1
|
Hamoy M, Dos Santos Batista L, de Mello VJ, Gomes-Leal W, Farias RAF, Dos Santos Batista P, do Nascimento JLM, Marcondes HC, Taylor JG, Hutchison WD, Torres MF, Barbas LAL. Cunaniol-elicited seizures: Behavior characterization and electroencephalographic analyses. Toxicol Appl Pharmacol 2018; 360:193-200. [PMID: 30296455 DOI: 10.1016/j.taap.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022]
Abstract
This study aimed at describing the characteristics and properties of seizures induced by cunaniol, a polyacetylenic alcohol isolated from the Clibadium genus, which is ubiquitous in the Amazon biodiversity and its potential use as a convulsant model. Wistar rat behavior was assessed upon cunaniol administration and animals were evaluated for neural activity through electroencephalographic records whereby epidural electrodes were positioned over the motor cortex under cunaniol-elicited seizures and seizure's control using three anticonvulsant agents, namely phenytoin, phenobarbital and diazepam. Cunaniol-induced seizures displayed a cyclic development of electrocorticographic seizures, presenting interictal-like spike and ictal period, which correlates to the behavioral observations and is in line with acute seizures induced by pentylenetetrazole. Cunaniol-elicited seizures were intractable by phenytoin treatment and controlled under the GABAergic activities of phenobarbital and diazepam. The results indicate that the cunaniol-induced changes show characteristics of seizure activity, making this plant compound a suitable animal convulsant model for seizure-related studies that could be used to assist in the development of novel anticonvulsant agents.
Collapse
Affiliation(s)
- Moisés Hamoy
- Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Walace Gomes-Leal
- Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | | | | | | | | | - Jason G Taylor
- Chemistry Department, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - William D Hutchison
- Department of Physiology, University of Toronto, Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - Marcelo Ferreira Torres
- Federal Institute of Education, Science and Technology of Pará, IFPA, Castanhal, Pará, Brazil
| | - Luis André L Barbas
- Federal Institute of Education, Science and Technology of Pará, IFPA, Castanhal, Pará, Brazil.
| |
Collapse
|
2
|
Wenzel M, Hamm JP, Peterka DS, Yuste R. Reliable and Elastic Propagation of Cortical Seizures In Vivo. Cell Rep 2018; 19:2681-2693. [PMID: 28658617 DOI: 10.1016/j.celrep.2017.05.090] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/27/2022] Open
Abstract
Mapping the fine-scale neural activity that underlies epilepsy is key to identifying potential control targets of this frequently intractable disease. Yet, the detailed in vivo dynamics of seizure progression in cortical microcircuits remain poorly understood. We combine fast (30-Hz) two-photon calcium imaging with local field potential (LFP) recordings to map, cell by cell, the spread of locally induced (4-AP or picrotoxin) seizures in anesthetized and awake mice. Using single-layer and microprism-assisted multilayer imaging in different cortical areas, we uncover reliable recruitment of local neural populations within and across cortical layers, and we find layer-specific temporal delays, suggesting an initial supra-granular invasion followed by deep-layer recruitment during lateral seizure spread. Intriguingly, despite consistent progression pathways, successive seizures show pronounced temporal variability that critically depends on GABAergic inhibition. We propose an epilepsy circuit model resembling an elastic meshwork, wherein ictal progression faithfully follows preexistent pathways but varies flexibly in time, depending on the local inhibitory restraint.
Collapse
Affiliation(s)
- Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Jordan P Hamm
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
3
|
Rossi LF, Kullmann DM, Wykes RC. The Enlightened Brain: Novel Imaging Methods Focus on Epileptic Networks at Multiple Scales. Front Cell Neurosci 2018; 12:82. [PMID: 29632475 PMCID: PMC5879108 DOI: 10.3389/fncel.2018.00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022] Open
Abstract
Epilepsy research is rapidly adopting novel fluorescence optical imaging methods to tackle unresolved questions on the cellular and circuit mechanisms of seizure generation and evolution. State of the art two-photon microscopy and wide-field fluorescence imaging can record the activity in epileptic networks at multiple scales, from neuronal microcircuits to brain-wide networks. These approaches exploit transgenic and viral technologies to target genetically encoded calcium and voltage sensitive indicators to subclasses of neurons, and achieve genetic specificity, spatial resolution and scalability that can complement electrophysiological recordings from awake animal models of epilepsy. Two-photon microscopy is well suited to study single neuron dynamics during interictal and ictal events, and highlight the differences between the activity of excitatory and inhibitory neuronal classes in the focus and propagation zone. In contrast, wide-field fluorescence imaging provides mesoscopic recordings from the entire cortical surface, necessary to investigate seizure propagation pathways, and how the unfolding of epileptic events depends on the topology of brain-wide functional connectivity. Answering these questions will inform pre-clinical studies attempting to suppress seizures with gene therapy, optogenetic or chemogenetic strategies. Dissecting which network nodes outside the seizure onset zone are important for seizure generation, propagation and termination can be used to optimize current and future evaluation methods to identify an optimal surgical strategy.
