can be driven by sensory experience, we recorded sIPSC and mIPSC onto L2/3 aPC pyramidal cells from unilateral naris-occluded animals. Early partial olfactory deprivation caused by naris occlusion do not affected the course of age-dependent increase IPSC frequency onto L2/3 aPC pyramidal cell. However, this age-dependent increase of sIPSC and mIPSC frequencies were lower on aPC pyramidal cells ipsilateral to the occlusion side. In addition, the age-dependent increase in sIPSC frequency and amplitude were more pronounced on aPC pyramidal cells contralateral to the occlusion. While mIPSC kinetics were not affected by age or olfactory deprivation, at P5-P8, the sIPSC decay-time constant on aPC pyramidal cells of both hemispheres of naris-occluded animals were significantly higher when compared to sham. These results demonstrated that the GABAergic synaptic transmission on the aPC changed during postnatal development by increasing inhibitory inputs on L2/3 pyramidal cells, with increment in frequency of both sIPSC and mIPSC and faster kinetics of mIPSC. Our data suggested that the maturation of GABAergic synaptic transmission was little affected by early partial olfactory deprivation. These results could contribute to unravel the mechanisms underlying the development of odor processing and olfactory preference learning.
Collapse
Affiliation(s)
- Grace Violeta Espinoza Pardo
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aldo Bolten Lucion
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Hu R, Zhang J, Luo M, Hu J. Response Patterns of GABAergic Neurons in the Anterior Piriform Cortex of Awake Mice. Cereb Cortex 2018; 27:3110-3124. [PMID: 27252353 DOI: 10.1093/cercor/bhw175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local inhibition by γ-amino butyric acid (GABA)-containing neurons is of vital importance for the operation of sensory cortices. However, the physiological response patterns of cortical GABAergic neurons are poorly understood, especially in the awake condition. Here, we utilized the recently developed optical tagging technique to specifically record GABAergic neurons in the anterior piriform cortex (aPC) in awake mice. The identified aPC GABAergic neurons were stimulated with robotic delivery of 32 distinct odorants, which covered a broad range of functional groups. We found that aPC GABAergic neurons could be divided into 4 types based on their response patterns. Type I, type II, and type III neurons displayed broad excitatory responses to test odorants with different dynamics. Type I neurons were constantly activated during odorant stimulation, whereas type II neurons were only transiently activated at the onset of odorant delivery. In addition, type III neurons displayed transient excitatory responses both at the onset and termination of odorant presentation. Interestingly, type IV neurons were broadly inhibited by most of the odorants. Taken together, aPC GABAergic neurons adopt different strategies to affect the cortical circuitry. Our results will allow for better understanding of the role of cortical GABAergic interneurons in sensory information processing.
Collapse
Affiliation(s)
- Rongfeng Hu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Juen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
Frank ME, Hettinger TP. Tracking traumatic head injuries with the chemical senses. World J Otorhinolaryngol Head Neck Surg 2018; 4:46-49. [PMID: 30035261 PMCID: PMC6051496 DOI: 10.1016/j.wjorl.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Chemosensory disorders, primarily olfactory, have diagnostic significance for prevalent human illnesses, but the multitude of smells makes measuring function appear daunting. The olfactory system operates under dynamic natural sensing conditions in which many individual odor chemicals are waxing and waning. Yet, in experimentally controlled simulations, mixture-component selective adaptation shows individual or shared prominent characteristic odors are detected but molecular stimulus features are not. As in other biological chemical signaling systems, including taste, odors activate dedicated receptors (OR). Given rapid OR adaptation with the passage of time, individual odor recognition is momentary. Receptive dendrites of the nearly 400 genetically variable human-OR in the olfactory epithelium critically project axons to the olfactory bulb through perforations in the cribriform plate of the skull. Analytic chemical-quality codes detect single odor-mixture components. However, identities of no more than 3 or 4 most salient odors are perceived due to central mixture-suppression, the mutual inhibition among diverse olfactory-bulb or cortical neurons. The componental codes allow olfaction to readily discern odor quality and valence of a wide range of unrelated chemicals, a few at a time. Head trauma may result in a partial or complete loss of smell and facial trauma a loss of taste-nerve function. Testing smell could plot the course of recovery from chronic traumatic encephalopathies that prevail in contact sports. Measuring brain function with olfaction would provide simpler and more direct monitoring of prognosis than biochemical sensors.
