1
|
Salvador B, Cabanellas‐Reboredo M, Garci ME, González ÁF, Hernández‐Urcera J. The best defense is a good offense: Anti-predator behavior of the common octopus ( Octopus vulgaris) against conger eel attacks. Ecol Evol 2024; 14:e11107. [PMID: 38510541 PMCID: PMC10951491 DOI: 10.1002/ece3.11107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
We present the description of defensive behavior in wild Octopus vulgaris against conger eel (Conger conger) attacks based on three video sequences recorded by recreational SCUBA divers in the eastern Atlantic off the coast of Galicia (NW Spain) and in the Cantabrian Sea (NW Spain). These records document common traits in defensive behavior: (1) the octopuses enveloped the conger eel's head to obscure its view; (2) they covered the eel's gills in an attempt to suffocate it; (3) they released ink; (4) the octopuses lost some appendages because of the fight. In the third video, the octopus did not exhibit the defensive behavior described in the first two videos due to an inability to utilize its arms in defense, and the conger eel's success in capturing octopuses is discussed. Additionally, both the cost that the octopus could face by losing some arms during the fight and whether the experience it acquires can be an advantage for future encounters are analyzed. The defensive behavior exhibited by octopuses in this study highlights their ability to survive in a hostile environment and serves as an example of the extensive repertoire of anti-predator strategies employed by these cephalopods.
Collapse
Affiliation(s)
- Beatriz Salvador
- ECOBIOMAR Research GroupInstitute of Marine Research (IIM‐CSIC)VigoSpain
| | | | - Manuel E. Garci
- ECOBIOMAR Research GroupInstitute of Marine Research (IIM‐CSIC)VigoSpain
| | - Ángel F. González
- ECOBIOMAR Research GroupInstitute of Marine Research (IIM‐CSIC)VigoSpain
| | | |
Collapse
|
2
|
Kirby AJ, Balko JA, Goertz CEC, Lewbart GA. Characterization of Current Husbandry and Veterinary Care Practices of the Giant Pacific Octopus ( Enteroctopus dofleini) Using an Online Survey. Vet Sci 2023; 10:448. [PMID: 37505853 PMCID: PMC10385140 DOI: 10.3390/vetsci10070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Giant Pacific octopuses (Enteroctopus dofleini) (GPOs) are commonly housed in zoos or aquaria, and sedation, anesthesia, and/or euthanasia may be indicated for a variety of reasons. Despite this need, evidence-based data on best practices is limited and focuses on smaller or more tropical species. The objectives of this study were to survey the aquatic community regarding the husbandry and veterinary care of GPOs, with a specific focus on anesthetic and euthanasia protocols. A two-part web-based survey was distributed to four aquatic and/or veterinary email listservs. Individuals from fifty-two institutions participated in phase one. Results documented that 40 (78 percent) participating institutions currently house GPOs, with most housing one and nine institutions housing two to three GPOs. The median (range) habitat volume is 5405 (1893-16,465) L, and 78 percent of systems are closed. Of the institutions surveyed, 23 have anesthetized or sedated a GPO for nonterminal procedures, including wound care, biopsies, and hemolymph collection. Reported methods of sedation or anesthesia include magnesium chloride, ethanol, isoflurane, tricaine methanesulfonate (MS-222), magnesium sulfate, benzocaine, and dexmedetomidine. Drugs or methods used for euthanasia include magnesium chloride, ethanol, mechanical decerebration, pentobarbital, isoflurane, MS-222, magnesium sulfate, benzocaine, potassium chloride, dexmedetomidine, and freezing. Reported observed side effects include ineffectiveness or inadequate sedation, inking, prolonged drug effects, and behavior changes. Survey data have the potential to guide the husbandry and veterinary care of GPOs and build the framework for future prospective studies on GPO sedation and anesthesia.
