1
|
Ahissar E, Nelinger G, Assa E, Karp O, Saraf-Sinik I. Thalamocortical loops as temporal demodulators across senses. Commun Biol 2023; 6:562. [PMID: 37237075 DOI: 10.1038/s42003-023-04881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel.
| | - Guy Nelinger
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Eldad Assa
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Ofer Karp
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|
2
|
Cholinergic modulation of sensory processing in awake mouse cortex. Sci Rep 2021; 11:17525. [PMID: 34471145 PMCID: PMC8410938 DOI: 10.1038/s41598-021-96696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
Cholinergic modulation of brain activity is fundamental for awareness and conscious sensorimotor behaviours, but deciphering the timing and significance of acetylcholine actions for these behaviours is challenging. The widespread nature of cholinergic projections to the cortex means that new insights require access to specific neuronal populations, and on a time-scale that matches behaviourally relevant cholinergic actions. Here, we use fast, voltage imaging of L2/3 cortical pyramidal neurons exclusively expressing the genetically-encoded voltage indicator Butterfly 1.2, in awake, head-fixed mice, receiving sensory stimulation, whilst manipulating the cholinergic system. Altering muscarinic acetylcholine function re-shaped sensory-evoked fast depolarisation and subsequent slow hyperpolarisation of L2/3 pyramidal neurons. A consequence of this re-shaping was disrupted adaptation of the sensory-evoked responses, suggesting a critical role for acetylcholine during sensory discrimination behaviour. Our findings provide new insights into how the cortex processes sensory information and how loss of acetylcholine, for example in Alzheimer's Disease, disrupts sensory behaviours.
Collapse
|
3
|
Ebbesen CL, Froemke RC. Body language signals for rodent social communication. Curr Opin Neurobiol 2021; 68:91-106. [PMID: 33582455 PMCID: PMC8243782 DOI: 10.1016/j.conb.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Integration of social cues to initiate adaptive emotional and behavioral responses is a fundamental aspect of animal and human behavior. In humans, social communication includes prominent nonverbal components, such as social touch, gestures and facial expressions. Comparative studies investigating the neural basis of social communication in rodents has historically been centered on olfactory signals and vocalizations, with relatively less focus on non-verbal social cues. Here, we outline two exciting research directions: First, we will review recent observations pointing to a role of social facial expressions in rodents. Second, we will review observations that point to a role of 'non-canonical' rodent body language: body posture signals beyond stereotyped displays in aggressive and sexual behavior. In both sections, we will outline how social neuroscience can build on recent advances in machine learning, robotics and micro-engineering to push these research directions forward towards a holistic systems neurobiology of rodent body language.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA; Howard Hughes Medical Institute Faculty Scholar, USA.
| |
Collapse
|
4
|
Predictive whisker kinematics reveal context-dependent sensorimotor strategies. PLoS Biol 2020; 18:e3000571. [PMID: 32453721 PMCID: PMC7274460 DOI: 10.1371/journal.pbio.3000571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 06/05/2020] [Accepted: 05/11/2020] [Indexed: 01/27/2023] Open
Abstract
Animals actively move their sensory organs in order to acquire sensory information. Some rodents, such as mice and rats, employ cyclic scanning motions of their facial whiskers to explore their proximal surrounding, a behavior known as whisking. Here, we investigated the contingency of whisking kinematics on the animal's behavioral context that arises from both internal processes (attention and expectations) and external constraints (available sensory and motor degrees of freedom). We recorded rat whisking at high temporal resolution in 2 experimental contexts-freely moving or head-fixed-and 2 spatial sensory configurations-a single row or 3 caudal whiskers on each side of the snout. We found that rapid sensorimotor twitches, called pumps, occurring during free-air whisking carry information about the rat's upcoming exploratory direction, as demonstrated by the ability of these pumps to predict consequent head and body locomotion. Specifically, pump behavior during both voluntary motionlessness and imposed head fixation exposed a backward redistribution of sensorimotor exploratory resources. Further, head-fixed rats employed a wide range of whisking profiles to compensate for the loss of head- and body-motor degrees of freedom. Finally, changing the number of intact vibrissae available to a rat resulted in an alteration of whisking strategy consistent with the rat actively reallocating its remaining resources. In sum, this work shows that rats adapt their active exploratory behavior in a homeostatic attempt to preserve sensorimotor coverage under changing environmental conditions and changing sensory capacities, including those imposed by various laboratory conditions.
