1
|
Lameira AR, Caneco B, Kershenbaum A, Santamaría-Bonfil G, Call J. Generative vocal plasticity in chimpanzees. iScience 2025; 28:112381. [PMID: 40322082 PMCID: PMC12049825 DOI: 10.1016/j.isci.2025.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Modern theory posits that human-ape differences in voice command account for speech evolution. However, comparison has been indirect and conjectural based on vocal learning taxa far related from Hominids, instead of direct and quantitative based on great ape calls that, like all speech sounds, are local-specific and non-universal to the species. Moreover, the null hypothesis that the great ape voice command is purely reflexive has never been directly tested. Here, we show that in controlled, constant experimental settings, captive chimpanzees exhibit high-dimensional dexterity over voice activation and modulation in two atypical vowel-like calls. Subjects made unrestricted, multidimensional, and distinct voice changes within and between individuals, inducing parameter changes up to 10,000%, rejecting null hypothesis' predictions. Forecasting models indicated unmitigated voice novelty, altogether demonstrating emancipated and vast real-time voice control. Findings show that, contrary to traditional assumptions, speech and song evolution likely hinged on prolific voice command already available in ancestral ape-like ancestors.
Collapse
Affiliation(s)
| | | | - Arik Kershenbaum
- Department of Zoology, University of Cambridge, Cambridge, UK
- Girton College, University of Cambridge, Cambridge, UK
| | | | - Josep Call
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Cook PF, Hood C, Rouse A, Reichmuth C. Sensorimotor synchronization to rhythm in an experienced sea lion rivals that of humans. Sci Rep 2025; 15:12125. [PMID: 40312403 PMCID: PMC12045976 DOI: 10.1038/s41598-025-95279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/20/2025] [Indexed: 05/03/2025] Open
Abstract
Is human beat keeping unique among vertebrates? The only non-human data showing consistent and lagless beat matching to novel stimuli, including music, come from Ronan, a trained sea lion [Cook et al., J. Comp. Psychol., 127(4):412-427]. Ronan's convincing demonstration of adaptive auditory-motoric entrainment at age 3 years showed stronger tempo-phase relationships and higher variability than reported in similar studies of human subjects. This apparent performance mismatch has been used to suggest the mechanisms underlying her beat keeping ability are not isomorphic with those of humans. However, in the twelve years since our original report, Ronan has continued intermittent beat-keeping practice. Comparative arguments should consider her improved performance with increased experience and evaluate her ability against human subjects performing similar rhythmic tasks. Here, we report Ronan's contemporary ability to synchronize head movements with novel metronomic sounds presented at novel tempos. We also provide data for ten humans moving in time to the same stimuli using a comfortable arm motion with similar amplitude. This sea lion's sensorimotor synchronization was precise, consistent, and indistinguishable from or superior to that of typical adults. These findings challenge claims of unique neurobiological adaptations for beat keeping in humans.
Collapse
Affiliation(s)
- Peter F Cook
- New College of Florida, Sarasota, FL, 34243, USA.
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| | - Carson Hood
- New College of Florida, Sarasota, FL, 34243, USA
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Andrew Rouse
- New College of Florida, Sarasota, FL, 34243, USA
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| |
Collapse
|
3
|
Lawlor J, Wohlgemuth MJ, Moss CF, Kuchibhotla KV. Spatially clustered neurons in the bat midbrain encode vocalization categories. Nat Neurosci 2025; 28:1038-1047. [PMID: 40229505 DOI: 10.1038/s41593-025-01932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
Rapid categorization of vocalizations enables adaptive behavior across species. While categorical perception is thought to arise in the neocortex, humans and animals could benefit from a functional organization tailored to ethologically relevant sound processing earlier in the auditory pathway. Here we developed two-photon calcium imaging in the awake echolocating bat (Eptesicus fuscus) to study the representation of vocalizations in the inferior colliculus, which is as few as two synapses from the inner ear. Echolocating bats rely on frequency-sweep-based vocalizations for social communication and navigation. Auditory playback experiments demonstrated that individual neurons responded selectively to social or navigation calls, enabling robust population-level decoding across categories. When social calls were morphed into navigation calls in equidistant step-wise increments, individual neurons showed switch-like properties and population-level response patterns sharply transitioned at the category boundary. Strikingly, category-selective neurons formed spatial clusters, independent of tonotopy within the dorsal cortex of the inferior colliculus. These findings support a revised view of categorical processing in which specified channels for ethologically relevant sounds are spatially segregated early in the auditory hierarchy, enabling rapid subcortical organization into categorical primitives.
Collapse
Affiliation(s)
- Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Duengen D, Jadoul Y, Ravignani A. Vocal usage learning and vocal comprehension learning in harbor seals. BMC Neurosci 2024; 25:48. [PMID: 39367300 PMCID: PMC11451073 DOI: 10.1186/s12868-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Which mammals show vocal learning abilities, e.g., can learn new sounds, or learn to use sounds in new contexts? Vocal usage and comprehension learning are submodules of vocal learning. Specifically, vocal usage learning is the ability to learn to use a vocalization in a new context; vocal comprehension learning is the ability to comprehend a vocalization in a new context. Among mammals, harbor seals (Phoca vitulina) are good candidates to investigate vocal learning. Here, we test whether harbor seals are capable of vocal usage and comprehension learning. RESULTS We trained two harbor seals to (i) switch contexts from a visual to an auditory cue. In particular, the seals first produced two vocalization types in response to two hand signs; they then transitioned to producing these two vocalization types upon the presentation of two distinct sets of playbacks of their own vocalizations. We then (ii) exposed the seals to a combination of trained and novel vocalization stimuli. In a final experiment, (iii) we broadcasted only novel vocalizations of the two vocalization types to test whether seals could generalize from the trained set of stimuli to only novel items of a given vocal category. Both seals learned all tasks and took ≤ 16 sessions to succeed across all experiments. In particular, the seals showed contextual learning through switching the context from former visual to novel auditory cues, vocal matching and generalization. Finally, by responding to the played-back vocalizations with distinct vocalizations, the animals showed vocal comprehension learning. CONCLUSIONS It has been suggested that harbor seals are vocal learners; however, to date, these observations had not been confirmed in controlled experiments. Here, through three experiments, we could show that harbor seals are capable of both vocal usage and comprehension learning.
Collapse
Affiliation(s)
- Diandra Duengen
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Zoo Cleves ("Tiergarten Kleve"), 47533, Kleve, Germany.
| | - Yannick Jadoul
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Denmark.
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Goncharova M, Jadoul Y, Reichmuth C, Fitch WT, Ravignani A. Vocal tract dynamics shape the formant structure of conditioned vocalizations in a harbor seal. Ann N Y Acad Sci 2024; 1538:107-116. [PMID: 39091036 DOI: 10.1111/nyas.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Formants, or resonance frequencies of the upper vocal tract, are an essential part of acoustic communication. Articulatory gestures-such as jaw, tongue, lip, and soft palate movements-shape formant structure in human vocalizations, but little is known about how nonhuman mammals use those gestures to modify formant frequencies. Here, we report a case study with an adult male harbor seal trained to produce an arbitrary vocalization composed of multiple repetitions of the sound wa. We analyzed jaw movements frame-by-frame and matched them to the tracked formant modulation in the corresponding vocalizations. We found that the jaw opening angle was strongly correlated with the first (F1) and, to a lesser degree, with the second formant (F2). F2 variation was better explained by the jaw angle opening when the seal was lying on his back rather than on the belly, which might derive from soft tissue displacement due to gravity. These results show that harbor seals share some common articulatory traits with humans, where the F1 depends more on the jaw position than F2. We propose further in vivo investigations of seals to further test the role of the tongue on formant modulation in mammalian sound production.
Collapse
Affiliation(s)
- Maria Goncharova
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Yannick Jadoul
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Colleen Reichmuth
- Long Marine Laboratory, Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, Vienna CogSciHub, University of Vienna, Vienna, Austria
| | - Andrea Ravignani
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Lawlor J, Wohlgemuth MJ, Moss CF, Kuchibhotla KV. Spatially clustered neurons encode vocalization categories in the bat midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545029. [PMID: 37398454 PMCID: PMC10312733 DOI: 10.1101/2023.06.14.545029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Rapid categorization of vocalizations enables adaptive behavior across species. While categorical perception is thought to arise in the neocortex, humans and other animals could benefit from functional organization of ethologically-relevant sounds at earlier stages in the auditory hierarchy. Here, we developed two-photon calcium imaging in the awake echolocating bat (Eptesicus fuscus) to study encoding of sound meaning in the Inferior Colliculus, which is as few as two synapses from the inner ear. Echolocating bats produce and interpret frequency sweep-based vocalizations for social communication and navigation. Auditory playback experiments demonstrated that individual neurons responded selectively to social or navigation calls, enabling robust population-level decoding across categories. Strikingly, category-selective neurons formed spatial clusters, independent of tonotopy within the IC. These findings support a revised view of categorical processing in which specified channels for ethologically-relevant sounds are spatially segregated early in the auditory hierarchy, enabling rapid subcortical organization of call meaning.