Collapse
Affiliation(s)
| | - Julie A Balko
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | | | - Gregory A Lewbart
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Bidel F, Meirovitch Y, Schalek RL, Lu X, Pavarino EC, Yang F, Peleg A, Wu Y, Shomrat T, Berger DR, Shaked A, Lichtman JW, Hochner B. Connectomics of the Octopus vulgaris vertical lobe provides insight into conserved and novel principles of a memory acquisition network. eLife 2023; 12:e84257. [PMID: 37410519 PMCID: PMC10325715 DOI: 10.7554/elife.84257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Here, we present the first analysis of the connectome of a small volume of the Octopus vulgaris vertical lobe (VL), a brain structure mediating the acquisition of long-term memory in this behaviorally advanced mollusk. Serial section electron microscopy revealed new types of interneurons, cellular components of extensive modulatory systems, and multiple synaptic motifs. The sensory input to the VL is conveyed via~1.8 × 106 axons that sparsely innervate two parallel and interconnected feedforward networks formed by the two types of amacrine interneurons (AM), simple AMs (SAMs) and complex AMs (CAMs). SAMs make up 89.3% of the~25 × 106VL cells, each receiving a synaptic input from only a single input neuron on its non-bifurcating primary neurite, suggesting that each input neuron is represented in only~12 ± 3.4SAMs. This synaptic site is likely a 'memory site' as it is endowed with LTP. The CAMs, a newly described AM type, comprise 1.6% of the VL cells. Their bifurcating neurites integrate multiple inputs from the input axons and SAMs. While the SAM network appears to feedforward sparse 'memorizable' sensory representations to the VL output layer, the CAMs appear to monitor global activity and feedforward a balancing inhibition for 'sharpening' the stimulus-specific VL output. While sharing morphological and wiring features with circuits supporting associative learning in other animals, the VL has evolved a unique circuit that enables associative learning based on feedforward information flow.
Collapse
Affiliation(s)
- Flavie Bidel
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Richard Lee Schalek
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Xiaotang Lu
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - Fuming Yang
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adi Peleg
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic CenterMichmoretIsrael
| | - Daniel Raimund Berger
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adi Shaked
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| | - Jeff William Lichtman
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| |
Collapse
|
4
|
Imperadore P, Cagnin S, Allegretti V, Millino C, Raffini F, Fiorito G, Ponte G. Transcriptome-wide selection and validation of a solid set of reference genes for gene expression studies in the cephalopod mollusk Octopus vulgaris. Front Mol Neurosci 2023; 16:1091305. [PMID: 37266373 PMCID: PMC10230085 DOI: 10.3389/fnmol.2023.1091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 06/03/2023] Open
Abstract
Octopus vulgaris is a cephalopod mollusk and an active marine predator that has been at the center of a number of studies focused on the understanding of neural and biological plasticity. Studies on the machinery involved in e.g., learning and memory, regeneration, and neuromodulation are required to shed light on the conserved and/or unique mechanisms that these animals have evolved. Analysis of gene expression is one of the most essential means to expand our understanding of biological machinery, and the selection of an appropriate set of reference genes is the prerequisite for the quantitative real-time polymerase chain reaction (qRT-PCR). Here we selected 77 candidate reference genes (RGs) from a pool of stable and relatively high-expressed transcripts identified from the full-length transcriptome of O. vulgaris, and we evaluated their expression stabilities in different tissues through geNorm, NormFinder, Bestkeeper, Delta-CT method, and RefFinder. Although various algorithms provided different assemblages of the most stable reference genes for the different kinds of tissues tested here, a comprehensive ranking revealed RGs specific to the nervous system (Ov-RNF7 and Ov-RIOK2) and Ov-EIF2A and Ov-CUL1 across all considered tissues. Furthermore, we validated RGs by assessing the expression profiles of nine target genes (Ov-Naa15, Ov-Ltv1, Ov-CG9286, Ov-EIF3M, Ov-NOB1, Ov-CSDE1, Ov-Abi2, Ov-Homer2, and Ov-Snx20) in different areas of the octopus nervous system (gastric ganglion, as control). Our study allowed us to identify the most extensive set of stable reference genes currently available for the nervous system and appendages of adult O. vulgaris.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy
- CIR-Myo Myology Center, University of Padova, Padova, Italy
| | - Vittoria Allegretti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | - Francesca Raffini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
5
|
Novel object recognition in Octopus maya. Anim Cogn 2023; 26:1065-1072. [PMID: 36809584 PMCID: PMC10066149 DOI: 10.1007/s10071-023-01753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
The Novel Object Recognition task (NOR) is widely used to study vertebrates' memory. It has been proposed as an adequate model for studying memory in different taxonomic groups, allowing similar and comparable results. Although in cephalopods, several research reports could indicate that they recognize objects in their environment, it has not been tested as an experimental paradigm that allows studying different memory phases. This study shows that two-month-old and older Octopus maya subjects can differentiate between a new object and a known one, but one-month-old subjects cannot. Furthermore, we observed that octopuses use vision and tactile exploration of new objects to achieve object recognition, while familiar objects only need to be explored visually. To our knowledge, this is the first time showing an invertebrate performing the NOR task similarly to how it is performed in vertebrates. These results establish a guide to studying object recognition memory in octopuses and the ontological development of that memory.