Collapse
|
5
|
Somatosensation: The Cellular and Physical Basis of Tactile Experience. Curr Biol 2020; 30:R215-R217. [PMID: 32155422 DOI: 10.1016/j.cub.2020.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question in sensory neuroscience is how perceptual experience arises from the cellular properties of sensory neurons. A new, tour de force study has dissected out the functional properties of identified mechanosensory nerve endings that innervate whisker follicles.
Collapse
|
6
|
Petersen RS, Colins Rodriguez A, Evans MH, Campagner D, Loft MSE. A system for tracking whisker kinematics and whisker shape in three dimensions. PLoS Comput Biol 2020; 16:e1007402. [PMID: 31978043 PMCID: PMC7028309 DOI: 10.1371/journal.pcbi.1007402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/18/2020] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Quantification of behaviour is essential for biology. Since the whisker system is a popular model, it is important to have methods for measuring whisker movements from behaving animals. Here, we developed a high-speed imaging system that measures whisker movements simultaneously from two vantage points. We developed a whisker tracker algorithm that automatically reconstructs 3D whisker information directly from the ‘stereo’ video data. The tracker is controlled via a Graphical User Interface that also allows user-friendly curation. The algorithm tracks whiskers, by fitting a 3D Bezier curve to the basal section of each target whisker. By using prior knowledge of natural whisker motion and natural whisker shape to constrain the fits and by minimising the number of fitted parameters, the algorithm is able to track multiple whiskers in parallel with low error rate. We used the output of the tracker to produce a 3D description of each tracked whisker, including its 3D orientation and 3D shape, as well as bending-related mechanical force. In conclusion, we present a non-invasive, automatic system to track whiskers in 3D from high-speed video, creating the opportunity for comprehensive 3D analysis of sensorimotor behaviour and its neural basis. The great ethologist Niko Tinbergen described a crucial challenge in biology to measure the “total movements made by the intact animal”[1]. Advances in high-speed video and machine analysis of such data have made it possible to make profound advances. Here, we target the whisker system. The whisker system is a major experimental model in neurobiology and, since the whiskers are readily imageable, the system is ideally suited to machine vision. Rats and mice explore their environment by sweeping their whiskers to and fro. It is important to measure whisker movements in 3D, since whiskers move in 3D and since the mechanical forces that act on them are 3D. However, the computational problem of automatically tracking whiskers in 3D from video has generally been regarded as prohibitively difficult. Our innovation here is to extract 3D information about whiskers using a two-camera, high-speed imaging system and to develop computational methods to reconstruct 3D whisker state from the imaging data. Our hope is that this study will facilitate comprehensive, 3D analysis of whisker behaviour and, more generally, contribute new insight into brain mechanisms of perception and behaviour.