Collapse
Affiliation(s)
- Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
| | | | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kishore V. Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Lead contact
| |
Collapse
|
7
|
Duengen D, Fitch WT, Ravignani A. Hoover the talking seal. Curr Biol 2023; 33:R50-R52. [PMID: 36693305 DOI: 10.1016/j.cub.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diandra Duengen and colleagues introduce Hoover, a male harbor seal famous for his imitation of human speech.
Collapse
Affiliation(s)
- Diandra Duengen
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, and Vienna CogSciHub, University of Vienna, Vienna 1090, Austria.
| | - Andrea Ravignani
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Center for Music in the Brain, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Zamorano-Abramson J, Michon M, Hernández-Lloreda MV, Aboitiz F. Multimodal imitative learning and synchrony in cetaceans: A model for speech and singing evolution. Front Psychol 2023; 14:1061381. [PMID: 37138983 PMCID: PMC10150787 DOI: 10.3389/fpsyg.2023.1061381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 05/05/2023] Open
Abstract
Multimodal imitation of actions, gestures and vocal production is a hallmark of the evolution of human communication, as both, vocal learning and visual-gestural imitation, were crucial factors that facilitated the evolution of speech and singing. Comparative evidence has revealed that humans are an odd case in this respect, as the case for multimodal imitation is barely documented in non-human animals. While there is evidence of vocal learning in birds and in mammals like bats, elephants and marine mammals, evidence in both domains, vocal and gestural, exists for two Psittacine birds (budgerigars and grey parrots) and cetaceans only. Moreover, it draws attention to the apparent absence of vocal imitation (with just a few cases reported for vocal fold control in an orangutan and a gorilla and a prolonged development of vocal plasticity in marmosets) and even for imitation of intransitive actions (not object related) in monkeys and apes in the wild. Even after training, the evidence for productive or "true imitation" (copy of a novel behavior, i.e., not pre-existent in the observer's behavioral repertoire) in both domains is scarce. Here we review the evidence of multimodal imitation in cetaceans, one of the few living mammalian species that have been reported to display multimodal imitative learning besides humans, and their role in sociality, communication and group cultures. We propose that cetacean multimodal imitation was acquired in parallel with the evolution and development of behavioral synchrony and multimodal organization of sensorimotor information, supporting volitional motor control of their vocal system and audio-echoic-visual voices, body posture and movement integration.
Collapse
Affiliation(s)
- José Zamorano-Abramson
- Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: José Zamorano-Abramson,
| | - Maëva Michon
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience, Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica de, Santiago, Chile
- Maëva Michon,
| | - Ma Victoria Hernández-Lloreda
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Campus de Somosaguas, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Aboitiz
- Laboratory for Cognitive and Evolutionary Neuroscience, Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica de, Santiago, Chile
| |
Collapse
|
9
|
Watson SK, Filippi P, Gasparri L, Falk N, Tamer N, Widmer P, Manser M, Glock H. Optionality in animal communication: a novel framework for examining the evolution of arbitrariness. Biol Rev Camb Philos Soc 2022; 97:2057-2075. [PMID: 35818133 PMCID: PMC9795909 DOI: 10.1111/brv.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022]
Abstract
A critical feature of language is that the form of words need not bear any perceptual similarity to their function - these relationships can be 'arbitrary'. The capacity to process these arbitrary form-function associations facilitates the enormous expressive power of language. However, the evolutionary roots of our capacity for arbitrariness, i.e. the extent to which related abilities may be shared with animals, is largely unexamined. We argue this is due to the challenges of applying such an intrinsically linguistic concept to animal communication, and address this by proposing a novel conceptual framework highlighting a key underpinning of linguistic arbitrariness, which is nevertheless applicable to non-human species. Specifically, we focus on the capacity to associate alternative functions with a signal, or alternative signals with a function, a feature we refer to as optionality. We apply this framework to a broad survey of findings from animal communication studies and identify five key dimensions of communicative optionality: signal production, signal adjustment, signal usage, signal combinatoriality and signal perception. We find that optionality is widespread in non-human animals across each of these dimensions, although only humans demonstrate it in all five. Finally, we discuss the relevance of optionality to behavioural and cognitive domains outside of communication. This investigation provides a powerful new conceptual framework for the cross-species investigation of the origins of arbitrariness, and promises to generate original insights into animal communication and language evolution more generally.
Collapse
Affiliation(s)
- Stuart K. Watson
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Piera Filippi
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| | - Luca Gasparri
- Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland,Univ. Lille, CNRS, UMR 8163 – STL – Savoirs Textes LangageF‐59000LilleFrance
| | - Nikola Falk
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Nicole Tamer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Paul Widmer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Marta Manser
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Hans‐Johann Glock
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| |
Collapse
|
10
|
Ekström AG. Motor constellation theory: A model of infants' phonological development. Front Psychol 2022; 13:996894. [PMID: 36405212 PMCID: PMC9669916 DOI: 10.3389/fpsyg.2022.996894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/24/2024] Open
Abstract
Every normally developing human infant solves the difficult problem of mapping their native-language phonology, but the neural mechanisms underpinning this behavior remain poorly understood. Here, motor constellation theory, an integrative neurophonological model, is presented, with the goal of explicating this issue. It is assumed that infants' motor-auditory phonological mapping takes place through infants' orosensory "reaching" for phonological elements observed in the language-specific ambient phonology, via reference to kinesthetic feedback from motor systems (e.g., articulators), and auditory feedback from resulting speech and speech-like sounds. Attempts are regulated by basal ganglion-cerebellar speech neural circuitry, and successful attempts at reproduction are enforced through dopaminergic signaling. Early in life, the pace of anatomical development constrains mapping such that complete language-specific phonological mapping is prohibited by infants' undeveloped supralaryngeal vocal tract and undescended larynx; constraints gradually dissolve with age, enabling adult phonology. Where appropriate, reference is made to findings from animal and clinical models. Some implications for future modeling and simulation efforts, as well as clinical settings, are also discussed.
Collapse
Affiliation(s)
- Axel G. Ekström
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
11
|
Cognitive control of song production by humpback whales. Anim Cogn 2022; 25:1133-1149. [PMID: 36058997 DOI: 10.1007/s10071-022-01675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
Singing humpback whales are highly versatile vocalizers, producing complex sequences of sounds that they vary throughout adulthood. Past analyses of humpback whale song have emphasized yearly variations in structural features of songs made collectively by singers within a population with comparatively little attention given to the ways that individual singers vary consecutive songs. As a result, many researchers describe singing by humpback whales as a process in which singers produce sequences of repeating sound patterns. Here, we show that such characterizations misrepresent the degree to which humpback whales flexibly and dynamically control the production of sounds and sound patterns within song sessions. Singers recorded off the coast of Hawaii continuously morphed units along multiple acoustic dimensions, with the degree and direction of morphing varying across parallel streams of successive units. Individual singers also produced multiple phrase variants (structurally similar, but acoustically distinctive sequences) within song sessions. The precision with which individual singers maintained some acoustic properties of phrases and morphing trajectories while flexibly changing others suggests that singing humpback whales actively select and adjust acoustic elements of their songs in real time rather than simply repeating stereotyped sound patterns within song sessions.
Collapse
|
12
|
Singh UA, Iyengar S. The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning. Front Physiol 2022; 13:823152. [PMID: 35273519 PMCID: PMC8902293 DOI: 10.3389/fphys.2022.823152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes. Whereas research on opioids is predominated by studies on their addictive properties and role in pain pathways, recent studies suggest that these receptors may be involved in learning. Rodents deficient in δ-ORs were poor at recognizing the location of novel objects in their surroundings. Furthermore, in chicken, learning to avoid beads coated with a bitter chemical from those without the coating was modulated by δ-ORs. Similarly, μ-ORs facilitate long term potentiation in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial learning. Whereas these studies have explored the role of opioid receptors on learning using reward/punishment-based paradigms, the role of these receptors in natural learning processes, such as vocal learning, are yet unexplored. In this review, we explore studies that have established the expression pattern of these receptors in different brain regions of birds, with an emphasis on songbirds which are model systems for vocal learning. We also review the role of opioid receptors in modulating the cognitive processes associated with vocalizations in birds. Finally, we discuss the role of these receptors in regulating the motivation to vocalize, and a possible role in modulating vocal learning.
