1
|
Egelhaaf M, Lindemann JP. Path integration and optic flow in flying insects: a review of current evidence. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:375-401. [PMID: 40053081 DOI: 10.1007/s00359-025-01734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 05/16/2025]
Abstract
Path integration is a key navigation mechanism used by many animals, involving the integration of direction and distance of path segments to form a goal vector that allows an animal to return directly to its starting point. While well established for animals walking on solid ground, evidence for path integration in animals moving without ground contact, such as flying insects, is less clear. The review focuses on flying Hymenoptera, particularly bees, which are extensively studied. Although bees can use flight distance and direction information, evidence for genuine path integration is limited. Accurately assessing distance travelled is a major challenge for flying animals, because it relies on optic flow-the movement of visual patterns across the eye caused by locomotion. Optic flow depends on both the animal's speed and the spatial layout of the environment, making it ambiguous for precise distance measurement. While path integration is crucial for animals like desert ants navigating sparse environments with few navigational cues, we argue that flying Hymenopterans in visually complex environments, rich in objects and textures, rely on additional navigational cues rather than precise path integration. As they become more familiar with an environment, they may iteratively refine unreliable distance estimates derived from optic flow. By combining this refined information with directional cues, they could determine a goal vector and improve their ability to navigate efficiently between key locations. In the case of honeybees, this ability also enables them to communicate these refined goal vectors to other bees through the waggle dance.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Neurobiology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| | - Jens P Lindemann
- Neurobiology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Debinski DM, Warchola N, Altizer S, Crone EE. Implications of summer breeding phenology on demography of monarch butterflies. J Anim Ecol 2025; 94:682-692. [PMID: 39962638 PMCID: PMC11962244 DOI: 10.1111/1365-2656.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 04/03/2025]
Abstract
Phenological changes have been widely documented in animal and plant responses to directional environmental change. However, predicting the consequences of these shifts for species interactions and population viability requires knowledge of vital rate responses to biotic and abiotic drivers. Here, we paired long-term phenology data documenting monarch butterfly abundance and occurrence of their milkweed hostplant with outdoor experiments in the central United States to ask how changes in spring arrival times to monarch breeding sites affect their development, survival, and within-season population growth. Monarch arrival times did not change across the 17 years of monitoring, but the peak abundance of monarchs, which occurred just prior to their fall migration, shifted 9 days later in 2019 as compared to 2003. Summer population growth declined from 2003 to 2019, significant in ~80% bootstrap calculations. Phenological changes in milkweed occurrence mirrored changes in monarch abundance, happening later through time. Our field experiment showed that early season larval survival was highest when the timing of hatching matched the average timing of the first natural monarch cohort; survival was lowest when egg hatching shifted 14 days earlier. The results of our study indicate that earlier arrival of adult monarchs to summer breeding habitat would be costly for monarchs-but field survey data show that arrival times have not changed to date. Instead, the local changes we observed in the timing of peak abundance occurred towards the end of the breeding season, not the onset. At present, we conclude that changes in early season phenology are not a threat to eastern North American monarchs living in the central United States, but drivers of breeding-season growth rates and changes in late-season phenology merit further study, both in the central United States and in other parts of the monarch's range.