Collapse
Affiliation(s)
- Rasmus S. Petersen
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Andrea Colins Rodriguez
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Mathew H. Evans
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Dario Campagner
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Michaela S. E. Loft
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow. J Neurosci 2019; 39:5881-5896. [PMID: 31097620 DOI: 10.1523/jneurosci.2971-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
Rodents are the most commonly studied model system in neuroscience, but surprisingly few studies investigate the natural sensory stimuli that rodent nervous systems evolved to interpret. Even fewer studies examine neural responses to these natural stimuli. Decades of research have investigated the rat vibrissal (whisker) system in the context of direct touch and tactile stimulation, but recent work has shown that rats also use their whiskers to help detect and localize airflow. The present study investigates the neural basis for this ability as dictated by the mechanical response of whiskers to airflow. Mechanical experiments show that a whisker's vibration magnitude depends on airspeed and the intrinsic shape of the whisker. Surprisingly, the direction of the whisker's vibration changes as a function of airflow speed: vibrations transition from parallel to perpendicular with respect to the airflow as airspeed increases. Recordings from primary sensory trigeminal ganglion neurons show that these neurons exhibit responses consistent with those that would be predicted from direct touch. Trigeminal neuron firing rate increases with airspeed, is modulated by the orientation of the whisker relative to the airflow, and is influenced by the whisker's resonant frequencies. We develop a simple model to describe how a population of neurons could leverage mechanical relationships to decode both airspeed and direction. These results open new avenues for studying vibrissotactile regions of the brain in the context of evolutionarily important airflow-sensing behaviors and olfactory search. Although this study used only female rats, all results are expected to generalize to male rats.SIGNIFICANCE STATEMENT The rodent vibrissal (whisker) system has been studied for decades in the context of direct tactile sensation, but recent work has indicated that rats also use whiskers to help localize airflow. Neural circuits in somatosensory regions of the rodent brain thus likely evolved in part to process airflow information. This study investigates the whiskers' mechanical response to airflow and the associated neural response. Airspeed affects the magnitude of whisker vibration and the response magnitude of whisker-sensitive primary sensory neurons in the trigeminal ganglion. Surprisingly, the direction of vibration and the associated directionally dependent neural response changes with airspeed. These findings suggest a population code for airflow speed and direction and open new avenues for studying vibrissotactile regions of the brain.
Collapse
|
8
|
Devilbiss DM. Consequences of tuning network function by tonic and phasic locus coeruleus output and stress: Regulating detection and discrimination of peripheral stimuli. Brain Res 2018; 1709:16-27. [PMID: 29908165 DOI: 10.1016/j.brainres.2018.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Flexible and adaptive behaviors have evolved with increasing complexity and numbers of neuromodulator systems. The neuromodulatory locus coeruleus-norepinephrine (LC-NE) system is central to regulating cognitive function in a behaviorally-relevant and arousal-dependent manner. Through its nearly ubiquitous efferent projections, the LC-NE system acts to modulate neuron function on a cell-by-cell basis and exert a spectrum of actions across different brain regions to optimize target circuit function. As LC neuron activity, NE signaling, and arousal level increases, cognitive performance improves over an inverted-U shaped curve. Additionally, LC neurons burst phasically in relation to novel or salient sensory stimuli and top-down decision- or response-related processes. Together, the variety of LC activity patterns and complex actions of the LC-NE system indicate that the LC-NE system may dynamically regulate the function of target neural circuits. The manner in which neural networks encode, represent, and perform neurocomputations continue to be revealed. This has improved our ability to understand the optimization of neural circuits by NE and generation of flexible and adaptive goal-directed behaviors. In this review, the rat vibrissa somatosensory system is explored as a model neural circuit to bridge known modulatory actions of NE and changes in cognitive function. It is argued that fluid transitions between neural computational states reflect the ability of this sensory system to shift between two principal functions: detection of novel or salient sensory information and detailed descriptions of sensory information. Such flexibility in circuit function is likely critical for producing context-appropriate sensory signal processing. Nonetheless, many challenges remain including providing a causal link between NE mediated changes in sensory neural coding and perceptual changes, as well as extending these principles to higher cognitive functions including behavioral flexibility and decision making.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, United States.