Collapse
|
13
|
Ravignani A, Garcia M. A cross-species framework to identify vocal learning abilities in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200394. [PMID: 34775824 PMCID: PMC8591379 DOI: 10.1098/rstb.2020.0394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vocal production learning (VPL) is the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalizations. A parallel strand of research investigates acoustic allometry, namely how information about body size is conveyed by acoustic signals. Recently, we proposed that deviation from acoustic allometry principles as a result of sexual selection may have been an intermediate step towards the evolution of vocal learning abilities in mammals. Adopting a more hypothesis-neutral stance, here we perform phylogenetic regressions and other analyses further testing a potential link between VPL and being an allometric outlier. We find that multiple species belonging to VPL clades deviate from allometric scaling but in the opposite direction to that expected from size exaggeration mechanisms. In other words, our correlational approach finds an association between VPL and being an allometric outlier. However, the direction of this association, contra our original hypothesis, may indicate that VPL did not necessarily emerge via sexual selection for size exaggeration: VPL clades show higher vocalization frequencies than expected. In addition, our approach allows us to identify species with potential for VPL abilities: we hypothesize that those outliers from acoustic allometry lying above the regression line may be VPL species. Our results may help better understand the cross-species diversity, variability and aetiology of VPL, which among other things is a key underpinning of speech in our species. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part II)'.
Collapse
Affiliation(s)
- Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
| | - Maxime Garcia
- Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8051, Switzerland.,Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich 8032, Switzerland
| |
Collapse
|
14
|
Torres Borda L, Jadoul Y, Rasilo H, Salazar Casals A, Ravignani A. Vocal plasticity in harbour seal pups. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200456. [PMID: 34719248 PMCID: PMC8558775 DOI: 10.1098/rstb.2020.0456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Vocal plasticity can occur in response to environmental and biological factors, including conspecifics' vocalizations and noise. Pinnipeds are one of the few mammalian groups capable of vocal learning, and are therefore relevant to understanding the evolution of vocal plasticity in humans and other animals. Here, we investigate the vocal plasticity of harbour seals (Phoca vitulina), a species with vocal learning abilities observed in adulthood but not puppyhood. To evaluate early mammalian vocal development, we tested 1-3 weeks-old seal pups. We tailored noise playbacks to this species and age to induce seal pups to shift their fundamental frequency (f0), rather than adapt call amplitude or temporal characteristics. We exposed individual pups to low- and high-intensity bandpass-filtered noise, which spanned-and masked-their typical range of f0; simultaneously, we recorded pups' spontaneous calls. Unlike most mammals, pups modified their vocalizations by lowering their f0 in response to increased noise. This modulation was precise and adapted to the particular experimental manipulation of the noise condition. In addition, higher levels of noise induced less dispersion around the mean f0, suggesting that pups may have actively focused their phonatory efforts to target lower frequencies. Noise did not seem to affect call amplitude. However, one seal showed two characteristics of the Lombard effect known for human speech in noise: significant increase in call amplitude and flattening of spectral tilt. Our relatively low noise levels may have favoured f0 modulation while inhibiting amplitude adjustments. This lowering of f0 is unusual, as most animals commonly display no such f0 shift. Our data represent a relatively rare case in mammalian neonates, and have implications for the evolution of vocal plasticity and vocal learning across species, including humans. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part I)'.
Collapse
Affiliation(s)
- Laura Torres Borda
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94-A, 9968 AG Pieterburen, The Netherlands
| | - Yannick Jadoul
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Artificial Intelligence Lab, Vrije Universiteit Brussel, 1050 Elsene/Ixelles, Belgium
| | - Heikki Rasilo
- Artificial Intelligence Lab, Vrije Universiteit Brussel, 1050 Elsene/Ixelles, Belgium
| | - Anna Salazar Casals
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94-A, 9968 AG Pieterburen, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94-A, 9968 AG Pieterburen, The Netherlands
| |
Collapse
|
15
|
Feel the beat: cape fur seal males encode their arousal state in their bark rate. Naturwissenschaften 2021; 109:5. [PMID: 34894271 DOI: 10.1007/s00114-021-01778-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
The cape fur seal is one of the most colonial mammal species in the world. Breeding colonies are composed of harems held by mature males (older than 10 years) with up to 30 females and their pups, while roaming subadult males (younger and socially immature) are kept away from bulls' territories. As in other pinnipeds, cape fur seals are highly vocal and use acoustic signals in all their social interactions. Males produce barks-short vocalizations always produced in sequences-for territorial defense, mating behaviors, and agonistic interactions. These calls convey information about the sex, age class, and individual identity. This study investigated whether motivational cues such as the arousal state can be encoded in territorial males' barks and whether these cues are decoded by listening sub-adult males. The rate (number of calls per unit of time) and fundamental frequency of barks were found to significantly increase during high arousal state interactions (i.e., male-male confrontation) compared to spontaneous barks. Playback experiments revealed that subadult males responded with a higher level of vigilance when territorial males' barks had a faster bark rate. This mechanism of decoding the bulls' arousal state from barks will likely constitute an advantage for both bulls and the subadult males, by avoiding or reducing physical conflicts, and thereby reducing energy expenditure and the risk of injury. This study is the first experimental evidence of cape fur seals' using vocal rhythmic patterns to modulate their social interactions.
Collapse
|
16
|
Stoeger AS, Baotic A. Operant control and call usage learning in African elephants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200254. [PMID: 34482733 PMCID: PMC8419571 DOI: 10.1098/rstb.2020.0254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
Elephants exhibit remarkable vocal plasticity, and case studies reveal that individuals of African savannah (Loxodonta africana) and Asian (Elephas maximus) elephants are capable of vocal production learning. Surprisingly, however, little is known about contextual learning (usage and comprehension learning) in elephant communication. Usage learning can be demonstrated by training animals to vocalize in an arbitrary (cue-triggered) context. Here we show that adult African savannah elephants (n = 13) can vocalize in response to verbal cues, reliably producing social call types such as the low-frequency rumble, trumpets and snorts as well as atypical sounds using various mechanisms, thus displaying compound vocal control. We further show that rumbles emitted upon trainer cues differ significantly in structure from rumbles triggered by social contexts of the same individuals (n = 6). Every form of social learning increases the complexity of a communication system. In elephants, we only poorly understand their vocal learning abilities and the underlying cognitive mechanisms. Among other research, this calls for controlled learning experiments in which the prerequisite is operant/volitional control of vocalizations. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
- Angela S. Stoeger
- Mammal Communication Laboratory, Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Anton Baotic
- Mammal Communication Laboratory, Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Abstract
Vocal production learning, the ability to modify the structure of vocalizations as a result of hearing those of others, has been studied extensively in birds but less attention has been given to its occurrence in mammals. We summarize the available evidence for vocal learning in mammals from the last 25 years, updating earlier reviews on the subject. The clearest evidence comes from cetaceans, pinnipeds, elephants and bats where species have been found to copy artificial or human language sounds, or match acoustic models of different sound types. Vocal convergence, in which parameter adjustments within one sound type result in similarities between individuals, occurs in a wider range of mammalian orders with additional evidence from primates, mole-rats, goats and mice. Currently, the underlying mechanisms for convergence are unclear with vocal production learning but also usage learning or matching physiological states being possible explanations. For experimental studies, we highlight the importance of quantitative comparisons of seemingly learned sounds with vocal repertoires before learning started or with species repertoires to confirm novelty. Further studies on the mammalian orders presented here as well as others are needed to explore learning skills and limitations in greater detail. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
- Vincent M Janik
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews KY16 8LB, UK
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany.,Animal Behavior Lab, Freie Universität, Berlin, Germany.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
18
|
Stansbury AL, Janik VM. The role of vocal learning in call acquisition of wild grey seal pups. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200251. [PMID: 34482728 PMCID: PMC8419579 DOI: 10.1098/rstb.2020.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pinnipeds have been identified as one of the best available models for the study of vocal learning. Experimental evidence for their learning skills is demonstrated with advanced copying skills, particularly in formant structure when copying human speech sounds and melodies. By contrast, almost no data are available on how learning skills are used in their own communication systems. We investigated the impact of playing modified seal sounds in a breeding colony of grey seals (Halichoerus grypus) to study how acoustic input influenced vocal development of eight pups. Sequences of two or three seal pup calls were edited so that the average peak frequency between calls in a sequence changed up or down. We found that seals copied the specific stimuli played to them and that copies became more accurate over time. The differential response of different groups showed that vocal production learning was used to achieve conformity, suggesting that geographical variation in seal calls can be caused by horizontal cultural transmission. While learning of pup calls appears to have few benefits, we suggest that it also affects the development of the adult repertoire, which may facilitate social interactions such as mate choice. This article is part of the theme issue ‘Vocal learning in animals and humans’.