Collapse
Affiliation(s)
| | - Norah Warchola
- Ecology and Evolutionary BiologyIowa State UniversityAmesIowaUSA
| | - Sonia Altizer
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Elizabeth E. Crone
- Department of BiologyTufts UniversityMedfordMassachusettsUSA
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
3
|
Li Z, Huang L, Cheng L, Guo W, Ye R. Laser-Induced Graphene-Based Sensors in Health Monitoring: Progress, Sensing Mechanisms, and Applications. SMALL METHODS 2024; 8:e2400118. [PMID: 38597770 PMCID: PMC11579578 DOI: 10.1002/smtd.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The rising global population and improved living standards have led to an alarming increase in non-communicable diseases, notably cardiovascular and chronic respiratory diseases, posing a severe threat to human health. Wearable sensing devices, utilizing micro-sensing technology for real-time monitoring, have emerged as promising tools for disease prevention. Among various sensing platforms, graphene-based sensors have shown exceptional performance in the field of micro-sensing. Laser-induced graphene (LIG) technology, a cost-effective and facile method for graphene preparation, has gained particular attention. By converting polymer films directly into patterned graphene materials at ambient temperature and pressure, LIG offers a convenient and environmentally friendly alternative to traditional methods, opening up innovative possibilities for electronic device fabrication. Integrating LIG-based sensors into health monitoring systems holds the potential to revolutionize health management. To commemorate the tenth anniversary of the discovery of LIG, this work provides a comprehensive overview of LIG's evolution and the progress of LIG-based sensors. Delving into the diverse sensing mechanisms of LIG-based sensors, recent research advances in the domain of health monitoring are explored. Furthermore, the opportunities and challenges associated with LIG-based sensors in health monitoring are briefly discussed.
Collapse
Affiliation(s)
- Zihao Li
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Libei Huang
- Division of Science, Engineering and Health StudySchool of Professional Education and Executive DevelopmentThe Hong Kong Polytechnic University (PolyU SPEED)KowloonHong Kong999077China
| | - Le Cheng
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Weihua Guo
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Ruquan Ye
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
4
|
Kendzel MJ, Parlin AF, Guerra PA. Gravisensation and modulation of gravitactic responses by other sensory cues in the monarch butterfly (Danaus plexippus). J Exp Biol 2023; 226:jeb245451. [PMID: 37818736 PMCID: PMC10651108 DOI: 10.1242/jeb.245451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Using the monarch butterfly (Danaus plexippus), we studied how animals can use cues from multiple sensory modalities for deriving directional information from their environment to display oriented movement. Our work focused on determining how monarchs use gravity as a cue for oriented movement and determined how cues from other sensory modalities, cues that by themselves also produce oriented movement (visual and magnetic directional cues), might modulate gravisensation. In two tests of gravisensation (movement in a vertical tube; righting behavior), we found that monarchs display negative gravitaxis only (movement opposite to the direction of gravity). Negative gravitaxis can be modulated by either visual (light) or magnetic field cues (inclination angle) that provide directional information. The modulation of gravity-mediated responses, however, depends on the relationship between cues when presented during trials, such as when cues are in accord or in conflict. For example, when light cues that elicit positive phototaxis conflicted with negative gravitaxis (light from below the monarch), monarch gravisensation was unaffected by directional light cues. We also found that the antennae play a role in gravity-mediated movement (righting), as, with antennae removed, monarch movement behavior was no longer the same as when the antennae were intact. Our results demonstrate that monarchs can use and integrate multiple, multimodal cues for oriented movement, but that the use of such cues can be hierarchical (that is, one cue dominant for movement), and the hierarchy of cues, and the responses towards them when found together, depends on the physical relationships between cues during movement.