Collapse
Affiliation(s)
- Marion E. Frank
- Oral Health & Diagnostic Sciences, School of Dental Medicine, UCONN Health, Farmington, CT 06030, USA
| | | |
Collapse
|
24
|
Lietzau G, Davidsson W, Östenson CG, Chiazza F, Nathanson D, Pintana H, Skogsberg J, Klein T, Nyström T, Darsalia V, Patrone C. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta Neuropathol Commun 2018; 6:14. [PMID: 29471869 PMCID: PMC5824492 DOI: 10.1186/s40478-018-0517-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/26/2022] Open
Abstract
Recent data suggest that olfactory deficits could represent an early marker and a pathogenic mechanism at the basis of cognitive decline in type 2 diabetes (T2D). However, research is needed to further characterize olfactory deficits in diabetes, their relation to cognitive decline and underlying mechanisms. The aim of this study was to determine whether T2D impairs odour detection, olfactory memory as well as neuroplasticity in two major brain areas responsible for olfaction and odour coding: the main olfactory bulb (MOB) and the piriform cortex (PC), respectively. Dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used T2D drugs exerting also beneficial effects in the brain. Therefore, we aimed to determine whether DPP-4i could reverse the potentially detrimental effects of T2D on the olfactory system. Non-diabetic Wistar and T2D Goto-Kakizaki rats, untreated or treated for 16 weeks with the DPP-4i linagliptin, were employed. Odour detection and olfactory memory were assessed by using the block, the habituation-dishabituation and the buried pellet tests. We assessed neuroplasticity in the MOB by quantifying adult neurogenesis and GABAergic inhibitory interneurons positive for calbindin, parvalbumin and carletinin. In the PC, neuroplasticity was assessed by quantifying the same populations of interneurons and a newly identified form of olfactory neuroplasticity mediated by post-mitotic doublecortin (DCX) + immature neurons. We show that T2D dramatically reduced odour detection and olfactory memory. Moreover, T2D decreased neurogenesis in the MOB, impaired the differentiation of DCX+ immature neurons in the PC and altered GABAergic interneurons protein expression in both olfactory areas. DPP-4i did not improve odour detection and olfactory memory. However, it normalized T2D-induced effects on neuroplasticity. The results provide new knowledge on the detrimental effects of T2D on the olfactory system. This knowledge could constitute essentials for understanding the interplay between T2D and cognitive decline and for designing effective preventive therapies.
Collapse
|
25
|
Abstract
Natural olfactory stimuli are volatile-chemical mixtures in which relative perceptual saliencies determine which odor-components are identified. Odor identification also depends on rapid selective adaptation, as shown for 4 odor stimuli in an earlier experimental simulation of natural conditions. Adapt-test pairs of mixtures of water-soluble, distinct odor stimuli with chemical features in common were studied. Identification decreased for adapted components but increased for unadapted mixture-suppressed components, showing compound identities were retained, not degraded to individual molecular features. Four additional odor stimuli, 1 with 2 perceptible odor notes, and an added "water-adapted" control tested whether this finding would generalize to other 4-compound sets. Selective adaptation of mixtures of the compounds (odors): 3 mM benzaldehyde (cherry), 5 mM maltol (caramel), 1 mM guaiacol (smoke), and 4 mM methyl anthranilate (grape-smoke) again reciprocally unmasked odors of mixture-suppressed components in 2-, 3-, and 4-component mixtures with 2 exceptions. The cherry note of "benzaldehyde" (itself) and the shared note of "methyl anthranilate and guaiacol" (together) were more readily identified. The pervasive mixture-component dominance and dynamic perceptual salience may be mediated through peripheral adaptation and central mutual inhibition of neural responses. Originating in individual olfactory receptor variants, it limits odor identification and provides analytic properties for momentary recognition of a few remaining mixture-components.
Collapse
Affiliation(s)
- Marion E Frank
- Oral Health & Diagnostic Sciences, School of Dental Medicine, UConn Health, MC 1715, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Dane B Fletcher
- Oral Health & Diagnostic Sciences, School of Dental Medicine, UConn Health, MC 1715, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Thomas P Hettinger
- Oral Health & Diagnostic Sciences, School of Dental Medicine, UConn Health, MC 1715, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
26
|
Abstract
The ability to scrutinize our surroundings remains heavily dependent on the sense of smell. From the ability to detect dangerous situations such as fires to the recollection of a fond memory triggered by an odor, the advantages of an intact olfactory system cannot be overstated. Outcomes studies have highlighted the profound negative impact of anosmia and parosmia on the overall quality of life. The National Institute on Deafness and Other Communication Disorders estimates that ∼1.4% of the United States population experiences chronic olfactory dysfunction and smell loss. Efforts have focused on improving both the diagnosis of olfactory dysfunction through olfactory testing and improved reporting of treatment outcomes of olfactory training. The purpose of this article was to review the differential diagnosis, workup, and current treatment strategies of anosmia and smell disorders.