Collapse
|
6
|
Prado-Álvarez M, Dios S, García-Fernández P, Tur R, Hachero-Cruzado I, Domingues P, Almansa E, Varó I, Gestal C. De novo transcriptome reconstruction in aquacultured early life stages of the cephalopod Octopus vulgaris. Sci Data 2022; 9:609. [PMID: 36209315 PMCID: PMC9547907 DOI: 10.1038/s41597-022-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cephalopods have been considered enigmatic animals that have attracted the attention of scientists from different areas of expertise. However, there are still many questions to elucidate the way of life of these invertebrates. The aim of this study is to construct a reference transcriptome in Octopus vulgaris early life stages to enrich existing databases and provide a new dataset that can be reused by other researchers in the field. For that, samples from different developmental stages were combined including embryos, newly-hatched paralarvae, and paralarvae of 10, 20 and 40 days post-hatching. Additionally, different dietary and rearing conditions and pathogenic infections were tested. At least three biological replicates were analysed per condition and submitted to RNA-seq analysis. All sequencing reads from experimental conditions were combined in a single dataset to generate a reference transcriptome assembly that was functionally annotated. The number of reads aligned to this reference was counted to estimate the transcript abundance in each sample. This dataset compiled a complete reference for future transcriptomic studies in O. vulgaris. Measurement(s) | Transcriptome sequencing assay | Technology Type(s) | RNA-seq assay (Illumina) | Sample Characteristic - Organism | Octopus vulgaris | Sample Characteristic - Environment | Ocean | Sample Characteristic - Location | NW Spain (Ría de Vigo, Galicia) |
Collapse
Affiliation(s)
- María Prado-Álvarez
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain
| | - Sonia Dios
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain
| | - Pablo García-Fernández
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain.,Pescanova Biomarine Center, Lugar Ardia 172, 36980, O Grove, Spain
| | - Ricardo Tur
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Subida a Radio Faro 50-52, 36390, Vigo, Spain.,Pescanova Biomarine Center, Lugar Ardia 172, 36980, O Grove, Spain
| | - Ismael Hachero-Cruzado
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Subida a Radio Faro 50-52, 36390, Vigo, Spain
| | - Pedro Domingues
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Subida a Radio Faro 50-52, 36390, Vigo, Spain
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias (COC-IEO), CSIC. Calle La Farola del Mar n° 22, Dársena Pesquera, 38180, Santa Cruz de Tenerife, Spain
| | - Inmaculada Varó
- Instituto de Acuicultura de Torre de la Sal (IATS), CSIC. Torre de la Sal s/n, 12595, Ribera de Cabanes, Spain
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
7
|
Ponte G, Chiandetti C, Edelman DB, Imperadore P, Pieroni EM, Fiorito G. Cephalopod Behavior: From Neural Plasticity to Consciousness. Front Syst Neurosci 2022; 15:787139. [PMID: 35495582 PMCID: PMC9039538 DOI: 10.3389/fnsys.2021.787139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
It is only in recent decades that subjective experience - or consciousness - has become a legitimate object of scientific inquiry. As such, it represents perhaps the greatest challenge facing neuroscience today. Subsumed within this challenge is the study of subjective experience in non-human animals: a particularly difficult endeavor that becomes even more so, as one crosses the great evolutionary divide between vertebrate and invertebrate phyla. Here, we explore the possibility of consciousness in one group of invertebrates: cephalopod molluscs. We believe such a review is timely, particularly considering cephalopods' impressive learning and memory abilities, rich behavioral repertoire, and the relative complexity of their nervous systems and sensory capabilities. Indeed, in some cephalopods, these abilities are so sophisticated that they are comparable to those of some higher vertebrates. Following the criteria and framework outlined for the identification of hallmarks of consciousness in non-mammalian species, here we propose that cephalopods - particularly the octopus - provide a unique test case among invertebrates for examining the properties and conditions that, at the very least, afford a basal faculty of consciousness. These include, among others: (i) discriminatory and anticipatory behaviors indicating a strong link between perception and memory recall; (ii) the presence of neural substrates representing functional analogs of thalamus and cortex; (iii) the neurophysiological dynamics resembling the functional signatures of conscious states in mammals. We highlight the current lack of evidence as well as potentially informative areas that warrant further investigation to support the view expressed here. Finally, we identify future research directions for the study of consciousness in these tantalizing animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - David B. Edelman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