| |
Collapse
|
9
|
Martini FJ, Molano-Mazón M, Maravall M. Interspersed Distribution of Selectivity to Kinematic Stimulus Features in Supragranular Layers of Mouse Barrel Cortex. Cereb Cortex 2018; 27:3782-3789. [PMID: 28334121 DOI: 10.1093/cercor/bhx019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/14/2016] [Indexed: 01/17/2023] Open
Abstract
Neurons in the primary sensory regions of neocortex have heterogeneous response properties. The spatial arrangement of neurons with particular response properties is a key aspect of population representations and can shed light on how local circuits are wired. Here, we investigated how neurons with sensitivity to different kinematic features of whisker stimuli are distributed across local circuits in supragranular layers of the barrel cortex. Using 2-photon calcium population imaging in anesthetized mice, we found that nearby neurons represent diverse kinematic features, providing a rich population representation at the local scale. Neurons interspersed in space therefore responded differently to a common stimulus kinematic feature. Conversely, neurons with similar feature selectivity were located no closer to each other than predicted by a random distribution null hypothesis. This finding relied on defining a null hypothesis that was specific for testing the spatial distribution of tuning across neurons. We also measured how neurons sensitive to specific features were distributed relative to barrel boundaries, and found no systematic organization. Our results are compatible with randomly distributed selectivity to kinematic features, with no systematic ordering superimposed upon the whisker map.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain
| | - Manuel Molano-Mazón
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain.,Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Miguel Maravall
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
10
|
Information Processing Across Behavioral States: Modes of Operation and Population Dynamics in Rodent Sensory Cortex. Neuroscience 2018; 368:214-228. [DOI: 10.1016/j.neuroscience.2017.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/24/2022]
|
11
|
Bale MR, Maravall M. Organization of sensory feature selectivity in the whisker system. Neuroscience 2017; 368:70-80. [PMID: 28918260 PMCID: PMC5798594 DOI: 10.1016/j.neuroscience.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Neurons in the whisker system are selective to spatial and dynamical properties – features – of sensory stimuli. At each stage of the pathway, different neurons encode distinct features, generating a rich population representation. Whisker touch is robustly represented; neurons respond to touch-driven fast fluctuations in forces at the whisker base. Cortical neurons have more complex and context-dependent selectivity than subcortical, e.g., to collective whisker motion. Understanding how these signals are integrated to construct whisker-mediated percepts requires further research.
Our sensory receptors are faced with an onslaught of different environmental inputs. Each sensory event or encounter with an object involves a distinct combination of physical energy sources impinging upon receptors. In the rodent whisker system, each primary afferent neuron located in the trigeminal ganglion innervates and responds to a single whisker and encodes a distinct set of physical stimulus properties – features – corresponding to changes in whisker angle and shape and the consequent forces acting on the whisker follicle. Here we review the nature of the features encoded by successive stages of processing along the whisker pathway. At each stage different neurons respond to distinct features, such that the population as a whole represents diverse properties. Different neuronal types also have distinct feature selectivity. Thus, neurons at the same stage of processing and responding to the same whisker nevertheless play different roles in representing objects contacted by the whisker. This diversity, combined with the precise timing and high reliability of responses, enables populations at each stage to represent a wide range of stimuli. Cortical neurons respond to more complex stimulus properties – such as correlated motion across whiskers – than those at early subcortical stages. Temporal integration along the pathway is comparatively weak: neurons up to barrel cortex (BC) are sensitive mainly to fast (tens of milliseconds) fluctuations in whisker motion. The topographic organization of whisker sensitivity is paralleled by systematic organization of neuronal selectivity to certain other physical features, but selectivity to touch and to dynamic stimulus properties is distributed in “salt-and-pepper” fashion.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
12
|
Abstract
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway - the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding 'what the whiskers tell the brain' sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.