Collapse
Affiliation(s)
- George A Scangas
- Department of Otolaryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Auditory conditioned stimulus presentation during NREM sleep impairs fear memory in mice. Sci Rep 2017; 7:46247. [PMID: 28401950 PMCID: PMC5388892 DOI: 10.1038/srep46247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 01/17/2023] Open
Abstract
Externally manipulating memories by presenting conditioned stimuli (CS) during sleep is a new approach to investigating memory processing during sleep. However, whether presenting a CS during REM or NREM sleep enhances or extinguishes fear memory has not been clearly delineated. In this study, mice underwent trace fear conditioning consisting of an auditory CS paired with a foot shock, and the auditory CS was re-presented during subsequent REM or NREM sleep. Mice that received auditory cueing during NREM but not REM sleep showed impaired fear memory upon later presentation of the auditory CS. These findings have implications for the use of cueing during sleep and advance our understanding of the role of REM and NREM sleep in memory consolidation.
Collapse
|
28
|
Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding. Proc Natl Acad Sci U S A 2017; 114:2407-2412. [PMID: 28196887 DOI: 10.1073/pnas.1620939114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the neocortex exhibit spontaneous spiking activity in the absence of external stimuli, but the origin and functions of this activity remain uncertain. Here, we show that spontaneous spiking is also prominent in a sensory paleocortex, the primary olfactory (piriform) cortex of mice. In the absence of applied odors, piriform neurons exhibit spontaneous firing at mean rates that vary systematically among neuronal classes. This activity requires the participation of NMDA receptors and is entirely driven by bottom-up spontaneous input from the olfactory bulb. Odor stimulation produces two types of spatially dispersed, odor-distinctive patterns of responses in piriform cortex layer 2 principal cells: Approximately 15% of cells are excited by odor, and another approximately 15% have their spontaneous activity suppressed. Our results show that, by allowing odor-evoked suppression as well as excitation, the responsiveness of piriform neurons is at least twofold less sparse than currently believed. Hence, by enabling bidirectional changes in spiking around an elevated baseline, spontaneous activity in the piriform cortex extends the dynamic range of odor representation and enriches the coding space for the representation of complex olfactory stimuli.
Collapse
|
29
|
Development and Organization of the Evolutionarily Conserved Three-Layered Olfactory Cortex. eNeuro 2017; 4:eN-REV-0193-16. [PMID: 28144624 PMCID: PMC5272922 DOI: 10.1523/eneuro.0193-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/11/2016] [Accepted: 12/08/2016] [Indexed: 01/31/2023] Open
Abstract
The olfactory cortex is part of the mammalian cerebral cortex together with the neocortex and the hippocampus. It receives direct input from the olfactory bulbs and participates in odor discrimination, association, and learning (Bekkers and Suzuki, 2013). It is thought to be an evolutionarily conserved paleocortex, which shares common characteristics with the three-layered general cortex of reptiles (Aboitiz et al., 2002). The olfactory cortex has been studied as a “simple model” to address sensory processing, though little is known about its precise cell origin, diversity, and identity. While the development and the cellular diversity of the six-layered neocortex are increasingly understood, the olfactory cortex remains poorly documented in these aspects. Here is a review of current knowledge of the development and organization of the olfactory cortex, keeping the analogy with those of the neocortex. The comparison of olfactory cortex and neocortex will allow the opening of evolutionary perspectives on cortical development.