- Association for Cephalopod Research ‘CephRes' a non-profit Organization, Naples, Italy
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
8
|
Jacobs RE. Diffusion MRI Connections in the Octopus Brain. Exp Neurobiol 2022; 31:17-28. [PMID: 35256541 PMCID: PMC8907252 DOI: 10.5607/en21047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
Using high angle resolution diffusion magnetic resonance imaging (HARDI) with fiber tractography analysis we map out a meso-scale connectome of the Octopus bimaculoides brain. The brain of this cephalopod has a qualitatively different organization than that of vertebrates, yet it exhibits complex behavior, an elaborate sensory system and high cognitive abilities. Over the last 60 years wide ranging and detailed studies of octopus brain anatomy have been undertaken, including classical histological sectioning/staining, electron microscopy and neuronal tract tracing with injected dyes. These studies have elucidated many neuronal connections within and among anatomical structures. Diffusion MRI based tractography utilizes a qualitatively different method of tracing connections within the brain and offers facile three-dimensional images of anatomy and connections that can be quantitatively analyzed. Twenty-five separate lobes of the brain were segmented in the 3D MR images of each of three samples, including all five sub-structures in the vertical lobe. These parcellations were used to assay fiber tracings between lobes. The connectivity matrix constructed from diffusion MRI data was largely in agreement with that assembled from earlier studies. The one major difference was that connections between the vertical lobe and more basal supra-esophageal structures present in the literature were not found by MRI. In all, 92 connections between the 25 different lobes were noted by diffusion MRI: 53 between supra-esophageal lobes and 26 between the optic lobes and other structures. These represent the beginnings of a mesoscale connectome of the octopus brain.
Collapse
Affiliation(s)
- Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetics Institute, Keck School of Medicine of USC, Los Angeles, CA 90089-2821, USA
| |
Collapse
|
9
|
Di Cosmo A, Pinelli C, Scandurra A, Aria M, D’Aniello B. Research Trends in Octopus Biological Studies. Animals (Basel) 2021; 11:ani11061808. [PMID: 34204419 PMCID: PMC8233767 DOI: 10.3390/ani11061808] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Octopuses represent model studies for different fields of scientific inquiry. We provide a bibliometric analysis on biological research trends in octopuses studies by using bibliometrix, a new and powerful R-tool. The analysis was executed from January 1985 to December 2020 including scientific products reported in Web of Science (WoS) database. The main results showed an increasing effort in research involving octopuses with a greater number of journals reporting research on these animals, as well as countries, institutions, and researchers involved. Some research themes lost importance over time, while some new themes appeared recently. Current data provide significant insight into the evolving trends in octopuses studies. Abstract Octopuses represent interesting model studies for different fields of scientific inquiry. The present study provides a bibliometric analysis on research trends in octopuses biological studies. The analysis was executed from January 1985 to December 2020 including scientific products reported in the Web of Science database. The period of study was split into two blocks (“earlier period” (EP): 1985−2010; “recent period” (RP): 2011−2020) to analyze the evolution of the research topics over time. All publications of interest were identified by using the following query: ((AK = octopus) OR (AB = octopus) OR (TI = octopus)). Data information was converted into an R-data frame using bibliometrix. Octopuses studies appeared in 360 different sources in EP, while they increased to 408 in RP. Sixty countries contributed to the octopuses studies in the EP, while they were 78 in the RP. The number of affiliations also increased between EP and RP, with 835 research centers involved in the EP and 1399 in the RP. In the EP 5 clusters (i.e., “growth and nutrition”, “pollution impact”, “morphology”, “neurobiology”, “biochemistry”) were represented in a thematic map, according to their centrality and density ranking. In the RP the analysis identified 4 clusters (i.e., “growth and nutrition”, “ecology”, “pollution impact”, “genes, behavior, and brain evolution”). The UK with Ireland, and the USA with Canada shared the highest number of publications in the EP, while in the RP, Spain and Portugal were the leading countries. The current data provide significant insight into the evolving trends in octopuses studies.