Collapse
Affiliation(s)
- Amanda L Stansbury
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife KY16 8LB, UK.,El Paso Zoo, El Paso, TX, USA
| | - Vincent M Janik
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
19
|
Patel AD. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200326. [PMID: 34420384 PMCID: PMC8380969 DOI: 10.1098/rstb.2020.0326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
The human capacity to synchronize movements to an auditory beat is central to musical behaviour and to debates over the evolution of human musicality. Have humans evolved any neural specializations for music processing, or does music rely entirely on brain circuits that evolved for other reasons? The vocal learning and rhythmic synchronization hypothesis proposes that our ability to move in time with an auditory beat in a precise, predictive and tempo-flexible manner originated in the neural circuitry for complex vocal learning. In the 15 years, since the hypothesis was proposed a variety of studies have supported it. However, one study has provided a significant challenge to the hypothesis. Furthermore, it is increasingly clear that vocal learning is not a binary trait animals have or lack, but varies more continuously across species. In the light of these developments and of recent progress in the neurobiology of beat processing and of vocal learning, the current paper revises the vocal learning hypothesis. It argues that an advanced form of vocal learning acts as a preadaptation for sporadic beat perception and synchronization (BPS), providing intrinsic rewards for predicting the temporal structure of complex acoustic sequences. It further proposes that in humans, mechanisms of gene-culture coevolution transformed this preadaptation into a genuine neural adaptation for sustained BPS. The larger significance of this proposal is that it outlines a hypothesis of cognitive gene-culture coevolution which makes testable predictions for neuroscience, cross-species studies and genetics. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, USA
- Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
20
|
Stoeger AS, Baotic A, Heilmann G. Vocal Creativity in Elephant Sound Production. BIOLOGY 2021; 10:750. [PMID: 34439982 PMCID: PMC8389636 DOI: 10.3390/biology10080750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
How do elephants achieve their enormous vocal flexibility when communicating, imitating or creating idiosyncratic sounds? The mechanisms that underpin this trait combine motoric abilities with vocal learning processes. We demonstrate the unusual production techniques used by five African savanna elephants to create idiosyncratic sounds, which they learn to produce on cue by positive reinforcement training. The elephants generate these sounds by applying nasal tissue vibration via an ingressive airflow at the trunk tip, or by contracting defined superficial muscles at the trunk base. While the production mechanisms of the individuals performing the same sound categories are similar, they do vary in fine-tuning, revealing that each individual has its own specific sound-producing strategy. This plasticity reflects the creative and cognitive abilities associated with 'vocal' learning processes. The fact that these sounds were reinforced and cue-stimulated suggests that social feedback and positive reinforcement can facilitate vocal creativity and vocal learning behavior in elephants. Revealing the mechanism and the capacity for vocal learning and sound creativity is fundamental to understanding the eloquence within the elephants' communication system. This also helps to understand the evolution of human language and of open-ended vocal systems, which build upon similar cognitive processes.
Collapse
Affiliation(s)
- Angela S. Stoeger
- Mammal Communication Lab, Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria;
| | - Anton Baotic
- Mammal Communication Lab, Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria;
| | | |
Collapse
|
21
|
von Merten S, Pfeifle C, Künzel S, Hoier S, Tautz D. A humanized version of Foxp2 affects ultrasonic vocalization in adult female and male mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12764. [PMID: 34342113 DOI: 10.1111/gbb.12764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023]
Abstract
The transcription factor FoxP2 is involved in setting up the neuronal circuitry for vocal learning in mammals and birds and is thought to have played a special role in the evolution of human speech and language. It has been shown that an allele with a humanized version of the murine Foxp2 gene changes the ultrasonic vocalization of mouse pups compared to pups of the wild-type inbred strain. Here we tested if this humanized allele would also affect the ultrasonic vocalization of adult female and male mice. In a previous study, in which only male vocalization was considered and the mice were recorded under a restricted spatial and temporal regime, no difference in adult vocalization between genotypes was found. Here, we use a different test paradigm in which both female and male vocalizations are recorded in extended social contact. We found differences in temporal, spectral and syntactical parameters between the genotypes in both sexes, and between sexes. Mice carrying the humanized Foxp2 allele were using higher frequencies and more complex syllable types than mice of the corresponding wildtype inbred strain. Our results support the notion that the humanized Foxp2 allele has a differential effect on mouse ultrasonic vocalization. As mice carrying the humanized version of the Foxp2 gene show effects opposite to those of mice carrying disrupted or mutated alleles of this gene, we conclude that this mouse line represents an important model for the study of human speech and language evolution.
Collapse
Affiliation(s)
- Sophie von Merten
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Christine Pfeifle
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Svenja Hoier
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
22
|
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021; 118:2026130118. [PMID: 34272278 PMCID: PMC8307534 DOI: 10.1073/pnas.2026130118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We can recognize the cadence of a friend’s voice or the rhythm of a familiar song across a wide range of tempi. This shows that our perception of temporal patterns relies strongly on the relative timing of events rather than on specific absolute durations. This tendency is foundational to speech and music perception, but to what extent is it shared by other species? We hypothesize that animals that learn their vocalizations are more likely to share this tendency. Here, we show that a vocal learning songbird robustly recognizes a basic rhythmic pattern independent of rate. Our findings pave the way for neurobiological studies to identify how the brain represents and perceives the temporal structure of auditory sequences. Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders.
Collapse
|
23
|
Beeck VC, Heilmann G, Kerscher M, Stoeger AS. A novel theory of Asian elephant high-frequency squeak production. BMC Biol 2021; 19:121. [PMID: 34134675 PMCID: PMC8210382 DOI: 10.1186/s12915-021-01026-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anatomical and cognitive adaptations to overcome morpho-mechanical limitations of laryngeal sound production, where body size and the related vocal apparatus dimensions determine the fundamental frequency, increase vocal diversity across taxa. Elephants flexibly use laryngeal and trunk-based vocalizations to form a repertoire ranging from infrasonic rumbles to higher-pitched trumpets. Moreover, they are among the few evolutionarily distantly related animals (humans, pinnipeds, cetaceans, birds) capable of imitating species-atypical sounds. Yet, their vocal plasticity has so far not been related to functions within their natural communicative system, in part because not all call types have been systematically studied. Here, we reveal how Asian elephants (Elephas maximus) produce species-specific squeaks (F0 300-2300 Hz) by using acoustic camera recordings to visualize sound emission and examining this alongside acoustic, behavioral, and morphological data across seven captive groups. RESULTS We found that squeaks were emitted through the closed mouth in synchrony with cheek depression and retraction of the labial angles. The simultaneous emission of squeaks with nasal snorts (biphonation) in one individual confirmed that squeak production was independent of nasal passage involvement and this implicated oral sound production. The squeaks' spectral structure is incongruent with laryngeal sound production and aerodynamic whistles, pointing to tissue vibration as the sound source. Anatomical considerations suggest that the longitudinal closed lips function as the vibrators. Acoustic and temporal parameters exhibit high intra- and inter-individual variability that enables individual but no call-subtype classification. Only 19 of 56 study subjects were recorded to squeak, mostly during alarming contexts and social arousal but some also on command. CONCLUSION Our results strongly suggest that Asian elephants force air from the small oral cavity through the tensed lips, inducing self-sustained lip vibration. Besides human brass players, lip buzzing is not described elsewhere in the animal kingdom. Given the complexity of the proposed mechanism, the surprising absence of squeaking in most of the unrelated subjects and the indication for volitional control, we hypothesize that squeak production involves social learning. Our study offers new insights into how vocal and cognitive flexibility enables mammals to overcome size-related limitations of laryngeal sound production. This flexibility enables Asian elephants to exploit a frequency range spanning seven octaves within their communicative system.