Collapse
|
30
|
Jammal L, Whalley B, Ghosh S, Lamrecht R, Barkai E. Physiological expression of olfactory discrimination rule learning balances whole-population modulation and circuit stability in the piriform cortex network. Physiol Rep 2016; 4:4/14/e12830. [PMID: 27449811 PMCID: PMC4962067 DOI: 10.14814/phy2.12830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/13/2016] [Indexed: 01/10/2023] Open
Abstract
Once trained, rats are able to execute particularly difficult olfactory discrimination tasks with exceptional accuracy. Such skill acquisition, termed "rule learning", is accompanied by a series of long-lasting modifications to three cellular properties which modulate pyramidal neuron activity in piriform cortex; intrinsic excitability, synaptic excitation, and synaptic inhibition. Here, we explore how these changes, which are seemingly contradictory at the single-cell level in terms of their effect on neuronal excitation, are manifested within the piriform cortical neuronal network to store the memory of the rule, while maintaining network stability. To this end, we monitored network activity via multisite extracellular recordings of field postsynaptic potentials (fPSPS) and with single-cell recordings of miniature inhibitory and excitatory synaptic events in piriform cortex slices. We show that although 5 days after rule learning the cortical network maintains its basic activity patterns, synaptic connectivity is strengthened specifically between spatially proximal cells. Moreover, while the enhancement of inhibitory and excitatory synaptic connectivity is nearly identical, strengthening of synaptic inhibition is equally distributed between neurons while synaptic excitation is particularly strengthened within a specific subgroup of cells. We suggest that memory for the acquired rule is stored mainly by strengthening excitatory synaptic connection between close pyramidal neurons and runaway synaptic activity arising from this change is prevented by a nonspecific enhancement of synaptic inhibition.
Collapse
Affiliation(s)
- Luna Jammal
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ben Whalley
- School of Chemistry, Food & Nutritional Sciences and Pharmacy, The University of Reading, Reading, UK
| | - Sourav Ghosh
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamrecht
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
31
|
Optogenetic Activation of Dorsal Raphe Serotonin Neurons Rapidly Inhibits Spontaneous But Not Odor-Evoked Activity in Olfactory Cortex. J Neurosci 2016; 36:7-18. [PMID: 26740645 DOI: 10.1523/jneurosci.3008-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Serotonin (5-hydroxytriptamine; 5-HT) is implicated in a variety of brain functions including not only the regulation of mood and control of behavior but also the modulation of perception. 5-HT neurons in the dorsal raphe nucleus (DRN) often fire locked to sensory stimuli, but little is known about how 5-HT affects sensory processing, especially on this timescale. Here, we used an optogenetic approach to study the effect of 5-HT on single-unit activity in the mouse primary olfactory (anterior piriform) cortex. We show that activation of DRN 5-HT neurons rapidly inhibits the spontaneous firing of olfactory cortical neurons, acting in a divisive manner, but entirely spares sensory-driven firing. These results identify a new role for serotonergic modulation in dynamically regulating the balance between different sources of neural activity in sensory systems, suggesting a possible role for 5-HT in perceptual inference. SIGNIFICANCE STATEMENT Serotonin is implicated in a wide variety of (pato)physiological functions including perception, but its precise role has remained elusive. Here, using optogenetic tools in vivo, we show that serotonergic neuromodulation prominently inhibits the spontaneous electrical activity of neurons in the primary olfactory cortex on a rapid (<1 s) timescale but leaves sensory responses unaffected. These results identify a new role for serotonergic modulation in rapidly changing the balance between different sources of neural activity in sensory systems.
Collapse
|
32
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
33
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
34
|
Štefánik P, Olexová L, Kršková L. Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid. Pharmacol Biochem Behav 2015; 131:42-50. [DOI: 10.1016/j.pbb.2015.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
|
35
|
Yuan Q, Harley CW. Learning modulation of odor representations: new findings from Arc-indexed networks. Front Cell Neurosci 2015; 8:423. [PMID: 25565958 PMCID: PMC4271698 DOI: 10.3389/fncel.2014.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/23/2014] [Indexed: 11/13/2022] Open
Abstract
We first review our understanding of odor representations in rodent olfactory bulb (OB) and anterior piriform cortex (APC). We then consider learning-induced representation changes. Finally we describe the perspective on network representations gained from examining Arc-indexed odor networks of awake rats. Arc-indexed networks are sparse and distributed, consistent with current views. However Arc provides representations of repeated odors. Arc-indexed repeated odor representations are quite variable. Sparse representations are assumed to be compact and reliable memory codes. Arc suggests this is not necessarily the case. The variability seen is consistent with electrophysiology in awake animals and may reflect top-down cortical modulation of context. Arc-indexing shows that distinct odors share larger than predicted neuron pools. These may be low-threshold neuronal subsets. Learning’s effect on Arc-indexed representations is to increase the stable or overlapping component of rewarded odor representations. This component can decrease for similar odors when their discrimination is rewarded. The learning effects seen are supported by electrophysiology, but mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland St. John's, NL, Canada
| | - Carolyn W Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
36
|