Collapse
Affiliation(s)
- Anna Di Cosmo
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy; (A.S.); (B.D.)
- Correspondence:
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Anna Scandurra
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy; (A.S.); (B.D.)
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, via Cinthia, 80126 Naples, Italy;
| | - Biagio D’Aniello
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy; (A.S.); (B.D.)
| |
Collapse
|
10
|
Holst MM, Miller-Morgan T. The Use of a Species-Specific Health and Welfare Assessment Tool for the Giant Pacific Octopus, Enteroctopus dofleini. J APPL ANIM WELF SCI 2020; 24:272-291. [PMID: 32937082 DOI: 10.1080/10888705.2020.1809412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cephalopods are increasingly viewed as sentient animals that require the same welfare consideration as their vertebrate counterparts. In this study, an observational welfare assessment tool developed by the EU Directive was revised to be species-specific for the giant Pacific octopus, Enteroctopus dofleini. This E. dofleini health and welfare assessment tool includes categories assessing E. dofleini external appearance, behavior, and clinical signs of stress and disease. These categories are scored in severity from 1 to 4, allowing a quantitative perspective on health observations. Six facilities used the health and welfare assessment tool to evaluate E. dofleini until the animal was humanely euthanized or died naturally. Results showed an irreversible upward trend in scores for feeding behavior and response to stimulus beginning 4 weeks prior to death, with significant changes in health and welfare scores between 4 weeks and the final week prior to death. This suggests that upward trends in these two variables predict death within 3-4 weeks. Highly variable results between individuals for other categories indicate that a quantitative tool can help assess health and welfare at the individual level.
Collapse
Affiliation(s)
- Meghan M Holst
- Animal Care Department, Aquarium of the Bay, San Francisco, CA, USA
| | - Tim Miller-Morgan
- Oregon Sea Grant/Carlson College of Veterinary Medicine, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| |
Collapse
|
11
|
Albertin CB, Simakov O. Cephalopod Biology: At the Intersection Between Genomic and Organismal Novelties. Annu Rev Anim Biosci 2020; 8:71-90. [PMID: 31815522 DOI: 10.1146/annurev-animal-021419-083609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cephalopods are resourceful marine predators that have fascinated generations of researchers as well as the public owing to their advanced behavior, complex nervous system, and significance in evolutionary studies. Recent advances in genomics have accelerated the pace of cephalopod research. Many traditional areas focusing on evolution, development, behavior, and neurobiology, primarily on the morphological level, are now transitioning to molecular approaches. This review addresses the recent progress and impact of genomic and other molecular resources on research in cephalopods. We outline several key directions in which significant progress in cephalopod research is expected and discuss its impact on our understanding of the genetic background behind cephalopod biology and beyond.