Collapse
Affiliation(s)
- Veronika C Beeck
- Department of Behavioural and Cognitive Biology, Mammal Communication Lab, University of Vienna, Vienna, Austria.
| | | | | | - Angela S Stoeger
- Department of Behavioural and Cognitive Biology, Mammal Communication Lab, University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Veit L, Tian LY, Monroy Hernandez CJ, Brainard MS. Songbirds can learn flexible contextual control over syllable sequencing. eLife 2021; 10:61610. [PMID: 34060473 PMCID: PMC8169114 DOI: 10.7554/elife.61610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/25/2021] [Indexed: 11/23/2022] Open
Abstract
The flexible control of sequential behavior is a fundamental aspect of speech, enabling endless reordering of a limited set of learned vocal elements (syllables or words). Songbirds are phylogenetically distant from humans but share both the capacity for vocal learning and neural circuitry for vocal control that includes direct pallial-brainstem projections. Based on these similarities, we hypothesized that songbirds might likewise be able to learn flexible, moment-by-moment control over vocalizations. Here, we demonstrate that Bengalese finches (Lonchura striata domestica), which sing variable syllable sequences, can learn to rapidly modify the probability of specific sequences (e.g. ‘ab-c’ versus ‘ab-d’) in response to arbitrary visual cues. Moreover, once learned, this modulation of sequencing occurs immediately following changes in contextual cues and persists without external reinforcement. Our findings reveal a capacity in songbirds for learned contextual control over syllable sequencing that parallels human cognitive control over syllable sequencing in speech. Human speech and birdsong share numerous parallels. Both humans and birds learn their vocalizations during critical phases early in life, and both learn by imitating adults. Moreover, both humans and songbirds possess specific circuits in the brain that connect the forebrain to midbrain vocal centers. Humans can flexibly control what they say and how by reordering a fixed set of syllables into endless combinations, an ability critical to human speech and language. Birdsongs also vary depending on their context, and melodies to seduce a mate will be different from aggressive songs to warn other males to stay away. However, so far it was unclear whether songbirds are also capable of modifying songs independent of social or other naturally relevant contexts. To test whether birds can control their songs in a purposeful way, Veit et al. trained adult male Bengalese finches to change the sequence of their songs in response to random colored lights that had no natural meaning to the birds. A specific computer program was used to detect different variations on a theme that the bird naturally produced (for example, “ab-c” versus “ab-d”), and rewarded birds for singing one sequence when the light was yellow, and the other when it was green. Gradually, the finches learned to modify their songs and were able to switch between the appropriate sequences as soon as the light cues changed. This ability persisted for days, even without any further training. This suggests that songbirds can learn to flexibly and purposefully modify the way in which they sequence the notes in their songs, in a manner that parallels how humans control syllable sequencing in speech. Moreover, birds can learn to do this ‘on command’ in response to an arbitrarily chosen signal, even if it is not something that would impact their song in nature. Songbirds are an important model to study brain circuits involved in vocal learning. They are one of the few animals that, like humans, learn their vocalizations by imitating conspecifics. The finding that they can also flexibly control vocalizations may help shed light on the interactions between cognitive processing and sophisticated vocal learning abilities.
Collapse
Affiliation(s)
- Lena Veit
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lucas Y Tian
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Christian J Monroy Hernandez
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Michael S Brainard
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
25
|
Katsu N, Yuki S, Okanoya K. Production of regular rhythm induced by external stimuli in rats. Anim Cogn 2021; 24:1133-1141. [PMID: 33751275 DOI: 10.1007/s10071-021-01505-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Rhythmic ability is important for locomotion, communication, and coordination between group members during the daily life of animals. We aimed to examine the rhythm perception and production abilities in rats within the range of a subsecond to a few seconds. We trained rats to respond to audio-visual stimuli presented in regular, isochronous rhythms at six time-intervals (0.5-2 s). Five out of six rats successfully learned to respond to the sequential stimuli. All subjects showed periodic actions. The actions to regular stimuli were faster than randomly presented stimuli in the medium-tempo conditions. In slower and faster tempo conditions, the actions of some subjects were not periodic or phase-matched to the stimuli. The asynchrony regarding the stimulus onset became larger or smaller when the last stimulus of the sequence was presented at deviated timings. Thus, the actions of the rats were tempo matched to the regular rhythm, but not completely anticipative. We also compared the extent of phase-matching and variability of rhythm production among the interval conditions. In interval conditions longer than 1.5 s, variability tended to be larger. In conclusion, rats showed a tempo matching ability to regular rhythms to a certain degree, but maintenance of a constant tempo to slower rhythm conditions was difficult. Our findings suggest that non-vocal learning mammals have the potential to produce flexible rhythms in subsecond timing.
Collapse
Affiliation(s)
- Noriko Katsu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Shoko Yuki
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Bauer GB, Cook PF, Harley HE. The Relevance of Ecological Transitions to Intelligence in Marine Mammals. Front Psychol 2020; 11:2053. [PMID: 33013519 PMCID: PMC7505747 DOI: 10.3389/fpsyg.2020.02053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Macphail's comparative approach to intelligence focused on associative processes, an orientation inconsistent with more multifaceted lay and scientific understandings of the term. His ultimate emphasis on associative processes indicated few differences in intelligence among vertebrates. We explore options more attuned to common definitions by considering intelligence in terms of richness of representations of the world, the interconnectivity of those representations, the ability to flexibly change those connections, and knowledge. We focus on marine mammals, represented by the amphibious pinnipeds and the aquatic cetaceans and sirenians, as animals that transitioned from a terrestrial existence to an aquatic one, experiencing major changes in ecological pressures. They adapted with morphological transformations related to streamlining the body, physiological changes in respiration and thermoregulation, and sensory/perceptual changes, including echolocation capabilities and diminished olfaction in many cetaceans, both in-air and underwater visual focus, and enhanced senses of touch in pinnipeds and sirenians. Having a terrestrial foundation on which aquatic capacities were overlaid likely affected their cognitive abilities, especially as a new reliance on sound and touch, and the need to surface to breath changed their interactions with the world. Vocal and behavioral observational learning capabilities in the wild and in laboratory experiments suggest versatility in group coordination. Empirical reports on aspects of intelligent behavior like problem-solving, spatial learning, and concept learning by various species of cetaceans and pinnipeds suggest rich cognitive abilities. The high energy demands of the brain suggest that brain-intelligence relationships might be fruitful areas for study when specific hypotheses are considered, e.g., brain mapping indicates hypertrophy of specific sensory areas in marine mammals. Modern neuroimaging techniques provide ways to study neural connectivity, and the patterns of connections between sensory, motor, and other cortical regions provide a biological framework for exploring how animals represent and flexibly use information in navigating and learning about their environment. At this stage of marine mammal research, it would still be prudent to follow Macphail's caution that it is premature to make strong comparative statements without more empirical evidence, but an approach that includes learning more about how animals flexibly link information across multiple representations could be a productive way of comparing species by allowing them to use their specific strengths within comparative tasks.
Collapse
Affiliation(s)
- Gordon B. Bauer
- Division of Social Sciences, New College of Florida, Sarasota, FL, United States
- Mote Marine Laboratory, Sarasota, FL, United States
| | - Peter F. Cook
- Division of Social Sciences, New College of Florida, Sarasota, FL, United States
- Mote Marine Laboratory, Sarasota, FL, United States
| | - Heidi E. Harley
- Division of Social Sciences, New College of Florida, Sarasota, FL, United States
- Mote Marine Laboratory, Sarasota, FL, United States
- The Seas, Epcot, Walt Disney World Resorts, Lake Buena Vista, FL, United States
| |
Collapse
|
27
|
Roubalová T, Giret N, Bovet D, Policht R, Lindová J. Shared calls in repertoires of two locally distant gray parrots (Psittacus erithacus). Acta Ethol 2020. [DOI: 10.1007/s10211-020-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Filippi P. Emotional Voice Intonation: A Communication Code at the Origins of Speech Processing and Word-Meaning Associations? JOURNAL OF NONVERBAL BEHAVIOR 2020. [DOI: 10.1007/s10919-020-00337-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
The aim of the present work is to investigate the facilitating effect of vocal emotional intonation on the evolution of the following processes involved in language: (a) identifying and producing phonemes, (b) processing compositional rules underlying vocal utterances, and (c) associating vocal utterances with meanings. To this end, firstly, I examine research on the presence of these abilities in animals, and the biologically ancient nature of emotional vocalizations. Secondly, I review research attesting to the facilitating effect of emotional voice intonation on these abilities in humans. Thirdly, building on these studies in animals and humans, and through taking an evolutionary perspective, I provide insights for future empirical work on the facilitating effect of emotional intonation on these three processes in animals and preverbal humans. In this work, I highlight the importance of a comparative approach to investigate language evolution empirically. This review supports Darwin’s hypothesis, according to which the ability to express emotions through voice modulation was a key step in the evolution of spoken language.
