1
|
Kucenas S, Pulh P, Topilko P, Smith CJ. Glia at Transition Zones. Cold Spring Harb Perspect Biol 2025; 17:a041369. [PMID: 38858073 PMCID: PMC11864109 DOI: 10.1101/cshperspect.a041369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Neural cells are segregated into their distinct central nervous system (CNS) and peripheral nervous system (PNS) domains. However, at specialized regions of the nervous system known as transition zones (TZs), glial cells from both the CNS and PNS are uniquely present with other specialized TZ cells. Herein we review the current understanding of vertebrate TZ cells. The article discusses the distinct cells at vertebrate TZs with a focus on cells that are located on the peripheral side of the spinal cord TZs. In addition to the developmental origin and differentiation of these TZ cells, the functional importance and the role of TZ cells in disease are highlighted. This article also reviews the common and unique features of vertebrate TZs from zebrafish to mice. We propose challenges and open questions in the field that could lead to exciting insights in the field of glial biology.
Collapse
Affiliation(s)
- Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Pernelle Pulh
- Institut Mondor de Recherche Biomédicale, Inserm U955-Team 9, 94010 Créteil, France
| | - Piotr Topilko
- Institut Mondor de Recherche Biomédicale, Inserm U955-Team 9, 94010 Créteil, France
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
2
|
Petrova ES, Kolos EA. Current Views on Perineurial Cells: Unique Origin, Structure, Functions. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302201001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Brown RI, Kawakami K, Kucenas S. A novel gene trap line for visualization and manipulation of erbb3b + neural crest and glial cells in zebrafish. Dev Biol 2022; 482:114-123. [PMID: 34932993 DOI: 10.1016/j.ydbio.2021.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Glia are a diverse and essential cell type in the vertebrate nervous system. Transgenic tools and fluorescent reporter lines are critical resources to investigate how glial subtypes develop and function. However, despite the many lines available in zebrafish, the community still lacks the ability to label all unique stages of glial development and specific subpopulations of cells. To address this issue, we screened zebrafish gene and enhancer trap lines to find a novel reporter for peripheral glial subtypes. From these, we generated the gSAIzGFFD37A transgenic line that expresses GFP in neural crest cells and central and peripheral glia. We found that the gene trap construct is located within an intron of erbb3b, a gene essential for glial development. Additionally, we confirmed that GFP+ cells express erbb3b along with sox10, a known glial marker. From our screen, we have identified the gSAIzGFFD37A line as a novel and powerful tool for studying glia in the developing zebrafish, as well as a new resource to manipulate erbb3b+ cells.
Collapse
Affiliation(s)
- Robin Isadora Brown
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, 22904, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI The Graduate University for Advanced Studies, Mishima, Shizuoka, 444-8540, Japan
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
4
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
5
|
Yusifov E, Dumoulin A, Stoeckli ET. Investigating Primary Cilia during Peripheral Nervous System Formation. Int J Mol Sci 2021; 22:3176. [PMID: 33804711 PMCID: PMC8003989 DOI: 10.3390/ijms22063176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
The primary cilium plays a pivotal role during the embryonic development of vertebrates. It acts as a somatic signaling hub for specific pathways, such as Sonic Hedgehog signaling. In humans, mutations in genes that cause dysregulation of ciliogenesis or ciliary function lead to severe developmental disorders called ciliopathies. Beyond its role in early morphogenesis, growing evidence points towards an essential function of the primary cilium in neural circuit formation in the central nervous system. However, very little is known about a potential role in the formation of the peripheral nervous system. Here, we investigate the presence of the primary cilium in neural crest cells and their derivatives in the trunk of developing chicken embryos in vivo. We found that neural crest cells, sensory neurons, and boundary cap cells all bear a primary cilium during key stages of early peripheral nervous system formation. Moreover, we describe differences in the ciliation of neuronal cultures of different populations from the peripheral and central nervous systems. Our results offer a framework for further in vivo and in vitro investigations on specific roles that the primary cilium might play during peripheral nervous system formation.