Collapse
Affiliation(s)
- Mitchell J. Kendzel
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
5
|
Huang L, Liu Y, Li G, Song Y, Su J, Cheng L, Guo W, Zhao G, Shen H, Yan Z, Tang BZ, Ye R. Ultrasensitive, Fast-Responsive, Directional Airflow Sensing by Bioinspired Suspended Graphene Fibers. NANO LETTERS 2023; 23:597-605. [PMID: 36622320 DOI: 10.1021/acs.nanolett.2c04228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of high-performance miniaturized and flexible airflow sensors is essential to meet the need of emerging applications. Graphene-based airflow sensors are hampered by the sluggish response and recovery speed and low sensitivity. Here we employ laser-induced graphene (LIG) with poststructural biomimicry for fabricating high-performance, flexible airflow sensors, including cotton-like porous LIG, caterpillar fluff-like vertical LIG fiber, and Lepidoptera scale-like suspended LIG fiber (SLIGF) structures. The structural engineering changes the deformation behavior of LIGs under stress, among which the synchronous propagation of the scale-like structure of SLIGF is the most conducive to airflow sensing. The SLIGF achieves the shortest average response time of 0.5 s, the highest sensitivity of 0.11 s/m, and a record-low detection threshold of 0.0023 m/s, benchmarked against the state-of-the-art airflow sensors. Furthermore, we showcase the SLIGF airflow sensors in weather forecasting, health, and communications applications. Our study will help develop next-generation waterflow, sound, and motion sensors.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yong Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Geng Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yun Song
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jianjun Su
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Le Cheng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Weihua Guo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Zheng Yan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ruquan Ye
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
6
|
Jin M, Liu B, Zheng W, Liu C, Liu Z, He Y, Li X, Wu C, Wang P, Liu K, Wu S, Liu H, Chakrabarty S, Yuan H, Wilson K, Wu K, Fan W, Xiao Y. Chromosome-level genome of black cutworm provides novel insights into polyphagy and seasonal migration in insects. BMC Biol 2023; 21:2. [PMID: 36600240 PMCID: PMC9814246 DOI: 10.1186/s12915-022-01504-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The black cutworm, Agrotis ipsilon, is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. RESULTS We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. CONCLUSIONS This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.
Collapse
Affiliation(s)
- Minghui Jin
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Bo Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weigang Zheng
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Conghui Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), Hongkong, 999077 China
| | - Zhenxing Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuan He
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiaokang Li
- grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chao Wu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ping Wang
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaiyu Liu
- grid.411407.70000 0004 1760 2614School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Shigang Wu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hangwei Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Swapan Chakrabarty
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibin Yuan
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Kenneth Wilson
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, LAI 4YQ UK
| | - Kongming Wu
- grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Wei Fan
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
8
|
Yang LH, Swan K, Bastin E, Aguilar J, Cenzer M, Codd A, Gonzalez N, Hayes T, Higgins A, Lor X, Macharaga C, McMunn M, Oto K, Winarto N, Wong D, Yang T, Afridi N, Aguilar S, Allison A, Ambrose‐Winters A, Amescua E, Apse M, Avoce N, Bastin K, Bolander E, Burroughs J, Cabrera C, Candy M, Cavett A, Cavett M, Chang L, Claret M, Coleman D, Concha J, Danzer P, DaRosa J, Dufresne A, Duisenberg C, Earl A, Eckey E, English M, Espejo A, Faith E, Fang A, Gamez A, Garcini J, Garcini J, Gilbert‐Igelsrud G, Goedde‐Matthews K, Grahn S, Guerra P, Guerra V, Hagedorn M, Hall K, Hall G, Hammond J, Hargadon C, Henley V, Hinesley S, Jacobs C, Johnson C, Johnson T, Johnson Z, Juchau E, Kaplan C, Katznelson A, Keeley R, Kubik T, Lam T, Lansing C, Lara A, Le V, Lee B, Lee K, Lemmo M, Lucio S, Luo A, Malakzay S, Mangney L, Martin J, Matern W, McConnell B, McHale M, McIsaac G, McLennan C, Milbrodt S, Mohammed M, Mooney‐McCarthy M, Morgan L, Mullin C, Needles S, Nunes K, O'Keeffe F, O'Keeffe O, Osgood G, Padilla J, Padilla S, Palacio I, Panelli V, Paulson K, et alYang LH, Swan K, Bastin E, Aguilar J, Cenzer M, Codd A, Gonzalez N, Hayes T, Higgins A, Lor X, Macharaga C, McMunn M, Oto K, Winarto N, Wong D, Yang T, Afridi N, Aguilar S, Allison A, Ambrose‐Winters A, Amescua E, Apse M, Avoce N, Bastin K, Bolander E, Burroughs J, Cabrera C, Candy M, Cavett A, Cavett M, Chang L, Claret M, Coleman