Collapse
|
29
|
Garcia M, Ravignani A. Acoustic allometry and vocal learning in mammals. Biol Lett 2020; 16:20200081. [PMID: 32634374 PMCID: PMC7423041 DOI: 10.1098/rsbl.2020.0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Acoustic allometry is the study of how animal vocalizations reflect their body size. A key aim of this research is to identify outliers to acoustic allometry principles and pinpoint the evolutionary origins of such outliers. A parallel strand of research investigates species capable of vocal learning, the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalizations. Modification of vocalizations is a common feature found when studying both acoustic allometry and vocal learning. Yet, these two fields have only been investigated separately to date. Here, we review and connect acoustic allometry and vocal learning across mammalian clades, combining perspectives from bioacoustics, anatomy and evolutionary biology. Based on this, we hypothesize that, as a precursor to vocal learning, some species might have evolved the capacity for volitional vocal modulation via sexual selection for 'dishonest' signalling. We provide preliminary support for our hypothesis by showing significant associations between allometric deviation and vocal learning in a dataset of 164 mammals. Our work offers a testable framework for future empirical research linking allometric principles with the evolution of vocal learning.
Collapse
Affiliation(s)
- Maxime Garcia
- Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8051 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, 8032 Zurich, Switzerland
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, 9968 AG Pieterburen, The Netherlands
| |
Collapse
|
30
|
Nieder A, Mooney R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190054. [PMID: 31735150 PMCID: PMC6895551 DOI: 10.1098/rstb.2019.0054] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vocalization is an ancient vertebrate trait essential to many forms of communication, ranging from courtship calls to free verse. Vocalizations may be entirely innate and evoked by sexual cues or emotional state, as with many types of calls made in primates, rodents and birds; volitional, as with innate calls that, following extensive training, can be evoked by arbitrary sensory cues in non-human primates and corvid songbirds; or learned, acoustically flexible and complex, as with human speech and the courtship songs of oscine songbirds. This review compares and contrasts the neural mechanisms underlying innate, volitional and learned vocalizations, with an emphasis on functional studies in primates, rodents and songbirds. This comparison reveals both highly conserved and convergent mechanisms of vocal production in these different groups, despite their often vast phylogenetic separation. This similarity of central mechanisms for different forms of vocal production presents experimentalists with useful avenues for gaining detailed mechanistic insight into how vocalizations are employed for social and sexual signalling, and how they can be modified through experience to yield new vocal repertoires customized to the individual's social group. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
31
|
Abstract
Humans and songbirds learn to sing or speak by listening to acoustic models, forming auditory templates, and then learning to produce vocalizations that match the templates. These taxa have evolved specialized telencephalic pathways to accomplish this complex form of vocal learning, which has been reported for very few other taxa. By contrast, the acoustic structure of most animal vocalizations is produced by species-specific vocal motor programmes in the brainstem that do not require auditory feedback. However, many mammals and birds can learn to fine-tune the acoustic features of inherited vocal motor patterns based upon listening to conspecifics or noise. These limited forms of vocal learning range from rapid alteration based on real-time auditory feedback to long-term changes of vocal repertoire and they may involve different mechanisms than complex vocal learning. Limited vocal learning can involve the brainstem, mid-brain and/or telencephalic networks. Understanding complex vocal learning, which underpins human speech, requires careful analysis of which species are capable of which forms of vocal learning. Selecting multiple animal models for comparing the neural pathways that generate these different forms of learning will provide a richer view of the evolution of complex vocal learning and the neural mechanisms that make it possible. This article is part of the theme issue ‘What can animal communication teach us about human language?’
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews KY16 8LB, UK
| |
Collapse
|
32
|
Mennill DJ, Doucet SM, Newman AE, Williams H, Moran IG, Thomas IP, Woodworth BK, Bornais MM, Norris DR. Eavesdropping on adult vocal interactions does not enhance juvenile song learning: an experiment with wild songbirds. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Paxton KL, Sebastián-González E, Hite JM, Crampton LH, Kuhn D, Hart PJ. Loss of cultural song diversity and the convergence of songs in a declining Hawaiian forest bird community. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190719. [PMID: 31598249 PMCID: PMC6731710 DOI: 10.1098/rsos.190719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The effects of population decline on culturally transmitted behaviours in animals have rarely been described, but may have major implications to population viability. Learned vocal signals in birds are of critical importance to behaviours associated with reproduction, intrasexual interactions and group cohesion, and the complexity of vocal signals such as song can serve as an honest signal of an individual's quality as well as the viability of a population. In this study, we examined how rapid population declines recently experienced by Hawaiian honeycreepers on the island of Kaua'i (USA) may have influenced the diversity, complexity and similarity of learned honeycreeper songs. We analysed the acoustic characteristics of songs recorded during three time periods over a 40-year time frame for three species of declining Kaua'i honeycreepers. We detected a loss of song complexity and diversity over the 40-year time period that paralleled dramatic population declines. Concurrent with the loss of complexity, we also found that the acoustic characteristics of the three honeycreepers' songs became more similar to one another. To our knowledge, this is the first documentation of convergence of acoustic characteristics among rapidly declining species. The reduction in song complexity and diversity and convergence of songs not only signals a loss of culturally transmitted behaviours in these endemic Hawaiian honeycreepers, but also potential challenges to the recovery of these rapidly declining species. Moreover, the present study highlights that there is a 'hidden' cost to declining populations beyond just the loss of individuals that is not often considered, the loss of culturally transmitted social behaviours.
Collapse
Affiliation(s)
| | - Esther Sebastián-González
- Department of Applied Biology, Miguel Hernández University, Avenida de la Universidad s/n 03202 Elche, Spain
| | - Justin M. Hite
- Kauai Forest Bird Recovery Project, Pacific Cooperative Studies Unit, Hawaii Division of Forestry and Wildlife, University of Hawai‘i Manoa, Honolulu, HI, USA
| | - Lisa H. Crampton
- Kauai Forest Bird Recovery Project, Pacific Cooperative Studies Unit, Hawaii Division of Forestry and Wildlife, University of Hawai‘i Manoa, Honolulu, HI, USA
| | - David Kuhn
- SoundsHawaiian, PO Box 1018, Waimea, HI 96796, USA
| | - Patrick J. Hart
- Department of Biology, University of Hawai‘i Hilo, Hilo, HI 96720, USA
| |
Collapse
|
34
|
Genzel D, Desai J, Paras E, Yartsev MM. Long-term and persistent vocal plasticity in adult bats. Nat Commun 2019; 10:3372. [PMID: 31358755 PMCID: PMC6662767 DOI: 10.1038/s41467-019-11350-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
Bats exhibit a diverse and complex vocabulary of social communication calls some of which are believed to be learned during development. This ability to produce learned, species-specific vocalizations – a rare trait in the animal kingdom – requires a high-degree of vocal plasticity. Bats live extremely long lives in highly complex and dynamic social environments, which suggests that they might also retain a high degree of vocal plasticity in adulthood, much as humans do. Here, we report persistent vocal plasticity in adult bats (Rousettus aegyptiacus) following exposure to broad-band, acoustic perturbation. Our results show that adult bats can not only modify distinct parameters of their vocalizations, but that these changes persist even after noise cessation – in some cases lasting several weeks or months. Combined, these findings underscore the potential importance of bats as a model organism for studies of vocal plasticity, including in adulthood. Bats are long-lived animals that can produce a complex vocabulary of social communication calls. Here, the authors show that even in adulthood, bats retain the ability to adaptively introduce long-term modifications to their vocalizations, showing persistent vocal plasticity.