Collapse
|
13
|
Bale MR, Bitzidou M, Pitas A, Brebner LS, Khazim L, Anagnou ST, Stevenson CD, Maravall M. Learning and recognition of tactile temporal sequences by mice and humans. eLife 2017; 6. [PMID: 28812976 PMCID: PMC5559268 DOI: 10.7554/elife.27333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
The world around us is replete with stimuli that unfold over time. When we hear an auditory stream like music or speech or scan a texture with our fingertip, physical features in the stimulus are concatenated in a particular order. This temporal patterning is critical to interpreting the stimulus. To explore the capacity of mice and humans to learn tactile sequences, we developed a task in which subjects had to recognise a continuous modulated noise sequence delivered to whiskers or fingertips, defined by its temporal patterning over hundreds of milliseconds. GO and NO-GO sequences differed only in that the order of their constituent noise modulation segments was temporally scrambled. Both mice and humans efficiently learned tactile sequences. Mouse sequence recognition depended on detecting transitions in noise amplitude; animals could base their decision on the earliest information available. Humans appeared to use additional cues, including the duration of noise modulation segments. DOI:http://dx.doi.org/10.7554/eLife.27333.001
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Alicante, Spain
| | - Malamati Bitzidou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anna Pitas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Alicante, Spain
| | - Leonie S Brebner
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Lina Khazim
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Stavros T Anagnou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Caitlin D Stevenson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
14
|
Chen S, Augustine GJ, Chadderton P. Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking. Nat Commun 2017; 8:232. [PMID: 28794450 PMCID: PMC5550418 DOI: 10.1038/s41467-017-00312-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Purkinje cells (PCs) in Crus 1 represent whisker movement via linear changes in firing rate, but the circuit mechanisms underlying this coding scheme are unknown. Here we examine the role of upstream inputs to PCs-excitatory granule cells (GCs) and inhibitory molecular layer interneurons-in processing of whisking signals. Patch clamp recordings in GCs reveal that movement is accompanied by changes in mossy fibre input rate that drive membrane potential depolarisation and high-frequency bursting activity at preferred whisker angles. Although individual GCs are narrowly tuned, GC populations provide linear excitatory drive across a wide range of movement. Molecular layer interneurons exhibit bidirectional firing rate changes during whisking, similar to PCs. Together, GC populations provide downstream PCs with linear representations of volitional movement, while inhibitory networks invert these signals. The exquisite sensitivity of neurons at each processing stage enables faithful propagation of kinematic representations through the cerebellum.Cerebellar Purkinje cells (PCs) linearly encode whisker position but the precise circuit mechanisms that generate these signals are not well understood. Here the authors use patch clamp recordings to show that selective tuning of granule cell inputs and bidirectional tuning of interneuron inputs are required to generate the kinematic representations in PCs.
Collapse
Affiliation(s)
- Susu Chen
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, UK
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Paul Chadderton
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Rigosa J, Lucantonio A, Noselli G, Fassihi A, Zorzin E, Manzino F, Pulecchi F, Diamond ME. Dye-enhanced visualization of rat whiskers for behavioral studies. eLife 2017; 6:e25290. [PMID: 28613155 PMCID: PMC5511012 DOI: 10.7554/elife.25290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Visualization and tracking of the facial whiskers is required in an increasing number of rodent studies. Although many approaches have been employed, only high-speed videography has proven adequate for measuring whisker motion and deformation during interaction with an object. However, whisker visualization and tracking is challenging for multiple reasons, primary among them the low contrast of the whisker against its background. Here, we demonstrate a fluorescent dye method suitable for visualization of one or more rat whiskers. The process makes the dyed whisker(s) easily visible against a dark background. The coloring does not influence the behavioral performance of rats trained on a vibrissal vibrotactile discrimination task, nor does it affect the whiskers' mechanical properties.
Collapse
Affiliation(s)
- Jacopo Rigosa
- International School for Advanced Studies, Trieste, Italy
| | | | | | - Arash Fassihi
- International School for Advanced Studies, Trieste, Italy
| | - Erik Zorzin
- International School for Advanced Studies, Trieste, Italy
| | | | | | | |
Collapse
|
16
|
Pitas A, Albarracín AL, Molano-Mazón M, Maravall M. Variable Temporal Integration of Stimulus Patterns in the Mouse Barrel Cortex. Cereb Cortex 2017; 27:1758-1764. [PMID: 26838770 DOI: 10.1093/cercor/bhw006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Making sense of the world requires distinguishing temporal patterns and sequences lasting hundreds of milliseconds or more. How cortical circuits integrate over time to represent specific sensory sequences remains elusive. Here we assessed whether neurons in the barrel cortex (BC) integrate information about temporal patterns of whisker movements. We performed cell-attached recordings in anesthetized mice while delivering whisker deflections at variable intervals and compared the information carried by neurons about the latest interstimulus interval (reflecting sensitivity to instantaneous frequency) and earlier intervals (reflecting integration over timescales up to several hundred milliseconds). Neurons carried more information about the latest interval than earlier ones. The amount of temporal integration varied with neuronal responsiveness and with the cortical depth of the recording site, that is, with laminar location. A subset of neurons in the upper layers displayed the strongest integration. Highly responsive neurons in the deeper layers encoded the latest interval but integrated particularly weakly. Under these conditions, BC neurons act primarily as encoders of current stimulation parameters; however, our results suggest that temporal integration over hundreds of milliseconds can emerge in some neurons within BC.