Hamani C, Amorim BO, Wheeler AL, Diwan M, Driesslein K, Covolan L, Butson CR, Nobrega JN. Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits. Neurobiol Dis 2014; 71:205-14. [PMID: 25131446 PMCID: PMC5756089 DOI: 10.1016/j.nbd.2014.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 01/20/2023] Open
Abstract
Recent studies in patients with treatment-resistant depression have shown similar results with the use of deep brain stimulation (DBS) in the subcallosal cingulate gyrus (SCG), ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (Acb). As these brain regions are interconnected, one hypothesis is that by stimulating these targets one would just be influencing different relays in the same circuitry. We investigate behavioral, immediate early gene expression, and functional connectivity changes in rats given DBS in homologous regions, namely the ventromedial prefrontal cortex (vmPFC), white matter fibers of the frontal region (WMF) and nucleus accumbens. We found that DBS delivered to the vmPFC, Acb but not WMF induced significant antidepressant-like effects in the FST (31%, 44%, and 17% reduction in immobility compared to controls). Despite these findings, stimulation applied to these three targets induced distinct patterns of regional activity and functional connectivity. While animals given vmPFC DBS had increased cortical zif268 expression, changes after Acb stimulation were primarily observed in subcortical structures. In animals receiving WMF DBS, both cortical and subcortical structures at a distance from the target were influenced by stimulation. In regard to functional connectivity, DBS in all targets decreased intercorrelations among cortical areas. This is in contrast to the clear differences observed in subcortical connectivity, which was reduced after vmPFC DBS but increased in rats receiving Acb or WMF stimulation. In conclusion, results from our study suggest that, despite similar antidepressant-like effects, stimulation of the vmPFC, WMF and Acb induces distinct changes in regional brain activity and functional connectivity.
Collapse
Affiliation(s)
- Clement Hamani
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.
| | - Beatriz O Amorim
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anne L Wheeler
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Mustansir Diwan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Klaus Driesslein
- Department of Neurology, Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Luciene Covolan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Christopher R Butson
- Department of Neurology, Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - José N Nobrega
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
|
38
|
Fontaine CJ, Mukherjee B, Morrison GL, Yuan Q. A lateralized odor learning model in neonatal rats for dissecting neural circuitry underpinning memory formation. J Vis Exp 2014:e51808. [PMID: 25177826 DOI: 10.3791/51808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rat pups during a critical postnatal period (≤ 10 days) readily form a preference for an odor that is associated with stimuli mimicking maternal care. Such a preference memory can last from hours, to days, even life-long, depending on training parameters. Early odor preference learning provides us with a model in which the critical changes for a natural form of learning occur in the olfactory circuitry. An additional feature that makes it a powerful tool for the analysis of memory processes is that early odor preference learning can be lateralized via single naris occlusion within the critical period. This is due to the lack of mature anterior commissural connections of the olfactory hemispheres at this early age. This work outlines behavioral protocols for lateralized odor learning using nose plugs. Acute, reversible naris occlusion minimizes tissue and neuronal damages associated with long-term occlusion and more aggressive methods such as cauterization. The lateralized odor learning model permits within-animal comparison, therefore greatly reducing variance compared to between-animal designs. This method has been used successfully to probe the circuit changes in the olfactory system produced by training. Future directions include exploring molecular underpinnings of odor memory using this lateralized learning model; and correlating physiological change with memory strength and durations.
Collapse
Affiliation(s)
- Christine J Fontaine
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University; Division of Medical Sciences, University of Victoria
| | - Bandhan Mukherjee
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University
| | - Gillian L Morrison
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University
| | - Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University;
| |
Collapse
|
39
|
Imai T. Construction of functional neuronal circuitry in the olfactory bulb. Semin Cell Dev Biol 2014; 35:180-8. [PMID: 25084319 DOI: 10.1016/j.semcdb.2014.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Recent studies using molecular genetics, electrophysiology, in vivo imaging, and behavioral analyses have elucidated detailed connectivity and function of the mammalian olfactory circuits. The olfactory bulb is the first relay station of olfactory perception in the brain, but it is more than a simple relay: olfactory information is dynamically tuned by local olfactory bulb circuits and converted to spatiotemporal neural code for higher-order information processing. Because the olfactory bulb processes ∼1000 discrete input channels from different odorant receptors, it serves as a good model to study neuronal wiring specificity, from both functional and developmental aspects. This review summarizes our current understanding of the olfactory bulb circuitry from functional standpoint and discusses important future studies with particular focus on its development and plasticity.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
40
|
Osmanski B, Martin C, Montaldo G, Lanièce P, Pain F, Tanter M, Gurden H. Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex. Neuroimage 2014; 95:176-84. [DOI: 10.1016/j.neuroimage.2014.03.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 11/29/2022] Open
|
41
|
Abstract
Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay.