Collapse
Affiliation(s)
- Daria Genzel
- Helen Wills Neuroscience Institute and Department of Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Janki Desai
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, 94720, USA
| | - Elana Paras
- Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, CA, 94720, USA
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute and Department of Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
35
|
Stansbury AL, Janik VM. Formant Modification through Vocal Production Learning in Gray Seals. Curr Biol 2019; 29:2244-2249.e4. [DOI: 10.1016/j.cub.2019.05.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
36
|
|
37
|
Casey C, Reichmuth C, Costa DP, Le Boeuf B. The rise and fall of dialects in northern elephant seals. Proc Biol Sci 2018; 285:rspb.2018.2176. [PMID: 30487313 DOI: 10.1098/rspb.2018.2176] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Vocal dialects are fundamental to our understanding of the transmission of social behaviours between individuals and populations, however few accounts trace this phenomenon among mammals over time. Northern elephant seals (Mirounga angustirostris) provide a rare opportunity to examine the trajectory of dialects in a long-lived mammalian species. Dialects were first documented in the temporal patterns of the stereotyped vocal displays produced by breeding males at four sites in the North Pacific in 1968 and 1969, as the population recovered from extreme exploitation. We evaluated the longevity of these geographical differences by comparing these early recordings to calls recently recorded at these same locations. While the presence of vocal dialects in the original recordings was re-confirmed, geographical differences in vocal behaviour were not found at these breeding rookeries nearly 50 years later. Moreover, the calls of contemporary males displayed more structural complexity after approximately four generations, with substantial between-individual variation and call features not present in the historical data. In the absence of measurable genetic variation in this species-owing to an extreme population bottleneck-a combination of migration patterns and cultural mutation are proposed as factors influencing the fall of dialects and the dramatic increase in call diversity.
Collapse
Affiliation(s)
- Caroline Casey
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Long Marine Laboratory, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, University of California Santa Cruz, Long Marine Laboratory, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Long Marine Laboratory, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Burney Le Boeuf
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Long Marine Laboratory, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
38
|
Konrad CM, Frasier TR, Rendell L, Whitehead H, Gero S. Kinship and association do not explain vocal repertoire variation among individual sperm whales or social units. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Kotz S, Ravignani A, Fitch W. The Evolution of Rhythm Processing. Trends Cogn Sci 2018; 22:896-910. [DOI: 10.1016/j.tics.2018.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
|
40
|
Wild Birds Learn Songs from Experimental Vocal Tutors. Curr Biol 2018; 28:3273-3278.e4. [DOI: 10.1016/j.cub.2018.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/29/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023]
|
41
|
Ravignani A, Kello CT, de Reus K, Kotz SA, Dalla Bella S, Méndez-Aróstegui M, Rapado-Tamarit B, Rubio-Garcia A, de Boer B. Ontogeny of vocal rhythms in harbor seal pups: an exploratory study. Curr Zool 2018; 65:107-120. [PMID: 30697246 PMCID: PMC6347067 DOI: 10.1093/cz/zoy055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022] Open
Abstract
Puppyhood is a very active social and vocal period in a harbor seal’s life Phoca vitulina. An important feature of vocalizations is their temporal and rhythmic structure, and understanding vocal timing and rhythms in harbor seals is critical to a cross-species hypothesis in evolutionary neuroscience that links vocal learning, rhythm perception, and synchronization. This study utilized analytical techniques that may best capture rhythmic structure in pup vocalizations with the goal of examining whether (1) harbor seal pups show rhythmic structure in their calls and (2) rhythms evolve over time. Calls of 3 wild-born seal pups were recorded daily over the course of 1–3 weeks; 3 temporal features were analyzed using 3 complementary techniques. We identified temporal and rhythmic structure in pup calls across different time windows. The calls of harbor seal pups exhibit some degree of temporal and rhythmic organization, which evolves over puppyhood and resembles that of other species’ interactive communication. We suggest next steps for investigating call structure in harbor seal pups and propose comparative hypotheses to test in other pinniped species.
Collapse
Affiliation(s)
- Andrea Ravignani
- Research Department, Sealcentre Pieterburen, Pieterburen, The Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christopher T Kello
- Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Koen de Reus
- Research Department, Sealcentre Pieterburen, Pieterburen, The Netherlands
| | - Sonja A Kotz
- Basic and Applied NeuroDynamics Lab, Faculty of Psychology and Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands.,Department of Neuropsychology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montréal, QC, Canada
| | - Simone Dalla Bella
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montréal, QC, Canada.,Department of Psychology, University of Montreal, Montréal, QC, Canada.,Department of Cognitive Psychology, WSFiZ in Warsaw, Warsaw, Poland
| | | | | | - Ana Rubio-Garcia
- Research Department, Sealcentre Pieterburen, Pieterburen, The Netherlands
| | - Bart de Boer
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
42
|
Belyk M, Johnson JF, Kotz SA. Poor neuro-motor tuning of the human larynx: a comparison of sung and whistled pitch imitation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171544. [PMID: 29765635 PMCID: PMC5936900 DOI: 10.1098/rsos.171544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Vocal imitation is a hallmark of human communication that underlies the capacity to learn to speak and sing. Even so, poor vocal imitation abilities are surprisingly common in the general population and even expert vocalists cannot match the precision of a musical instrument. Although humans have evolved a greater degree of control over the laryngeal muscles that govern voice production, this ability may be underdeveloped compared with control over the articulatory muscles, such as the tongue and lips, volitional control of which emerged earlier in primate evolution. Human participants imitated simple melodies by either singing (i.e. producing pitch with the larynx) or whistling (i.e. producing pitch with the lips and tongue). Sung notes were systematically biased towards each individual's habitual pitch, which we hypothesize may act to conserve muscular effort. Furthermore, while participants who sung more precisely also whistled more precisely, sung imitations were less precise than whistled imitations. The laryngeal muscles that control voice production are under less precise control than the oral muscles that are involved in whistling. This imprecision may be due to the relatively recent evolution of volitional laryngeal-motor control in humans, which may be tuned just well enough for the coarse modulation of vocal-pitch in speech.
Collapse
Affiliation(s)
- Michel Belyk
- Bloorview Research Institute, 150 Kilgour Road, Toronto, CanadaM4G 1R8
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | - Joseph F. Johnson
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | - Sonja A. Kotz
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human and Cognitive Sciences, Leipzig, Germany
| |
Collapse
|
43
|
Ravignani A. Spontaneous rhythms in a harbor seal pup calls. BMC Res Notes 2018; 11:3. [PMID: 29298731 PMCID: PMC5751680 DOI: 10.1186/s13104-017-3107-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives Timing and rhythm (i.e. temporal structure) are crucial, though historically neglected, dimensions of animal communication. When investigating these in non-human animals, it is often difficult to balance experimental control and ecological validity. Here I present the first step of an attempt to balance the two, focusing on the timing of vocal rhythms in a harbor seal pup (Phoca vitulina). Collection of this data had a clear aim: To find spontaneous vocal rhythms in this individual in order to design individually-adapted and ecologically-relevant stimuli for a later playback experiment. Data description The calls of one seal pup were recorded. The audio recordings were annotated using Praat, a free software to analyze vocalizations in humans and other animals. The annotated onsets and offsets of vocalizations were then imported in a Python script. The script extracted three types of timing information: the duration of calls, the intervals between calls’ onsets, and the intervals between calls’ maximum-intensity peaks. Based on the annotated data, available to download, I provide simple descriptive statistics for these temporal measures, and compare their distributions.
Collapse
Affiliation(s)
- Andrea Ravignani
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, 9968 AG, Pieterburen, The Netherlands. .,Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,Language and Cognition Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD, Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Ravignani A. Comment on "Temporal and spatial variation in harbor seal (Phoca vitulina L.) roar calls from southern Scandinavia" [J. Acoust. Soc. Am. 141, 1824-1834 (2017)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:504. [PMID: 29390742 DOI: 10.1121/1.5021770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In their recent article, Sabinsky and colleagues investigated heterogeneity in harbor seals' vocalizations. The authors found seasonal and geographical variation in acoustic parameters, warning readers that recording conditions might account for some of their results. This paper expands on the temporal aspect of the encountered heterogeneity in harbor seals' vocalizations. Temporal information is the least susceptible to variable recording conditions. Hence geographical and seasonal variability in roar timing constitutes the most robust finding in the target article. In pinnipeds, evidence of timing and rhythm in the millisecond range-as opposed to circadian and seasonal rhythms-has theoretical and interdisciplinary relevance. In fact, the study of rhythm and timing in harbor seals is particularly decisive to support or confute a cross-species hypothesis, causally linking the evolution of vocal production learning and rhythm. The results by Sabinsky and colleagues can shed light on current scientific questions beyond pinniped bioacoustics, and help formulate empirically testable predictions.