Collapse
Affiliation(s)
- Anna Pitas
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ana Lía Albarracín
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán-Consejo Superior de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Manuel Molano-Mazón
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Laboratory of Neural Computation, Istituto Italiano di Tecnologia Rovereto, 38068 Rovereto, Italy
| | - Miguel Maravall
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
17
|
Severson KS, Xu D, Van de Loo M, Bai L, Ginty DD, O'Connor DH. Active Touch and Self-Motion Encoding by Merkel Cell-Associated Afferents. Neuron 2017; 94:666-676.e9. [PMID: 28434802 DOI: 10.1016/j.neuron.2017.03.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/15/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023]
Abstract
Touch perception depends on integrating signals from multiple types of peripheral mechanoreceptors. Merkel-cell associated afferents are thought to play a major role in form perception by encoding surface features of touched objects. However, activity of Merkel afferents during active touch has not been directly measured. Here, we show that Merkel and unidentified slowly adapting afferents in the whisker system of behaving mice respond to both self-motion and active touch. Touch responses were dominated by sensitivity to bending moment (torque) at the base of the whisker and its rate of change and largely explained by a simple mechanical model. Self-motion responses encoded whisker position within a whisk cycle (phase), not absolute whisker angle, and arose from stresses reflecting whisker inertia and activity of specific muscles. Thus, Merkel afferents send to the brain multiplexed information about whisker position and surface features, suggesting that proprioception and touch converge at the earliest neural level.
Collapse
Affiliation(s)
- Kyle S Severson
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Duo Xu
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Margaret Van de Loo
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Neuroscience Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel H O'Connor
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Sharpee TO. How Invariant Feature Selectivity Is Achieved in Cortex. Front Synaptic Neurosci 2016; 8:26. [PMID: 27601991 PMCID: PMC4993779 DOI: 10.3389/fnsyn.2016.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/05/2016] [Indexed: 02/03/2023] Open
Abstract
Parsing the visual scene into objects is paramount to survival. Yet, how this is accomplished by the nervous system remains largely unknown, even in the comparatively well understood visual system. It is especially unclear how detailed peripheral signal representations are transformed into the object-oriented representations that are independent of object position and are provided by the final stages of visual processing. This perspective discusses advances in computational algorithms for fitting large-scale models that make it possible to reconstruct the intermediate steps of visual processing based on neural responses to natural stimuli. In particular, it is now possible to characterize how different types of position invariance, such as local (also known as phase invariance) and more global, are interleaved with nonlinear operations to allow for coding of curved contours. Neurons in the mid-level visual area V4 exhibit selectivity to pairs of even- and odd-symmetric profiles along curved contours. Such pairing is reminiscent of the response properties of complex cells in the primary visual cortex (V1) and suggests specific ways in which V1 signals are transformed within subsequent visual cortical areas. These examples illustrate that large-scale models fitted to neural responses to natural stimuli can provide generative models of successive stages of sensory processing.