Collapse
Affiliation(s)
- L Federico Rossi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - Robert C Wykes
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Gast H, Niediek J, Schindler K, Boström J, Coenen VA, Beck H, Elger CE, Mormann F. Burst firing of single neurons in the human medial temporal lobe changes before epileptic seizures. Clin Neurophysiol 2016; 127:3329-34. [PMID: 27592159 DOI: 10.1016/j.clinph.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To better understand the mechanisms that lead to the sudden and unexpected occurrence of seizures, with the neuronal correlate being abnormally synchronous discharges that disrupt neuronal function. METHODS To address this problem, we recorded single neuron activity in epilepsy patients during the transition to seizures to uncover specific changes of neuronal firing patterns. We focused particularly on neurons repeatedly firing discrete groups of high-frequency action potentials (so called bursters) that have been associated with ictogenesis. We analyzed a total of 459 single neurons and used the mean autocorrelation time as a quantitative measure of burstiness. To unravel the intricate roles of excitation and inhibition, we also examined differential contributions from putative principal cells and interneurons. RESULTS During interictal recordings, burstiness was significantly higher in the seizure onset hemisphere, an effect found only for principal cells, but not for interneurons, and which disappeared before seizures. CONCLUSION These findings deviate from conventional views of ictogenesis that propose slowly-increasing aggregates of bursting neurons which give rise to seizures once they reach a critical mass. SIGNIFICANCE Instead our results are in line with recent hypotheses that bursting may represent a protective mechanism by preventing direct transmission of postsynaptic high-frequency oscillations.
Collapse
Affiliation(s)
- Heidemarie Gast
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Johannes Niediek
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Boström
- Stereotaxy and MR-Based OR Techniques, Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Volker A Coenen
- Stereotaxy and MR-Based OR Techniques, Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Christian E Elger
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Florian Mormann
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Freestone DR, Karoly PJ, Peterson ADH, Kuhlmann L, Lai A, Goodarzy F, Cook MJ. Seizure Prediction: Science Fiction or Soon to Become Reality? Curr Neurol Neurosci Rep 2016; 15:73. [PMID: 26404726 DOI: 10.1007/s11910-015-0596-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This review highlights recent developments in the field of epileptic seizure prediction. We argue that seizure prediction is possible; however, most previous attempts have used data with an insufficient amount of information to solve the problem. The review discusses four methods for gaining more information above standard clinical electrophysiological recordings. We first discuss developments in obtaining long-term data that enables better characterisation of signal features and trends. Then, we discuss the usage of electrical stimulation to probe neural circuits to obtain robust information regarding excitability. Following this, we present a review of developments in high-resolution micro-electrode technologies that enable neuroimaging across spatial scales. Finally, we present recent results from data-driven model-based analyses, which enable imaging of seizure generating mechanisms from clinical electrophysiological measurements. It is foreseeable that the field of seizure prediction will shift focus to a more probabilistic forecasting approach leading to improvements in the quality of life for the millions of people who suffer uncontrolled seizures. However, a missing piece of the puzzle is devices to acquire long-term high-quality data. When this void is filled, seizure prediction will become a reality.
Collapse
Affiliation(s)
- Dean R Freestone
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065. .,Department of Statistics, Columbia University, New York, NY, 10027, USA.
| | - Philippa J Karoly
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065.,Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Andre D H Peterson
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065
| | - Levin Kuhlmann
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Alan Lai
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Farhad Goodarzy
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Mark J Cook
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065.
| |
Collapse
|
6
|
Exploring human epileptic activity at the single-neuron level. Epilepsy Behav 2016; 58:11-7. [PMID: 26994366 DOI: 10.1016/j.yebeh.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
Abstract
Today, localization of the seizure focus heavily relies on EEG monitoring (scalp or intracranial). However, current technology enables much finer resolutions. The activity of hundreds of single neurons in the human brain can now be simultaneously explored before, during, and after a seizure or in association with an interictal discharge. This technology opens up new horizons to understanding epilepsy at a completely new level. This review therefore begins with a brief description of the basis of the technology, the microelectrodes, and the setup for their implantation in patients with epilepsy. Using these electrodes, recent studies provide novel insights into both the time domain and firing patterns of epileptic activity of single neurons. In the time domain, seizure-related activity may occur even minutes before seizure onset (in its current, EEG-based definition). Seizure-related neuronal interactions exhibit complex heterogeneous dynamics. In the seizure-onset zone, changes in firing patterns correlate with cell loss; in the penumbra, neurons maintain their spike stereotypy during a seizure. Hence, investigation of the extracellular electrical activity is expected to provide a better understanding of the mechanisms underlying the disease; it may, in the future, serve for a more accurate localization of the seizure focus; and it may also be employed to predict the occurrence of seizures prior to their behavioral manifestation in order to administer automatic therapeutic interventions.
Collapse
|