Collapse
Affiliation(s)
- Andrea Ravignani
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, 9968 AG Pieterburen, The Netherlands
| |
Collapse
|
45
|
Kitchen DM, Bergman TJ, Dias PAD, Ho L, Canales-Espinosa D, Cortés-Ortiz L. Temporal but Not Acoustic Plasticity in Hybrid Howler Monkey (Alouatta palliata × A. pigra) Loud Calls. INT J PRIMATOL 2017. [DOI: 10.1007/s10764-017-0004-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Rhythmic entrainment: Why humans want to, fireflies can't help it, pet birds try, and sea lions have to be bribed. Psychon Bull Rev 2017; 23:1647-1659. [PMID: 26920589 DOI: 10.3758/s13423-016-1013-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Until recently, the literature on rhythmic ability took for granted that only humans are able to synchronize body movements to an external beat-to entrain. This assumption has been undercut by findings of beat-matching in various species of parrots and, more recently, in a sea lion, several species of primates, and possibly horses. This throws open the question of how widespread beat-matching ability is in the animal kingdom. Here we reassess the arguments and evidence for an absence of beat-matching in animals, and conclude that in fact no convincing case against beat-matching in animals has been made. Instead, such evidence as there is suggests that this capacity could be quite widespread. Furthermore, mutual entrainment of oscillations is a general principle of physical systems, both biological and nonbiological, suggesting that entrainment of motor systems by sensory systems may be a default rather than an oddity. The question then becomes, not why a few privileged species are able to beat-match, but why species do not always do so-why they vary in both spontaneous and learned beat-matching. We propose that when entrainment is not driven by fixed, mandatory connections between input and output (as in the case of, e.g., fireflies entraining to each others' flashes), it depends on voluntary control over, and voluntary or learned coupling of, sensory and motor systems, which can paradoxically lead to apparent failures of entrainment. Among the factors that affect whether an animal will entrain are sufficient control over the motor behavior to be entrained, sufficient perceptual sophistication to extract the entraining beat from the overall sensory environment, and the current cognitive state of the animal, including attention and motivation. The extent of entrainment in the animal kingdom potentially has widespread implications, not only for understanding the roots of human dance, but also for understanding the neural and cognitive architectures of animals.
Collapse
|
47
|
Brefczynski-Lewis JA, Lewis JW. Auditory object perception: A neurobiological model and prospective review. Neuropsychologia 2017; 105:223-242. [PMID: 28467888 PMCID: PMC5662485 DOI: 10.1016/j.neuropsychologia.2017.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
Interaction with the world is a multisensory experience, but most of what is known about the neural correlates of perception comes from studying vision. Auditory inputs enter cortex with its own set of unique qualities, and leads to use in oral communication, speech, music, and the understanding of emotional and intentional states of others, all of which are central to the human experience. To better understand how the auditory system develops, recovers after injury, and how it may have transitioned in its functions over the course of hominin evolution, advances are needed in models of how the human brain is organized to process real-world natural sounds and "auditory objects". This review presents a simple fundamental neurobiological model of hearing perception at a category level that incorporates principles of bottom-up signal processing together with top-down constraints of grounded cognition theories of knowledge representation. Though mostly derived from human neuroimaging literature, this theoretical framework highlights rudimentary principles of real-world sound processing that may apply to most if not all mammalian species with hearing and acoustic communication abilities. The model encompasses three basic categories of sound-source: (1) action sounds (non-vocalizations) produced by 'living things', with human (conspecific) and non-human animal sources representing two subcategories; (2) action sounds produced by 'non-living things', including environmental sources and human-made machinery; and (3) vocalizations ('living things'), with human versus non-human animals as two subcategories therein. The model is presented in the context of cognitive architectures relating to multisensory, sensory-motor, and spoken language organizations. The models' predictive values are further discussed in the context of anthropological theories of oral communication evolution and the neurodevelopment of spoken language proto-networks in infants/toddlers. These phylogenetic and ontogenetic frameworks both entail cortical network maturations that are proposed to at least in part be organized around a number of universal acoustic-semantic signal attributes of natural sounds, which are addressed herein.
Collapse
Affiliation(s)
- Julie A Brefczynski-Lewis
- Blanchette Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology, Pharmacology, & Neuroscience, West Virginia University, PO Box 9229, Morgantown, WV 26506, USA
| | - James W Lewis
- Blanchette Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology, Pharmacology, & Neuroscience, West Virginia University, PO Box 9229, Morgantown, WV 26506, USA.
| |
Collapse
|
48
|
Prat Y, Azoulay L, Dor R, Yovel Y. Crowd vocal learning induces vocal dialects in bats: Playback of conspecifics shapes fundamental frequency usage by pups. PLoS Biol 2017; 15:e2002556. [PMID: 29088225 PMCID: PMC5663327 DOI: 10.1371/journal.pbio.2002556] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/28/2017] [Indexed: 11/19/2022] Open
Abstract
Vocal learning, the substrate of human language acquisition, has rarely been described in other mammals. Often, group-specific vocal dialects in wild populations provide the main evidence for vocal learning. While social learning is often the most plausible explanation for these intergroup differences, it is usually impossible to exclude other driving factors, such as genetic or ecological backgrounds. Here, we show the formation of dialects through social vocal learning in fruit bats under controlled conditions. We raised 3 groups of pups in conditions mimicking their natural roosts. Namely, pups could hear their mothers' vocalizations but were also exposed to a manipulation playback. The vocalizations in the 3 playbacks mainly differed in their fundamental frequency. From the age of approximately 6 months and onwards, the pups demonstrated distinct dialects, where each group was biased towards its playback. We demonstrate the emergence of dialects through social learning in a mammalian model in a tightly controlled environment. Unlike in the extensively studied case of songbirds where specific tutors are imitated, we demonstrate that bats do not only learn their vocalizations directly from their mothers, but that they are actually influenced by the sounds of the entire crowd. This process, which we term "crowd vocal learning," might be relevant to many other social animals such as cetaceans and pinnipeds.
Collapse
Affiliation(s)
- Yosef Prat
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lindsay Azoulay
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roi Dor
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Ravignani A, Gross S, Garcia M, Rubio-Garcia A, de Boer B. How small could a pup sound? The physical bases of signaling body size in harbor seals. Curr Zool 2017; 63:457-465. [PMID: 29492005 PMCID: PMC5804196 DOI: 10.1093/cz/zox026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/08/2017] [Indexed: 11/24/2022] Open
Abstract
Vocal communication is a crucial aspect of animal behavior. The mechanism which most mammals use to vocalize relies on three anatomical components. First, air overpressure is generated inside the lower vocal tract. Second, as the airstream goes through the glottis, sound is produced via vocal fold vibration. Third, this sound is further filtered by the geometry and length of the upper vocal tract. Evidence from mammalian anatomy and bioacoustics suggests that some of these three components may covary with an animal's body size. The framework provided by acoustic allometry suggests that, because vocal tract length (VTL) is more strongly constrained by the growth of the body than vocal fold length (VFL), VTL generates more reliable acoustic cues to an animal's size. This hypothesis is often tested acoustically but rarely anatomically, especially in pinnipeds. Here, we test the anatomical bases of the acoustic allometry hypothesis in harbor seal pups Phoca vitulina. We dissected and measured vocal tract, vocal folds, and other anatomical features of 15 harbor seals post-mortem. We found that, while VTL correlates with body size, VFL does not. This suggests that, while body growth puts anatomical constraints on how vocalizations are filtered by harbor seals' vocal tract, no such constraints appear to exist on vocal folds, at least during puppyhood. It is particularly interesting to find anatomical constraints on harbor seals' vocal tracts, the same anatomical region partially enabling pups to produce individually distinctive vocalizations.
Collapse
Affiliation(s)
- Andrea Ravignani
- Veterinary & Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, Pieterburen, AG 9968, The Netherlands
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, XD 6525, The Netherlands
| | - Stephanie Gross
- Veterinary & Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, Pieterburen, AG 9968, The Netherlands
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum 25761, Germany
| | - Maxime Garcia
- ENES Lab/Neuro-PSI, CNRS UMR9197, University of Lyon/Saint Etienne, 23 rue Paul Michelon, 42023 Saint-Etienne cedex 2, France
| | - Ana Rubio-Garcia
- Veterinary & Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, Pieterburen, AG 9968, The Netherlands
| | - Bart de Boer
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| |
Collapse
|
50
|
The origins of the vocal brain in humans. Neurosci Biobehav Rev 2017; 77:177-193. [DOI: 10.1016/j.neubiorev.2017.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 01/13/2023]
|