Collapse
Affiliation(s)
- Tatyana O. Sharpee
- Computational Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
19
|
Lucianna FA, Albarracín AL, Vrech SM, Farfán FD, Felice CJ. The mathematical whisker: A review of numerical models of the rat׳s vibrissa biomechanics. J Biomech 2016; 49:2007-2014. [PMID: 27260019 DOI: 10.1016/j.jbiomech.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/27/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
The vibrissal system of the rat refers to specialized hairs the animal uses for tactile sensory perception. Rats actively move their whiskers in a characteristic way called "whisking". Interaction with the environment produces elastic deformation of the whiskers, generating mechanical signals in the whisker-follicle complex. Advances in our understanding of the vibrissal complex biomechanics is of interest not only for the biological research field, but also for biomimetic approaches. The recent development of whisker numerical models has contributed to comprehending its sophisticated movements and its interactions with the follicle. The great diversity of behavioral patterns and complexities of the whisker-follicle ensemble encouraged the creation of many different biomechanical models. This review analyzes most of the whisker biomechanical models that have been developed so far. This review was written so as to render it accessible to readers coming from different research areas.
Collapse
Affiliation(s)
- Facundo Adrián Lucianna
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina.
| | - Ana Lía Albarracín
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Sonia Mariel Vrech
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Center for Numerical and Computational Methods in Engineering (CEMCI), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Fernando Daniel Farfán
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
20
|
Abstract
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Assa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Roohbakhsh A, Shamsizadeh A, Arababadi MK, Ayoobi F, Fatemi I, Allahtavakoli M, Mohammad-Zadeh M. Tactile learning in rodents: Neurobiology and neuropharmacology. Life Sci 2016; 147:1-8. [DOI: 10.1016/j.lfs.2016.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 12/28/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
|
22
|
On-going computation of whisking phase by mechanoreceptors. Nat Neurosci 2016; 19:487-93. [PMID: 26780508 DOI: 10.1038/nn.4221] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022]
Abstract
To attribute spatial meaning to sensory information, the state of the sensory organ must be represented in the nervous system. In the rodent's vibrissal system, the whisking-cycle phase has been identified as a key coordinate, and phase-based representation of touch has been reported in the somatosensory cortex. Where and how phase is extracted in the ascending afferent pathways remains unknown. Using a closed-loop interface in anesthetized rats, we found that whisking phase is already encoded in a frequency- and amplitude-invariant manner by primary vibrissal afferents. We found that, for naturally constrained whisking dynamics, such invariant phase coding could be obtained by tuning each receptor to a restricted kinematic subspace. Invariant phase coding was preserved in the brainstem, where paralemniscal neurons filtered out the slowly evolving offset, whereas lemniscal neurons preserved it. These results demonstrate accurate, perceptually relevant, mechanically based processing at the sensor level.
Collapse
|
23
|
Motion makes sense: an adaptive motor-sensory strategy underlies the perception of object location in rats. J Neurosci 2015; 35:8777-89. [PMID: 26063912 DOI: 10.1523/jneurosci.4149-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tactile perception is obtained by coordinated motor-sensory processes. We studied the processes underlying the perception of object location in freely moving rats. We trained rats to identify the relative location of two vertical poles placed in front of them and measured at high resolution the motor and sensory variables (19 and 2 variables, respectively) associated with this whiskers-based perceptual process. We found that the rats developed stereotypic head and whisker movements to solve this task, in a manner that can be described by several distinct behavioral phases. During two of these phases, the rats' whiskers coded object position by first temporal and then angular coding schemes. We then introduced wind (in two opposite directions) and remeasured their perceptual performance and motor-sensory variables. Our rats continued to perceive object location in a consistent manner under wind perturbations while maintaining all behavioral phases and relatively constant sensory coding. Constant sensory coding was achieved by keeping one group of motor variables (the "controlled variables") constant, despite the perturbing wind, at the cost of strongly modulating another group of motor variables (the "modulated variables"). The controlled variables included coding-relevant variables, such as head azimuth and whisker velocity. These results indicate that consistent perception of location in the rat is obtained actively, via a selective control of perception-relevant motor variables.