Collapse
|
42
|
Mandairon N, Kermen F, Charpentier C, Sacquet J, Linster C, Didier A. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex. Front Behav Neurosci 2014; 8:138. [PMID: 24808838 PMCID: PMC4010734 DOI: 10.3389/fnbeh.2014.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022] Open
Abstract
Sensory neural activity is highly context dependent and shaped by experience and expectation. In the olfactory bulb (OB), the first cerebral relay of olfactory processing, responses to odorants are shaped by previous experiences including contextual information thanks to strong feedback connections. In the present experiment, mice were conditioned to associate an odorant with a visual context and were then exposed to the visual context alone. We found that the visual context alone elicited exploration of the odor port similar to that elicited by the stimulus when it was initially presented. In the OB, the visual context alone elicited a neural activation pattern, assessed by mapping the expression of the immediate early gene zif268 (egr-1) that was highly similar to that evoked by the conditioned odorant, but not other odorants. This OB activation was processed by olfactory network as it was transmitted to the piriform cortex. Interestingly, a novel context abolished neural and behavioral responses. In addition, the neural representation in response to the context was dependent on top-down inputs, suggesting that context-dependent representation is initiated in cortex. Modeling of the experimental data suggests that odor representations are stored in cortical networks, reactivated by the context and activate bulbar representations. Activation of the OB and the associated behavioral response in the absence of physical stimulus showed that mice are capable of internal representations of sensory stimuli. The similarity of activation patterns induced by imaged and the corresponding physical stimulus, triggered only by the relevant context provides evidence for an odor-specific internal representation.
Collapse
Affiliation(s)
- Nathalie Mandairon
- Centre de Recherche en Neurosciences de Lyon, UMR CNRS 5292 INSERM 1028, Université Lyon1 Lyon, France
| | - Florence Kermen
- Centre de Recherche en Neurosciences de Lyon, UMR CNRS 5292 INSERM 1028, Université Lyon1 Lyon, France
| | - Caroline Charpentier
- Centre de Recherche en Neurosciences de Lyon, UMR CNRS 5292 INSERM 1028, Université Lyon1 Lyon, France
| | - Joelle Sacquet
- Centre de Recherche en Neurosciences de Lyon, UMR CNRS 5292 INSERM 1028, Université Lyon1 Lyon, France
| | - Christiane Linster
- Computational Physiology Lab, Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Anne Didier
- Centre de Recherche en Neurosciences de Lyon, UMR CNRS 5292 INSERM 1028, Université Lyon1 Lyon, France
| |
Collapse
|
43
|
Yuan Q, Shakhawat AMD, Harley CW. Mechanisms underlying early odor preference learning in rats. PROGRESS IN BRAIN RESEARCH 2014; 208:115-56. [PMID: 24767481 DOI: 10.1016/b978-0-444-63350-7.00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early odor preference training in rat pups produces behavioral preferences that last from hours to lifetimes. Here, we discuss the molecular and circuitry changes we have observed in the olfactory bulb (OB) and in the anterior piriform cortex (aPC) following odor training. For normal preference learning, both structures are necessary, but learned behavior can be initiated by initiating local circuit change in either structure. Our evidence relates dynamic molecular and circuit changes to memory duration and storage localization. Results using this developmental model are consistent with biological memory theories implicating N-methyl-D-aspartate (NMDA) receptors and β-adrenoceptors, and their associated cascades, in memory induction and consolidation. Finally, our examination of the odor preference model reveals a primary role for increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor synaptic strength, and in network strength, in the creation and maintenance of preference memory in both olfactory structures.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Amin M D Shakhawat
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
44
|
Bracey EF, Pichler B, Schaefer AT, Wallace DJ, Margrie TW. Perceptual judgements and chronic imaging of altered odour maps indicate comprehensive stimulus template matching in olfaction. Nat Commun 2013; 4:2100. [PMID: 23820818 PMCID: PMC3715885 DOI: 10.1038/ncomms3100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/03/2013] [Indexed: 11/09/2022] Open
Abstract
Lesion experiments suggest that odour input to the olfactory bulb contains significant redundant signal such that rodents can discern odours using minimal stimulus-related information. Here we investigate the dependence of odour-quality perception on the integrity of glomerular activity by comparing odour-evoked activity maps before and after epithelial lesions. Lesions prevent mice from recognizing previously experienced odours and differentially delay discrimination learning of unrecognized and novel odour pairs. Poor recognition results not from mice experiencing an altered concentration of an odour but from perception of apparent novel qualities. Consistent with this, relative intensity of glomerular activity following lesions is altered compared with maps recorded in shams and by varying odour concentration. Together, these data show that odour recognition relies on comprehensively matching input patterns to a previously generated stimulus template. When encountering novel odours, access to all glomerular activity ensures rapid generation of new templates to perform accurate perceptual judgements.