Collapse
Affiliation(s)
| | | | - Esther T. Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (E.Y.); (A.D.)
| |
Collapse
|
6
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
7
|
Potratz M, Zaeck LM, Weigel C, Klein A, Freuling CM, Müller T, Finke S. Neuroglia infection by rabies virus after anterograde virus spread in peripheral neurons. Acta Neuropathol Commun 2020; 8:199. [PMID: 33228789 PMCID: PMC7684951 DOI: 10.1186/s40478-020-01074-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022] Open
Abstract
The highly neurotropic rabies virus (RABV) enters peripheral neurons at axon termini and requires long distance axonal transport and trans-synaptic spread between neurons for the infection of the central nervous system (CNS). Recent 3D imaging of field RABV-infected brains revealed a remarkably high proportion of infected astroglia, indicating that highly virulent field viruses are able to suppress astrocyte-mediated innate immune responses and virus elimination pathways. While fundamental for CNS invasion, in vivo field RABV spread and tropism in peripheral tissues is understudied. Here, we used three-dimensional light sheet and confocal laser scanning microscopy to investigate the in vivo distribution patterns of a field RABV clone in cleared high-volume tissue samples after infection via a natural (intramuscular; hind leg) and an artificial (intracranial) inoculation route. Immunostaining of virus and host markers provided a comprehensive overview of RABV infection in the CNS and peripheral nerves after centripetal and centrifugal virus spread. Importantly, we identified non-neuronal, axon-ensheathing neuroglia (Schwann cells, SCs) in peripheral nerves of the hind leg and facial regions as a target cell population of field RABV. This suggests that virus release from axons and infected SCs is part of the RABV in vivo cycle and may affect RABV-related demyelination of peripheral neurons and local innate immune responses. Detection of RABV in axon-surrounding myelinating SCs after i.c. infection further provided evidence for anterograde spread of RABV, highlighting that RABV axonal transport and spread of infectious virus in peripheral nerves is not exclusively retrograde. Our data support a new model in which, comparable to CNS neuroglia, SC infection in peripheral nerves suppresses glia-mediated innate immunity and delays antiviral host responses required for successful transport from the peripheral infection sites to the brain.
Collapse
|
8
|
Tian W, Czopka T, López-Schier H. Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun Biol 2020; 3:49. [PMID: 32001778 PMCID: PMC6992705 DOI: 10.1038/s42003-020-0776-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protecting the nervous system from chronic effects of physical and chemical stress is a pressing clinical challenge. The obligate pro-degenerative protein Sarm1 is essential for Wallerian axon degeneration. Thus, blocking Sarm1 function is emerging as a promising neuroprotective strategy with therapeutic relevance. Yet, the conditions that will most benefit from inhibiting Sarm1 remain undefined. Here we combine genome engineering, pharmacology and high-resolution intravital videmicroscopy in zebrafish to show that genetic elimination of Sarm1 increases Schwann-cell resistance to toxicity by diverse chemotherapeutic agents after axonal injury. Synthetic degradation of Sarm1-deficient axons reversed this effect, suggesting that glioprotection is a non-autonomous effect of delayed axon degeneration. Moreover, loss of Sarm1 does not affect macrophage recruitment to nerve-wound microenvironment, injury resolution, or neural-circuit repair. These findings anticipate that interventions aimed at inhibiting Sarm1 can counter heightened glial vulnerability to chemical stressors and may be an effective strategy to reduce chronic consequences of neurotrauma.