D, Concha J, Danzer P, DaRosa J, Dufresne A, Duisenberg C, Earl A, Eckey E, English M, Espejo A, Faith E, Fang A, Gamez A, Garcini J, Garcini J, Gilbert‐Igelsrud G, Goedde‐Matthews K, Grahn S, Guerra P, Guerra V, Hagedorn M, Hall K, Hall G, Hammond J, Hargadon C, Henley V, Hinesley S, Jacobs C, Johnson C, Johnson T, Johnson Z, Juchau E, Kaplan C, Katznelson A, Keeley R, Kubik T, Lam T, Lansing C, Lara A, Le V, Lee B, Lee K, Lemmo M, Lucio S, Luo A, Malakzay S, Mangney L, Martin J, Matern W, McConnell B, McHale M, McIsaac G, McLennan C, Milbrodt S, Mohammed M, Mooney‐McCarthy M, Morgan L, Mullin C, Needles S, Nunes K, O'Keeffe F, O'Keeffe O, Osgood G, Padilla J, Padilla S, Palacio I, Panelli V, Paulson K, Pearson J, Perez T, Phrakonekham B, Pitsillides I, Preisler A, Preisler N, Ramirez H, Ransom S, Renaud C, Rocha T, Saris H, Schemrich R, Schoenig L, Sears S, Sharma A, Siu J, Spangler M, Standefer S, Strickland K, Stritzel M, Talbert E, Taylor S, Thomsen E, Toups K, Tran K, Tran H, Tuqiri M, Valdes S, VanVorhis G, Vue S, Wallace S, Whipple J, Yang P, Ye M, Yo D, Zeng Y. Different factors limit early- and late-season windows of opportunity for monarch development. Ecol Evol 2022; 12:e9039. [PMID: 35845370 PMCID: PMC9273743 DOI: 10.1002/ece3.9039] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)-monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single-year decline in the western monarch population. Our results show early- and late-season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early-season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early-spring migrant female monarchs select earlier-emerging plants to balance a seasonal trade-off between increasing host plant quantity and decreasing host plant quality. Late-season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late-season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom-up, top-down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed-monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.
Collapse
|
9
|
Moura PA, Corso G, Montgomery SH, Cardoso MZ. True site fidelity in pollen‐feeding butterflies. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Priscila A. Moura
- Departamento de Ecologia Universidade Federal do Rio Grande do Norte Natal Brazil
| | - Giberto Corso
- Departamento de Biofísica e Farmacologia Universidade Federal do Rio Grande do Norte Natal Brazil
| | | | - Marcio Z. Cardoso
- Departamento de Ecologia Universidade Federal do Rio Grande do Norte Natal Brazil
- Departamento de Ecologia Instituto de Biologia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
10
|
Abstract
Animals navigate a wide range of distances, from a few millimeters to globe-spanning journeys of thousands of kilometers. Despite this array of navigational challenges, similar principles underlie these behaviors across species. Here, we focus on the navigational strategies and supporting mechanisms in four well-known systems: the large-scale migratory behaviors of sea turtles and lepidopterans as well as navigation on a smaller scale by rats and solitarily foraging ants. In lepidopterans, rats, and ants we also discuss the current understanding of the neural architecture which supports navigation. The orientation and navigational behaviors of these animals are defined in terms of behavioral error-reduction strategies reliant on multiple goal-directed servomechanisms. We conclude by proposing to incorporate an additional component into this system: the observation that servomechanisms operate on oscillatory systems of cycling behavior. These oscillators and servomechanisms comprise the basis for directed orientation and navigational behaviors. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia;
| |
Collapse
|
11
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
12
|
Guerra PA. The Monarch Butterfly as a Model for Understanding the Role of Environmental Sensory Cues in Long-Distance Migratory Phenomena. Front Behav Neurosci 2020; 14:600737. [PMID: 33343312 PMCID: PMC7744611 DOI: 10.3389/fnbeh.2020.600737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
The awe-inspiring annual migration of monarch butterflies (Danaus plexippus) is an iconic example of long-distance migratory phenomena in which environmental sensory cues help drive successful migration. In this mini-review article, I begin by describing how studies on monarch migration can provide us with generalizable information on how sensory cues can mediate key aspects of animal movement. I describe how environmental sensory cues can trigger the development and progression of the monarch migration, as well as inform sensory-based movement mechanisms in order to travel to and reach their goal destination, despite monarchs being on their maiden voyage. I also describe how sensory cues can trigger season-appropriate changes in migratory direction during the annual cycle. I conclude this mini-review article by discussing how contemporary environmental challenges threaten the persistence of the monarch migration. Environmental challenges such as climate change and shifting land use can significantly alter the sensory environments that monarchs migrate through, as well as degrade or eliminate the sources of sensory cues that are necessary for successful migration.