Collapse
Affiliation(s)
- Edward F Bracey
- Department of Neuroscience, Physiology and Pharmacology, University College London, University Street, London, UK
| | | | | | | | | |
Collapse
|
45
|
Birjandian Z, Narla C, Poulter MO. Gain control of γ frequency activation by a novel feed forward disinhibitory loop: implications for normal and epileptic neural activity. Front Neural Circuits 2013; 7:183. [PMID: 24312017 PMCID: PMC3832797 DOI: 10.3389/fncir.2013.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/30/2013] [Indexed: 01/13/2023] Open
Abstract
The inhibition of excitatory (pyramidal) neurons directly dampens their activity resulting in a suppression of neural network output. The inhibition of inhibitory cells is more complex. Inhibitory drive is known to gate neural network synchrony, but there is also a widely held view that it may augment excitability by reducing inhibitory cell activity, a process termed disinhibition. Surprisingly, however, disinhibition has never been demonstrated to be an important mechanism that augments or drives the activity of excitatory neurons in a functioning neural circuit. Using voltage sensitive dye imaging (VSDI) we show that 20–80 Hz stimulus trains, β–γ activation, of the olfactory cortex pyramidal cells in layer II leads to a subsequent reduction in inhibitory interneuron activity that augments the efficacy of the initial stimulus. This disinhibition occurs with a lag of about 150–250 ms after the initial excitation of the layer 2 pyramidal cell layer. In addition, activation of the endopiriform nucleus also arises just before the disinhibitory phase with a lag of about 40–80 ms. Preventing the spread of action potentials from layer II stopped the excitation of the endopiriform nucleus, abolished the disinhibitory activity, and reduced the excitation of layer II cells. After the induction of experimental epilepsy the disinhibition was more intense with a concomitant increase in excitatory cell activity. Our observations provide the first evidence of feed forward disinhibition loop that augments excitatory neurotransmission, a mechanism that could play an important role in the development of epileptic seizures.
Collapse
Affiliation(s)
- Zeinab Birjandian
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario London, ON, Canada
| | | | | |
Collapse
|
46
|
Giessel AJ, Datta SR. Olfactory maps, circuits and computations. Curr Opin Neurobiol 2013; 24:120-32. [PMID: 24492088 DOI: 10.1016/j.conb.2013.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 11/17/2022]
Abstract
Sensory information in the visual, auditory and somatosensory systems is organized topographically, with key sensory features ordered in space across neural sheets. Despite the existence of a spatially stereotyped map of odor identity within the olfactory bulb, it is unclear whether the higher olfactory cortex uses topography to organize information about smells. Here, we review recent work on the anatomy, microcircuitry and neuromodulation of two higher-order olfactory areas: the piriform cortex and the olfactory tubercle. The piriform is an archicortical region with an extensive local associational network that constructs representations of odor identity. The olfactory tubercle is an extension of the ventral striatum that may use reward-based learning rules to encode odor valence. We argue that in contrast to brain circuits for other sensory modalities, both the piriform and the olfactory tubercle largely discard any topography present in the bulb and instead use distributive afferent connectivity, local learning rules and input from neuromodulatory centers to build behaviorally relevant representations of olfactory stimuli.