Collapse
|
24
|
Adineh VR, Liu B, Rajan R, Yan W, Fu J. Multidimensional characterisation of biomechanical structures by combining Atomic Force Microscopy and Focused Ion Beam: A study of the rat whisker. Acta Biomater 2015; 21:132-41. [PMID: 25839121 DOI: 10.1016/j.actbio.2015.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/13/2023]
Abstract
Understanding the heterogeneity of biological structures, particularly at the micro/nano scale can offer insights valuable for multidisciplinary research in tissue engineering and biomimicry designs. Here we propose to combine nanocharacterisation tools, particularly Focused Ion Beam (FIB) and Atomic Force Microscopy (AFM) for three dimensional mapping of mechanical modulus and chemical signatures. The prototype platform is applied to image and investigate the fundamental mechanics of the rat face whiskers, a high-acuity sensor used to gain detailed information about the world. Grazing angle FIB milling was first applied to expose the interior cross section of the rat whisker sample, followed by a "lift-out" method to retrieve and position the target sample for further analyses. AFM force spectroscopy measurements revealed a non-uniform pattern of elastic modulus across the cross section, with a range from 0.8GPa to 13.5GPa. The highest elastic modulus was found at the outer cuticle region of the whisker, and values gradually decreased towards the interior cortex and medulla regions. Elemental mapping with EDS confirmed that the interior of the rat whisker is dominated by C, O, N, S, Cl and K, with a significant change of elemental distribution close to the exterior cuticle region. Based on these data, a novel comprehensive three dimensional (3D) elastic modulus model was constructed, and stress distributions under realistic conditions were investigated with Finite Element Analysis (FEA). The simulations could well account for the passive whisker deflections, with calculated resonant frequency as well as force-deflection for the whiskers being in good agreement with reported experimental data. Limitations and further applications are discussed for the proposed FIB/AFM approach, which holds good promise as a unique platform to gain insights on various heterogeneous biomaterials and biomechanical systems.
Collapse
Affiliation(s)
- Vahid Reza Adineh
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Boyin Liu
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Wenyi Yan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
25
|
Abstract
Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast "ping" (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology.
Collapse
|
26
|
Haidarliu S, Kleinfeld D, Deschênes M, Ahissar E. The Musculature That Drives Active Touch by Vibrissae and Nose in Mice. Anat Rec (Hoboken) 2014; 298:1347-58. [PMID: 25408106 DOI: 10.1002/ar.23102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 11/06/2022]
Abstract
Coordinated action of facial muscles during whisking, sniffing, and touching objects is an important component of active sensing in rodents. Accumulating evidence suggests that the anatomical schemes that underlie active sensing are similar across the majority of whisking rodents. Intriguingly, however, muscle architecture in the mystacial pad of the mouse was reported to be different, possessing only one extrinsic vibrissa protracting muscle (M. nasalis) in the rostral part of the snout. In this study, the organization of the muscles that move the nose and the mystacial vibrissae in mice was re-examined and compared with that reported previously in other rodents. We found that muscle distribution within the mystacial pad and around the tip of the nose in mice is isomorphic with that found in other whisking rodents. In particular, in the rostral part of the mouse snout, we describe both protractors and retractors of the vibrissae. Nose movements are controlled by the M. dilator nasi and five subunits of the M. nasolabialis profundus, with involvement of the nasal cartilaginous skeleton as a mediator in the muscular effort translation.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - David Kleinfeld
- Department of Physics and Section of Neurobiology, University of California at San Diego, La Jolla, California
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, Canada
| | - Ehud Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Abstract
Advances in experimental techniques, including behavioral paradigms using rich stimuli under closed loop conditions and the interfacing of neural systems with external inputs and outputs, reveal complex dynamics in the neural code and require a revisiting of standard concepts of representation. High-throughput recording and imaging methods along with the ability to observe and control neuronal subpopulations allow increasingly detailed access to the neural circuitry that subserves neural representations and the computations they support. How do we harness theory to build biologically grounded models of complex neural function?
Collapse
Affiliation(s)
- Adrienne Fairhall
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St., HSB G424, Box 357290, Seattle, WA 98195-7290, USA.
| |
Collapse
|
28
|
|