Collapse
Affiliation(s)
- Caroline B Albertin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA;
| | - Oleg Simakov
- Department of Molecular Evolutionary and Development, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
12
|
A standardized battery of tests to measure Octopus vulgaris’ behavioural performance. INVERTEBRATE NEUROSCIENCE 2020; 20:4. [DOI: 10.1007/s10158-020-0237-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
|
13
|
The survey and reference assisted assembly of the Octopus vulgaris genome. Sci Data 2019; 6:13. [PMID: 30931949 PMCID: PMC6472339 DOI: 10.1038/s41597-019-0017-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
The common octopus, Octopus vulgaris, is an active marine predator known for the richness and plasticity of its behavioral repertoire, and remarkable learning and memory capabilities. Octopus and other coleoid cephalopods, cuttlefish and squid, possess the largest nervous system among invertebrates, both for cell counts and body to brain size. O. vulgaris has been at the center of a long-tradition of research into diverse aspects of its biology. To leverage research in this iconic species, we generated 270 Gb of genomic sequencing data, complementing those available for the only other sequenced congeneric octopus, Octopus bimaculoides. We show that both genomes are similar in size, but display different levels of heterozygosity and repeats. Our data give a first quantitative glimpse into the rate of coding and non-coding regions and support the view that hundreds of novel genes may have arisen independently despite the close phylogenetic distance. We furthermore describe a reference-guided assembly and an open genomic resource (CephRes-gdatabase), opening new avenues in the study of genomic novelties in cephalopods and their biology. Design Type(s) | species comparison design • sequence analysis objective • sequence assembly objective | Measurement Type(s) | whole genome sequencing assay | Technology Type(s) | DNA sequencing | Factor Type(s) | Sample Characteristic(s) | Octopus vulgaris • testis • ocean biome |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
14
|
Holden-Dye L, Walker RJ. Invertebrate models of behavioural plasticity and human disease. Brain Neurosci Adv 2018; 2:2398212818818068. [PMID: 32166171 PMCID: PMC7058240 DOI: 10.1177/2398212818818068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/15/2022] Open
Abstract
The fundamental processes of neural communication have been largely conserved through evolution. Throughout the last century, researchers have taken advantage of this, and the experimental tractability of invertebrate animals, to advance understanding of the nervous system that translates to mammalian brain. This started with the inspired analysis of the ionic basis of neuronal excitability and neurotransmission using squid during the 1940s and 1950s and has progressed to detailed insight into the molecular architecture of the synapse facilitated by the genetic tractability of the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Throughout this time, invertebrate preparations have provided a means to link neural mechanisms to behavioural plasticity and thus key insight into fundamental aspects of control systems, learning, and memory. This article captures key highlights that exemplify the historical and continuing invertebrate contribution to neuroscience.
Collapse
Affiliation(s)
| | - Robert J Walker
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Key B, Brown D. Designing Brains for Pain: Human to Mollusc. Front Physiol 2018; 9:1027. [PMID: 30127750 PMCID: PMC6088194 DOI: 10.3389/fphys.2018.01027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
There is compelling evidence that the "what it feels like" subjective experience of sensory stimuli arises in the cerebral cortex in both humans as well as mammalian experimental animal models. Humans are alone in their ability to verbally communicate their experience of the external environment. In other species, sensory awareness is extrapolated on the basis of behavioral indicators. For instance, cephalopods have been claimed to be sentient on the basis of their complex behavior and anecdotal reports of human-like intelligence. We have interrogated the findings of avoidance learning behavioral paradigms and classical brain lesion studies and conclude that there is no evidence for cephalopods feeling pain. This analysis highlighted the questionable nature of anthropometric assumptions about sensory experience with increased phylogenetic distance from humans. We contend that understanding whether invertebrates such as molluscs are sentient should first begin with defining the computational processes and neural circuitries underpinning subjective awareness. Using fundamental design principles, we advance the notion that subjective awareness is dependent on observer neural networks (networks that in some sense introspect the neural processing generating neural representations of sensory stimuli). This introspective process allows the observer network to create an internal model that predicts the neural processing taking place in the network being surveyed. Predictions arising from the internal model form the basis of a rudimentary form of awareness. We develop an algorithm built on parallel observer networks that generates multiple levels of sensory awareness. A network of cortical regions in the human brain has the appropriate functional properties and neural interconnectivity that is consistent with the predicted circuitry of the algorithm generating pain awareness. By contrast, the cephalopod brain lacks the necessary neural circuitry to implement such an algorithm. In conclusion, we find no compelling behavioral, functional, or neuroanatomical evidence to indicate that cephalopods feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Deborah Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
O’Brien CE, Roumbedakis K, Winkelmann IE. The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Front Physiol 2018; 9:700. [PMID: 29962956 PMCID: PMC6014164 DOI: 10.3389/fphys.2018.00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Here, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored: genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
- Association for Cephalopod Research – CephRes, Naples, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research – CephRes, Naples, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Inger E. Winkelmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Lopes VM, Sampaio E, Roumbedakis K, Tanaka NK, Carulla L, Gambús G, Woo T, Martins CPP, Penicaud V, Gibbings C, Eberle J, Tedesco P, Fernández I, Rodríguez-González T, Imperadore P, Ponte G, Fiorito G. Cephalopod biology and care, a COST FA1301 (CephsInAction) training school: anaesthesia and scientific procedures. INVERTEBRATE NEUROSCIENCE 2018. [PMID: 28620831 DOI: 10.1007/s10158-017-0200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the "working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU". The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing.