Collapse
Affiliation(s)
- Patrick A. Guerra
- Department of Biological Sciences, College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Häfker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? Curr Opin Neurobiol 2020; 60:55-66. [DOI: 10.1016/j.conb.2019.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
|
14
|
Abstract
Every fall, millions of North American monarch butterflies undergo a stunning long-distance migration to reach their overwintering grounds in Mexico. Migration allows the butterflies to escape freezing temperatures and dying host plants, and reduces infections with a virulent parasite. We discuss the multigenerational migration journey and its evolutionary history, and highlight the navigational mechanisms of migratory monarchs. Monarchs use a bidirectional time-compensated sun compass for orientation, which is based on a time-compensating circadian clock that resides in the antennae, and which has a distinctive molecular mechanism. Migrants can also use a light-dependent inclination magnetic compass for orientation under overcast conditions. Additional environmental features, e.g., atmospheric conditions, geologic barriers, and social interactions, likely augment navigation. The publication of the monarch genome and the development of gene-editing strategies have enabled the dissection of the genetic and neurobiological basis of the migration. The monarch butterfly has emerged as an excellent system to study the ecological, neural, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
15
|
Dreyer D, El Jundi B, Kishkinev D, Suchentrunk C, Campostrini L, Frost BJ, Zechmeister T, Warrant EJ. Evidence for a southward autumn migration of nocturnal noctuid moths in central Europe. ACTA ACUST UNITED AC 2018; 221:221/24/jeb179218. [PMID: 30552290 DOI: 10.1242/jeb.179218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/25/2018] [Indexed: 11/20/2022]
Abstract
Insect migrations are spectacular natural events and resemble a remarkable relocation of biomass between two locations in space. Unlike the well-known migrations of daytime flying butterflies, such as the painted lady (Vanessa cardui) or the monarch butterfly (Danaus plexippus), much less widely known are the migrations of nocturnal moths. These migrations - typically involving billions of moths from different taxa - have recently attracted considerable scientific attention. Nocturnal moth migrations have traditionally been investigated by light trapping and by observations in the wild, but in recent times a considerable improvement in our understanding of this phenomenon has come from studying insect orientation behaviour, using vertical-looking radar. In order to establish a new model organism to study compass mechanisms in migratory moths, we tethered each of two species of central European Noctuid moths in a flight simulator to study their flight bearings: the red underwing (Catocala nupta) and the large yellow underwing (Noctua pronuba). Both species had significantly oriented flight bearings under an unobscured view of the clear night sky and in the Earth's natural magnetic field. Red underwings oriented south-southeast, while large yellow underwings oriented southwest, both suggesting a southerly autumn migration towards the Mediterranean. Interestingly, large yellow underwings became disoriented on humid (foggy) nights while red underwings remained oriented. We found no evidence in either species for a time-independent sky compass mechanism as previously suggested for the large yellow underwing.