Collapse
Affiliation(s)
- Weili Tian
- Sensory Biology & Organogenesis, Helmholtz Zentrum Munich, Munich, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
9
|
Sundaram VK, Massaad C, Grenier J. Liver X Receptors and Their Implications in the Physiology and Pathology of the Peripheral Nervous System. Int J Mol Sci 2019; 20:ijms20174192. [PMID: 31461876 PMCID: PMC6747127 DOI: 10.3390/ijms20174192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Recent research in the last decade has sought to explore the role and therapeutic potential of Liver X Receptors (LXRs) in the physiology and pathologies of the Peripheral Nervous System. LXRs have been shown to be important in maintaining the redox homeostasis in peripheral nerves for proper myelination, and they regulate ER stress in sensory neurons. Furthermore, LXR stimulation has a positive impact on abrogating the effects of diabetic peripheral neuropathy and obesity-induced allodynia in the Peripheral Nervous System (PNS). This review details these findings and addresses certain important questions that are yet to be answered. The potential roles of LXRs in different cells of the PNS are speculated based on existing knowledge. The review also aims to provide important perspectives for further research in elucidating the role of LXRs and assessing the potential of LXR based therapies to combat pathologies of the Peripheral Nervous System.
Collapse
Affiliation(s)
- Venkat Krishnan Sundaram
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, 75006 Paris, France
| | - Charbel Massaad
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, 75006 Paris, France
| | - Julien Grenier
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, 75006 Paris, France.
| |
Collapse
|
10
|
Miranda IC, Taylor KR, Castleman W, de Lahunta A, Summers BA, Miller AD. Schwannosis in Three Foals and a Calf. Vet Pathol 2019; 56:783-788. [PMID: 31109258 DOI: 10.1177/0300985819846872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proliferation of ectopic Schwann cells within the central nervous system (CNS) parenchyma (schwannosis) in early life is most commonly associated with human neurofibromatosis type-2 and has been unrecognized in domestic animals. Three foals and a calf, 5 to 11 weeks old, with progressive neurological signs from birth were studied. Histologically, at multiple levels of the spinal cord, all animals had bilateral plaques of proliferative spindle cells, predominantly affecting the white matter adjacent to dorsal and ventral nerve roots and variably extending into the gray matter. Proliferating cells had strong intracytoplasmic immunoreactivity for the Schwann cell markers myelin protein zero and periaxin, highlighting the formation of peripheral nervous system (PNS) myelin within the spinal cord. In all cases, foci of disorganized neural tissue (glioneuronal hamartomas) were present, which in 2 cases formed a mass effect that resulted in syringohydromyelia. Neonatal presentation suggests a congenital maldevelopment of the nervous system, with spontaneous invasion of PNS-derived Schwann cells into the CNS.
Collapse
Affiliation(s)
- Ileana C Miranda
- 1 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Section of Anatomic Pathology, Ithaca, NY, USA
| | - Kyle R Taylor
- 2 Washington Animal Disease Diagnostic Laboratory and Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - William Castleman
- 3 University of Florida, College of Veterinary Medicine, Gainesville, FL, USA
| | - Alexander de Lahunta
- 1 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Section of Anatomic Pathology, Ithaca, NY, USA
| | - Brian A Summers
- 1 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Section of Anatomic Pathology, Ithaca, NY, USA
| | - Andrew D Miller
- 1 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Section of Anatomic Pathology, Ithaca, NY, USA
| |
Collapse
|
11
|
Fontenas L, Kucenas S. Motor Exit Point (MEP) Glia: Novel Myelinating Glia That Bridge CNS and PNS Myelin. Front Cell Neurosci 2018; 12:333. [PMID: 30356886 PMCID: PMC6190867 DOI: 10.3389/fncel.2018.00333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes (OLs) and Schwann cells (SCs) have traditionally been thought of as the exclusive myelinating glial cells of the central and peripheral nervous systems (CNS and PNS), respectively, for a little over a century. However, recent studies demonstrate the existence of a novel, centrally-derived peripheral glial population called motor exit point (MEP) glia, which myelinate spinal motor root axons in the periphery. Until recently, the boundaries that exist between the CNS and PNS, and the cells permitted to cross them, were mostly described based on fixed histological collections and static lineage tracing. Recent work in zebrafish using in vivo, time-lapse imaging has shed light on glial cell interactions at the MEP transition zone and reveals a more complex picture of myelination both centrally and peripherally.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|