Collapse
Affiliation(s)
- Vanessa M Lopes
- MARE - Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da, Universidade de Lisboa, Lisbon, Portugal
- IPMA - Instituto Português do Mar e da Atmosfera, Avenida Brasília, 1449-006, Lisbon, Portugal
| | - Eduardo Sampaio
- MARE - Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da, Universidade de Lisboa, Lisbon, Portugal
| | - Katina Roumbedakis
- AQUOS - Sanidade de Organismos Aquáticos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nobuaki K Tanaka
- Creative Research Institution, Hokkaido University, Sapporo, 001-0021, Japan
| | - Lucía Carulla
- L'Aquàrium de Barcelona, Aspro Ocio S.A, Moll d'Espanya del Port Vell S/N, Barcelona, Spain
| | - Guillermo Gambús
- ICM-CSIC - Instituto de Ciencias del Mar, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Theodosia Woo
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438, Frankfurt am Main, Germany
| | - Catarina P P Martins
- ICM-CSIC - Instituto de Ciencias del Mar, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Virginie Penicaud
- LIENSs - Littoral Environnement et Sociétés, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Jessica Eberle
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438, Frankfurt am Main, Germany
| | - Perla Tedesco
- Sezione Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Naples, Italy
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, CoNISMa, Lecce, Italy
| | - Isabel Fernández
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Spain
| | - Tania Rodríguez-González
- IMIDA - Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Estación de Acuicultura Marina, Carretera del puerto s/n, Puerto de San Pedro del Pinatar, 30740, San Pedro del Pinatar, Murcia, Spain
| | | | - Giovanna Ponte
- Sezione Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Naples, Italy
- Association for Cephalopod Research - CephRes, Naples, Italy
| | - Graziano Fiorito
- Sezione Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Naples, Italy.
- Association for Cephalopod Research - CephRes, Naples, Italy.
| |
Collapse
|
18
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
19
|
Sykes AV, Almansa E, Cooke GM, Ponte G, Andrews PLR. The Digestive Tract of Cephalopods: a Neglected Topic of Relevance to Animal Welfare in the Laboratory and Aquaculture. Front Physiol 2017; 8:492. [PMID: 28769814 PMCID: PMC5511845 DOI: 10.3389/fphys.2017.00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health and welfare of a cephalopod is essential whether it is in a research, aquaculture or public display. The inclusion of cephalopods in the European Union legislation (Directive 2010/63/EU) regulating the use of animals for scientific purposes has prompted detailed consideration and review of all aspects of the care and welfare of cephalopods in the laboratory but the information generated will be of utility in other settings. We overview a wide range of topics of relevance to cephalopod digestive tract physiology and their relationship to the health and welfare of these animals. Major topics reviewed include: (i) Feeding cephalopods in captivity which deals with live food and prepared diets, feeding frequency (ad libitum vs. intermittent) and the amount of food provided; (ii) The particular challenges in feeding hatchlings and paralarvae, as feeding and survival of paralarvae remain major bottlenecks for aquaculture e.g., Octopus vulgaris; (iii) Digestive tract parasites and ingested toxins are discussed not only from the perspective of the impact on digestive function and welfare but also as potential confounding factors in research studies; (iv) Food deprivation is sometimes necessary (e.g., prior to anesthesia and surgery, to investigate metabolic control) but what is the impact on a cephalopod, how can it be assessed and how does the duration relate to regulatory threshold and severity assessment? Reduced food intake is also reviewed in the context of setting humane end-points in experimental procedures; (v) A range of experimental procedures are reviewed for their potential impact on digestive tract function and welfare including anesthesia and surgery, pain and stress, drug administration and induced developmental abnormalities. The review concludes by making some specific recommendations regarding reporting of feeding data and identifies a number of areas for further investigation. The answer to many of the questions raised here will rely on studies of the physiology of the digestive tract.