Collapse
Affiliation(s)
- David Dreyer
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Basil El Jundi
- Department of Zoology II, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Dmitry Kishkinev
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK.,Biological station Rybachy of Zoological Institute of Russian Academy of Sciences, Rybachy, 238535 Kaliningrad region, Russia
| | | | | | - Barrie J Frost
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | | | - Eric J Warrant
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
16
|
What does a butterfly hear? Physiological characterization of auditory afferents in Morpho peleides (Nymphalidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:791-799. [DOI: 10.1007/s00359-018-1280-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
|
17
|
The neurobiology of climate change. Naturwissenschaften 2018; 105:11. [DOI: 10.1007/s00114-017-1538-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022]
|
18
|
de Vries L, Pfeiffer K, Trebels B, Adden AK, Green K, Warrant E, Heinze S. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Front Behav Neurosci 2017; 11:158. [PMID: 28928641 PMCID: PMC5591330 DOI: 10.3389/fnbeh.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation-differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth.
Collapse
Affiliation(s)
- Liv de Vries
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Keram Pfeiffer
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Björn Trebels
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Andrea K Adden
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Ken Green
- New South Wales National Parks and Wildlife ServiceJindabyne, NSW, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| |
Collapse
|
19
|
Hellmann JJ, Grundel R, Hoving C, Schuurman GW. A call to insect scientists: challenges and opportunities of managing insect communities under climate change. CURRENT OPINION IN INSECT SCIENCE 2016; 17:92-97. [PMID: 27720080 DOI: 10.1016/j.cois.2016.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us to revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.
Collapse
Affiliation(s)
- Jessica J Hellmann
- Institute on the Environment and Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, United States.
| | - Ralph Grundel
- Great Lakes Science Center, US Geological Survey, Chesterton, IN 46304, United States
| | - Chris Hoving
- Michigan Department of Natural Resources, Lansing, MI 48909, United States; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, United States
| | - Gregor W Schuurman
- Natural Resource Stewardship and Science, US National Park Service, Fort Collins, CO 80525, United States
| |
Collapse
|
20
|
Abstract
Studies of the migration of the eastern North American monarch butterfly (Danaus plexippus) have revealed mechanisms behind its navigation. The main orientation mechanism uses a time-compensated sun compass during both the migration south and the remigration north. Daylight cues, such as the sun itself and polarized light, are processed through both eyes and integrated through intricate circuitry in the brain's central complex, the presumed site of the sun compass. Monarch circadian clocks have a distinct molecular mechanism, and those that reside in the antennae provide time compensation. Recent evidence shows that migrants can also use a light-dependent inclination magnetic compass for orientation in the absence of directional daylight cues. The monarch genome has been sequenced, and genetic strategies using nuclease-based technologies have been developed to edit specific genes. The monarch butterfly has emerged as a model system to study the neural, molecular, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; ,
| | - Patrick A Guerra
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; ,
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
21
|
Webb AB, Oates AC. Timing by rhythms: Daily clocks and developmental rulers. Dev Growth Differ 2016; 58:43-58. [PMID: 26542934 PMCID: PMC4832293 DOI: 10.1111/dgd.12242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 01/10/2023]
Abstract
Biological rhythms are widespread, allowing organisms to temporally organize their behavior and metabolism in advantageous ways. Such proper timing of molecular and cellular events is critical to their development and health. This is best understood in the case of the circadian clock that orchestrates the daily sleep/wake cycle of organisms. Temporal rhythms can also be used for spatial organization, if information from an oscillating system can be recorded within the tissue in a manner that leaves a permanent periodic pattern. One example of this is the "segmentation clock" used by the vertebrate embryo to rhythmically and sequentially subdivide its elongating body axis. The segmentation clock moves with the elongation of the embryo, such that its period sets the segment length as the tissue grows outward. Although the study of this system is still relatively young compared to the circadian clock, outlines of molecular, cellular, and tissue-level regulatory mechanisms of timing have emerged. The question remains, however, is it truly a clock? Here we seek to introduce the segmentation clock to a wider audience of chronobiologists, focusing on the role and control of timing in the system. We compare and contrast the segmentation clock with the circadian clock, and propose that the segmentation clock is actually an oscillatory ruler, with a primary function to measure embryonic space.
Collapse
Affiliation(s)
- Alexis B Webb
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Andrew C Oates
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
- University College London, Gower Street, London, UK
| |
Collapse
|