Collapse
Affiliation(s)
- Andrew J Giessel
- Harvard Medical School, Department of Neurobiology, 220 Longwood Avenue, Boston, MA 02115, United States
| | - Sandeep Robert Datta
- Harvard Medical School, Department of Neurobiology, 220 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
47
|
Patterson MA, Lagier S, Carleton A. Odor representations in the olfactory bulb evolve after the first breath and persist as an odor afterimage. Proc Natl Acad Sci U S A 2013; 110:E3340-9. [PMID: 23918364 PMCID: PMC3761593 DOI: 10.1073/pnas.1303873110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rodents can discriminate odors in one breath, and mammalian olfaction research has thus focused on the first breath. However, sensory representations dynamically change during and after stimuli. To investigate these dynamics, we recorded spike trains from the olfactory bulb of awake, head-fixed mice and found that some mitral cells' odor representations changed following the first breath and others continued after odor cessation. Population analysis revealed that these postodor responses contained odor- and concentration-specific information--an odor afterimage. Using calcium imaging, we found that most olfactory glomerular activity was restricted to the odor presentation, implying that the afterimage is not primarily peripheral. The odor afterimage was not dependent on odorant physicochemical properties. To artificially induce aftereffects, we photostimulated mitral cells using channelrhodopsin and recorded centrally maintained persistent activity. The strength and persistence of the afterimage was dependent on the duration of both artificial and natural stimulation. In summary, we show that the odor representation evolves after the first breath and that there is a centrally maintained odor afterimage, similar to other sensory systems. These dynamics may help identify novel odorants in complex environments.
Collapse
Affiliation(s)
- Michael Andrew Patterson
- Department of Basic Neurosciences, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Samuel Lagier
- Department of Basic Neurosciences, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
48
|
Gire DH, Restrepo D, Sejnowski TJ, Greer C, De Carlos JA, Lopez-Mascaraque L. Temporal processing in the olfactory system: can we see a smell? Neuron 2013; 78:416-32. [PMID: 23664611 PMCID: PMC3694266 DOI: 10.1016/j.neuron.2013.04.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing.
Collapse
Affiliation(s)
- David H Gire
- Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
49
|
Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci 2013; 36:429-38. [PMID: 23648377 DOI: 10.1016/j.tins.2013.04.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Abstract
Increased understanding of the early stages of olfaction has lead to a renewed interest in the higher brain regions responsible for forming unified 'odor images' from the chemical components detected by the nose. The piriform cortex, which is one of the first cortical destinations of olfactory information in mammals, is a primitive paleocortex that is critical for the synthetic perception of odors. Here we review recent work that examines the cellular neurophysiology of the piriform cortex. Exciting new findings have revealed how the neurons and circuits of the piriform cortex process odor information, demonstrating that, despite its superficial simplicity, the piriform cortex is a remarkably subtle and intricate neural circuit.
Collapse
|
50
|
Morrison GL, Fontaine CJ, Harley CW, Yuan Q. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup. J Neurophysiol 2013; 110:141-52. [PMID: 23576704 DOI: 10.1152/jn.00072.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
cFos activation in the anterior piriform cortex (aPC) occurs in early odor preference learning in rat pups (Roth and Sullivan 2005). Here we provide evidence that the pairing of odor as a conditioned stimulus and β-adrenergic activation in the aPC as an unconditioned stimulus generates early odor preference learning. β-Adrenergic blockade in the aPC prevents normal preference learning. Enhancement of aPC cAMP response element-binding protein (CREB) phosphorylation in trained hemispheres is consistent with a role for this cascade in early odor preference learning in the aPC. In vitro experiments suggested theta-burst-mediated long-term potentiation (LTP) at the lateral olfactory tract (LOT) to aPC synapse depends on N-methyl-D-aspartate (NMDA) receptors and can be significantly enhanced by β-adrenoceptor activation, which causes increased glutamate release from LOT synapses during LTP induction. NMDA receptors in aPC are also shown to be critical for the acquisition, but not expression, of odor preference learning, as would be predicted if they mediate initial β-adrenoceptor-promoted aPC plasticity. Ex vivo experiments 3 and 24 h after odor preference training reveal an enhanced LOT-aPC field excitatory postsynaptic potential (EPSP). At 3 h both presynaptic and postsynaptic potentiations support EPSP enhancement while at 24 h only postsynaptic potentiation is seen. LOT-LTP in aPC is excluded by odor preference training. Taken together with earlier work on the role of the olfactory bulb in early odor preference learning, these outcomes suggest early odor preference learning is normally supported by and requires multiple plastic changes at least at two levels of olfactory circuitry.
Collapse
Affiliation(s)
- Gillian L Morrison
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|