Collapse
Affiliation(s)
- António V Sykes
- Centro de Ciências do Mar do Algarve, Universidade do AlgarveFaro, Portugal
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin UniversityCambridge, United Kingdom
| | - Giovanna Ponte
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| | - Paul L R Andrews
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| |
Collapse
|
20
|
Wang JH, Zheng XD. Comparison of the genetic relationship between nine Cephalopod species based on cluster analysis of karyotype evolutionary distance. COMPARATIVE CYTOGENETICS 2017; 11:477-494. [PMID: 29093799 PMCID: PMC5646656 DOI: 10.3897/compcytogen.v11i3.12752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/28/2017] [Indexed: 05/20/2023]
Abstract
Karyotype analysis was carried out on gill cells of three species of octopods using a conventional air-drying method. The karyotype results showed that all the three species have the same diploid chromosome number, 2n=60, but with different karyograms as 2n=38M+6SM+8ST+8T, FN (fundamental number)=104 (Cistopus chinensis Zheng et al., 2012), 2n=42M+6SM+4ST+8T, FN=108 (Octopus minor (Sasaki, 1920)) and 2n=32M+16SM+12T, FN=108 (Amphioctopus fangsiao (d'Orbigny, 1839-1841)). These findings were combined with data from earlier studies to infer the genetic relationships between nine species via cluster analysis using the karyotype evolutionary distance (De ) and resemblance-near coefficient (λ). The resulting tree revealed a clear distinction between different families and orders which was substantially consistent with molecular phylogenies. The smallest intraspecific evolutionary distance (De =0.2013, 0.2399) and largest resemblance-near coefficient (λ=0.8184, 0.7871) appeared between O. minor and C. chinensis, and Sepia esculenta Hoyle, 1885 and S. lycidas Gray, 1849, respectively, indicating that these species have the closest relationship. The largest evolutionary gap appeared between species with complicated karyotypes and species with simple karyotypes. Cluster analysis of De and λ provides information to supplement traditional taxonomy and molecular systematics, and it would serve as an important auxiliary for routine phylogenetic study.
Collapse
Affiliation(s)
- Jin-hai Wang
- Laboratory of Shellfish Genetics and Breeding, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Xiao-dong Zheng
- Laboratory of Shellfish Genetics and Breeding, Fisheries College, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
21
|
Lockard MA, Ebert MS, Bargmann CI. Oxytocin mediated behavior in invertebrates: An evolutionary perspective. Dev Neurobiol 2016; 77:128-142. [PMID: 27804275 DOI: 10.1002/dneu.22466] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/14/2016] [Accepted: 10/15/2016] [Indexed: 12/31/2022]
Abstract
The molecular and functional conservation of oxytocin-related neuropeptides in behavior is striking. In animals separated by at least 600 million years of evolution, from roundworms to humans, oxytocin homologs play critical roles in the modulation of reproductive behavior and other biological functions. Here, we review the roles of oxytocin in invertebrate behavior from an evolutionary perspective. We begin by tracing the evolution of oxytocin through the invertebrate animal lineages, and then describe common themes in invertebrate behaviors that are mediated by oxytocin-related peptides, including reproductive behavior, learning and memory, food arousal, and predator/prey relationships. Finally, we discuss interesting future directions that have recently become experimentally tractable. Studying oxytocin in invertebrates offers precise insights into the activity of neuropeptides on well-defined neural circuits; the principles that emerge may also be represented in the more complex vertebrate brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 128-142, 2017.
Collapse
Affiliation(s)
- Meghan A Lockard
- Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, 10065
| | - Margaret S Ebert
- Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, 10065
| | - Cornelia I Bargmann
- Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, 10065.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York, 10065
| |
Collapse
|
22
|
|